

Abstract—The p-median problem is classified as a NP-

hard problem, which demands a long time for solution. To

increase the use of the method in public management,

commercial, military and industrial applications, several

heuristic methods has been proposed in literature. In this work,

we propose a customized Genetic Algorithm for solving the p-

median problem, and we present its evaluation using benchmark

problems of OR-library. The customized method combines

parameters used in previous studies and introduces the evolution

of solutions in stationary mode for solving PMP problems. The

proposed Genetic Algorithm found the optimum solution in 37

of 40 instances of p-median problem. The mean deviation from

the optimal solution was 0.002% and the mean processing time

using CPU core i7 was 17.7s.

I. INTRODUCTION

Facility location problems (FLP) are usually employed for

solving public, commercial, industrial and military problems.

In these problems, service demand points must be attended by

a limited number of facilities. The p-median problem (PMP)

is a type of FLP problem that aims searching a given location

that minimizes the sum of the distances between N demand

points and the nearest facility [1].

The computational complexity theory classifies the PMP as

a non-polynomial hard problem (NP-hard problem). Meta-

heuristic methods are usually used for solving NP-hard

problems whose optimal solution method does not exist or is

not known: Greedy Interchange (GI) [2], Neighborhood (N)

and Exchange [2], Semi-Lagrangean relaxation [3],

Simulated Annealing (SA) [4], Tabu Search (TS) [5], Genetic

Algorithm (GA) [6-7].

To enable comparative studies of these methods,

benchmarking data bases are used. The Operational Research

(OR) library [8] and the Traveling Salesman Problem (TSP)

[9] are the most used ones [6,7,10,11,12,13].

In the comparisons made in [6] and [11], the GA heuristic

stands out as the best one in terms of time and precision of

solution. Nevertheless, concerning the precision of the

solutions, the GAs presented in these works have a worse

result than the customized GAs, presented in [7], as well as

when compared to GA combinations with other heuristics,

presented in [11].

 This work was supported by Samsung Eletronica da Amazonia, under

the terms of the Brazilian Federal Law number 8.387/91.

In [6], the authors used the OR-library [14] and two others

more simple databases to evaluate several methods used in

PMP solution: ADE (Alp, Drezner and Erkut) GA, Gamma

Heuristic (GH), SA, Myopic, Exchange and N. The algorithm

known as ADE GA performs a greedy search using the

genetic material of two individuals randomly selected,

evaluating all the possible combinations of generated

offspring. The algorithm found solutions with an average

distance from the optimal solution (OPT solution) of 0.41%,

in 85% of the OR-library problems, and an average time of 18

seconds.

In [11] the authors performed a comparative study of a GA,

an N algorithm and a hybrid GA and N algorithm, using the

TSP-library. The GA proposed by the authors is similar to

ADE GA, differing only in the use of an algebraic method to

select a pair of parents. The GA converged to a solution in

less time than the other heuristics. The CPU average time was

126.8min. The GA presented solutions with an average

distance from the OPT solution of 0.000016%, and an average

time of 391.5min.

In [7], a simple GA was compared to ADE GA, using a

subset of OR-library. This GA investigates the use of p

centroids to find the initial solutions of the algorithm. The GA

found OPT solutions in 14 of the 15 subset problems. The

average CPU time was 60.1s and 0.2s, for the simple GA and

ADE GA, respectively. The average deviation was 0.007%

and 0.02% for simple GA and ADE GA, respectively.

Table I shows a summary of the main characteristics of the

GA used for solving the p-median problem in [6, 7, 11].

This work aims investigating the customization of GA for

solving PMP problems. Three steps of the GA are

investigated: selection operator, crossover operator and

population updating. This investigation has the objective of

generating a best performance of GA in finding OPT solutions

for PMP problems.

 The random selection operator employed in [6] and [11]

does not take into account the individual’s fitness when they
are selected for crossover. The ranking selection operator

employed in [7] assigns a selection probability to individuals

directly proportional to their position in a ranking of the

fitness function. In this work we investigate the use of the

roulette wheel selection operator. The difference between the

Customized Genetic Algorithm for Facility Allocation using
p-median

S. D. de S. Silva
Universidade Federal do Amazonas

Manaus, Brasil
Email: srgio.deo@gmail.com

M. G. F. Costa
Universidade Federal do Amazonas

Manaus, Brasil
Email: mcosta@ufam.edu.br

C. F. F. Costa Filho
Universidade Federal do Amazonas

Manaus, Brasil
Email: ccosta@ufam.edu.br

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 165–169

DOI: 10.15439/2019F158

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 165

ranking operator and the roulette wheel selection operator is

that, the last one assign individuals a selection probability

directly proportional to their fitness value.

We also propose using the single-point crossover operator.

Differently from the merging operators [6,11] and partial

match operators [7], the single-point crossover operator

generate offspring without evaluating the parents. This

implies in less processing time demand.

At last, we propose use a steady-state population updating

[15]. In this updating mode, the fitness of children is

compared to their parent’s fitness. When the fitness value of

the offspring is lower than their father’s fitness, they are

discarded. Offspring with better fitness values than their

fathers are preserved with a probability of 75%.

The results obtained in this study are compared with the

results obtained with the ADE GA [6] and simple GA [7]. For

this comparison, we employed PMPs of OR-library and did a

benchmark of the machines used for simulations in these

previous works.

II. METHODS

A. Proposed Genetic Algorithm

Genetic Algorithm is a stochastic optimization algorithm,

inspired by the theory of evolution of Charles Darwin [16].

Since its proposition, it has been effectively applied in the

solution of complex problems, like TSP [9] and PMP [6,7,11].

 In GA, initially, a population of chromosomes is randomly

generated. In the sequence, the individuals of this population

are modified by applying evolution operators, iteratively. A

chromosome represents a solution to the problem. The fitness

value of each chromosome is evaluated through an objective

function of the problem.

The implementation of GA usually consists of three steps:

the definition of the genetic codification model, the definition

of the objective function and the parameterization of the

evolution operators.

 In this work, the genetic codification model uses the

facility indexes and the objective function is given by the

PMP. The structure of the proposed GA is presented in the

steps of Algorithm 1.

Algorithm 1 Proposed Genetic Algorithm

Begin

Randomly generate the initial population

Compute fitness of population

 Repeat for x generations

Roulette wheel selection of 2 parents

One-point crossover, at a 95% probability

One-gene random mutation, at a 5% probability

Compute fitness

Replace the parents with lower fitness than the

 children, at a 75% probability

Introduce a random chromosome to the population

 Until population has converged

 End

Genetic codification

As stated before, the genetic codification uses the facility

indexes. The same approach was also used in [6, 7, 11]. Figure

1 shows an encoded chromosome representing a solution in a

PMP problem with 8 facilities to be allocated among 100

possible locations.

1 20 31 4 76 91 62 100

Fig. 1 Example of an encoded chromosome used in a PMP

problem with 8 facilities

Compute fitness

According to equation 1, the goal of the PMP is minimize

f: the sum of the distances between the demand points and the

nearest facility.

 (1)

TABLE I.

GENETIC ALGORITHM CHARACTERISTICS USED FOR SOLVING THE P-MEDIAN PROBLEM IN [6, 7, 11].

Paper Data base

GA characteristics Results

Selection Crossover Heuristics studied GA Deviation from OPT Faster Heuristic

[6]

OR - Library,

Alberta, Galvão
e Koerkel

Random Merging
ADE, GH, SA,

Myopic, Exchange, BV

Up to 0.41% from OPT at 85% of OR

problems. 0% at Alberta problems.
ADE

[11] TSP – Library Random Merging
GA [11], BV, Hybrid between

GA [11] and N

Up to 0.008% from OPT at 100%

of TSP problems.
 GA [11]

[7]
OR – Library
(15 problems)

Ranking-
based

Partial
Match

ADE, GA [7] GA [7] ADE GA

166 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

Roulette Wheel Selection

The selection operator used is the roulette wheel operator

[17,18]. In this study, the selection operator assigns a

probability value to each individual that is inversely

proportional to its fitness value. The inversely dependence is

due to the fact that, in the p-median problem, best individuals

are those with lower f values, given in equation (1). Therefore,

fitter individuals are the most likely to have children. This

behavior favors the generation of more fit individuals. Table

II illustrates the probability values used by different selection

operators for four individuals.

TABLE II.

SELECTION OPERATORS CHARACTERISTICS

Chromosome
Fitness

Value

Probability of selection operator (%)

Roulette

Wheel
Random Ranking

1 200 28.8 25 30

2 900 6.3 25 20

3 100 57.6 25 40

4 800 7.2 25 10

One-point Crossover

The one-point crossover operator is used in this study [18].

This operator randomly generates a reference point to

permutate genes between fathers. The crossover probability

used is 95%. Figure 2 illustrates the genetic permutation

performed by the one-point crossover operator. To avoid

repeated indexes in the offspring, we do a scan in the genes

of each child, and replace the repeated index with another

value randomly selected.

1 2 3 4 7 8 9 0 1 2 3 4 5 9 4 8

5 9 4 8 6 3 2 1 7 8 9 0 6 3 2 1

Parents Offspring

Fig. 2 Illustration of one-point crossover operation

One-gene random mutation

The mutation operator used randomly selects one gene [7],

with probability of 5%, and performs a mutation. Figure 3

illustrates the mutation operator. One gene with index value

of 5 is selected and replaced with the index value of 7. The

replacing value is random selected.

1 2 3 4 5 9 6 8

1 2 3 4 7 9 6 8

Offspring

Fig. 3 Illustration of one-gene mutation operation

B. Metrics

In this study, the metrics used for performance evaluation

of GA algorithms are the number of optimal solutions found,

the percentual deviation of a non-optimal solution from the

OPT solution, and the algorithm convergence time.

C. PMP data base for benchmarking

Aiming to compare the results obtained in this study with

the results obtained in other two works [6,7], we use the PMP

section of OR-library. For each problem, are given: the

number of points, N; the number of facilities, p; the OPT

solution and a matrix with the distances between each pair of

points.

D. CPU benchmarking

The algorithm convergence time depends on the CPU

model and the clock of the machine used for its

implementation. Therefore, to compare the results of the GA

used in this study with the GAs used in [6,7], we performed

the benchmark between CPUs using the Dhrystone (D)

method [19].

Using a default algorithm with integer numbers, the D

method assigns a numeric value to each CPU. This value

represents the number of millions of Dhrystone instructions

processed per second (DMIPS) per MHz of clock. The

DMIPS value of the machine used in this study (Core I7

7500U) is made equal to 1. The DMIPS values of the

machines used in [6,7] are then divided by it and ratio values

are obtained. The last column of Table III shows these ratio

values. As shown, the machines used in [6] and [7] process

15.1% and 104.1%, respectively, of the DMIPS processed by

the machine used in this study.

TABLE III.

BENCHMARK COMPARISON OF THREE DIGITAL COMPUTERS

CPU Clock (MHz) DMIPS/ MHz Product Ratio

Pentium
III [6]

733 3.4 2492.2 0.151

Core I7

4770K [7]
2000 8.57 17140 1.041

Core I7

7500U

This study

1800 9.1 16380 1

Product = (Clock*DMIPS/MHz) Ratio= (Product/16380)

III. RESULTS

Table IV shows, for the GA proposed in this study, and for

the GAs proposed in [6] and [7], the following results: the

number of OPT solutions; the percentual deviations from non-

optimal solutions to OPT solutions and the GA algorithm

processing time. The processing time of the GAs proposed in

[6] and [7] are multiplied by the ratio value shown in Table

III. Similarly to [6], the results of this study were produced by

a C++ code, implementing 10 runs for each one of the 40 OR-

library PMP problems. The best results are in bold.

SERGIO SILVA ET AL.: CUSTOMIZED GENETIC ALGORITHM FOR FACILITY ALLOCATION USING P-MEDIAN 167

TABLE IV.

EXPERIMENTAL RESULTS

 Problem N p
 Optimal

Solution

Number of

solutions
p/N (%)

ADE GA [6] GA [7]
GA proposed

(GAP)

Best deviation from

optimal solution

Fitness

value

Time

(s)

Fitness

value

Time

(s)

Fitness

value

Time

(s)

ADE

GA
GA GAP

Pmed1 100 5 5819 75287520 5.00 OPT* 0.015 OPT 0.104 OPT 0.001 0 0 0

Pmed2 100 10 4093 1.73E+13 10.00 OPT 0.015 OPT 0.94 OPT 0.008 0 0 0

Pmed3 100 10 4250 1.73E+13 10.00 OPT 0.03 OPT 0.209 OPT 0.003 0 0 0

Pmed4 100 20 3034 5.36E+20 20.00 OPT 0.03 OPT 1.3 OPT 0.026 0 0 0

Pmed5 100 33 1355 2.95E+26 33.00 OPT 0.045 OPT 3.3 OPT 0.046 0 0 0

Pmed6 200 5 7824 2.54E+09 2.50 OPT 0.06 OPT 2.7 OPT 0.005 0 0 0

Pmed7 200 10 5631 2.25E+16 5.00 OPT 0.075 OPT 4.1 OPT 0.026 0 0 0

Pmed8 200 20 4445 1.61E+27 10.00 OPT 0.105 OPT 14.8 OPT 0.129 0 0 0

Pmed9 200 40 2734 2.05E+42 20.00 OPT 0.181 OPT 32.3 OPT 0.519 0 0 0

 Pmed10 200 67 1255 1.45E+54 33.50 1256 0.301 OPT 41.4 OPT 1.2 0.080 0 0

 Pmed11 300 5 7696 1.96E+10 1.67 OPT 0.256 OPT 28.8 OPT 0.002 0 0 0

 Pmed12 300 10 6634 1.4E+18 3.33 OPT 0.181 OPT 47.8 OPT 0.066 0 0 0

 Pmed13 300 30 4374 1.73E+41 10.00 OPT 0.316 OPT 78.4 OPT 0.64 0 0 0

 Pmed14 300 60 2968 9.04E+63 20.00 OPT 0.663 OPT 301.8 OPT 2.9 0 0 0

 Pmed15 300 100 1729 4.16E+81 33.33 1733 0.949 1731 343.6 OPT 14.8 0.231 0.116 0

 Pmed16 400 5 8162 8.32E+10 1.25 OPT 0.346 - - OPT 0.009 0 - 0

 Pmed17 400 10 6999 2.58E+19 2.50 OPT 0.361 - - OPT 0.096 0 - 0

 Pmed18 400 40 4809 1.97E+55 10.00 OPT 0.843 - - OPT 0.999 0 - 0

 Pmed19 400 80 2845 4.23E+85 20.00 2846 2 - - OPT 42.2 0.035 - 0

 Pmed20 400 133 1789 1.3E+109 33.25 1792 0.949 - - OPT 15.95 0.168 - 0

 Pmed21 500 5 9138 2.55E+11 1.00 OPT 0.572 - - OPT 0.016 0 - 0

 Pmed22 500 10 8579 2.46E+20 2.00 OPT 0.678 - - OPT 0.107 0 - 0

 Pmed23 500 50 4619 2.31E+69 10.00 OPT 2.4 - - OPT 2.31 0 - 0

 Pmed24 500 100 2961 2E+107 20.00 2962 3.2 - - OPT 15.7 0.034 - 0

 Pmed25 500 167 1828 7.9E+136 33.40 1832 4.8 - - OPT 105.9 0.219 - 0

 Pmed26 600 5 9917 6.37E+11 0.83 OPT 1 - - OPT 0.013 0 - 0

 Pmed27 600 10 8307 1.55E+21 1.67 OPT 1.2 - - OPT 0.16 0 - 0

 Pmed28 600 60 4498 2.77E+83 10.00 4499 3.7 - - OPT 23.96 0.022 - 0

 Pmed29 600 120 3033 1E+129 20.00 3035 6.6 - - OPT 93.422 0.066 - 0

 Pmed30 600 200 1989 2.5E+164 33.33 1997 11.9 - - OPT 251.54 0.402 - 0

 Pmed31 700 5 10086 1.38E+12 0.71 OPT 2.2 - - OPT 0.035 0 - 0

 Pmed32 700 10 9297 7.3E+21 1.43 OPT 2 - - OPT 0.224 0 - 0

 Pmed33 700 70 4700 3.37E+97 10.00 OPT 6.8 - - OPT 11.73 0 - 0

 Pmed34 700 140 3013 5E+150 20.00 3015 9.8 - - 3014 39.94 0.066 - 0.033

 Pmed35 800 5 10400 2.7E+12 0.63 OPT 2.3 - - OPT 0.048 0 - 0

 Pmed36 800 10 9934 2.8E+22 1.25 OPT 2.8 - - OPT 0.232 0 - 0

 Pmed37 800 80 5057 4.1E+111 10.00 5058 11.4 - - 5058 33.43 0.02 - 0.02

 Pmed38 900 5 11060 4,87E+12 0.56 OPT 4.3 - - OPT 0.104 0 - 0

 Pmed39 900 10 9423 9.14E+22 1.11 OPT 4 - - OPT 0.256 0 - 0

 Pmed40 900 90 5128 5.1E+125 10.00 5133 19.9 - - 5130 112.53 0.098 - 0.039

Average results Pmed1-15 0.2s 60.1s 1.35s 0.0154 0.007 0

Average results Pmed1-40 2.7s - 17.7s 0.0360 - 0.002

Number of problems solved optimally 28 14 37

168 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

IV. DISCUSSION

A. Proposed GA vs ADE GA [6]

The GA proposed in this study achieved OPT solutions in

37 of the 40 PMPs shown in Table IV. The non-OPT

solutions present a mean deviation of 0.002% from OPT

solution, corresponding to a mean time of 17.7s. ADE GA [6]

presents OPT solutions in 28 of the 40 PMPs. The non-OPT

solutions present a mean deviation of 0.036% from OPT

solutions, corresponding to a mean time of 2.7s in a CPU Core

I7 7500U at 1.8GHz.

Considering the 28 PMPs that both methods achieved OPT

solutions, the proposed GA and the ADE GA [6] achieved

best results in 21 and 7 of them, respectively. In the 7 PMPs

that ADE GA [6] achieved best results, 6 of them occurred

between Pmed1 and Pmed20. This range corresponds to less

complex problems. To evaluate the performance difference

between the two methods, we applied a Qui-Square test in the

following 2x2 contingency table: [21 7; 7 21], and found 𝜒2 = 14. For 1 degreed freedom, and a significance level of

99%, the critical level is 𝑡𝑐 = 6.63. As 𝜒2 > 𝑡𝑐, the difference

between the proposed GA algorithm and ADE GA [6] is

statistically significant.

From Table IV we also observe that when the ratio 𝑝/𝑁

increases, ADE GA [6] presents results significantly lower

than the results obtained in this study. In the range Pmed21 to

Pmed40, ADE GA [6] achieved OPT solutions in 10 of the 20

PMPs, with mean deviation of 0.046% from the OPT

solutions, while the GA proposed in this study achieved OPT

solutions in 17 of the PMPs, with mean deviation of 0.004%

from the OPT solutions. For the instances Pmed5, Pmed10,

Pmed15, Pmed20, Pmed25 and Pmed30, in which the ratio 𝑝/𝑁 is around 33%, the GA proposed in this study found all

the OPT solutions, while ADE GA [6] found solutions with

mean deviation of 0.18% from the OPT solutions. We believe

that, for more complex PMP problems (N>900), the GA

algorithm proposed in this study would obtain better values

than ADE GA [6].

B. Proposed GA vs GA proposed in [7]

The GA proposed in [7] obtained solutions only for

problems in the range Pmed1 to Pmed15. In this range, it

obtained OPT solution in 14 PMPs, with a deviation of 0.07%

from the OPT solution. The GA proposed in this study

obtained OPT solutions in all this range.

Table IV shows that the GA proposed in this study

converged in a shorter time than GA proposed in [7]. The last

one is 44 times slower. This result suggests that the centroid

technique used for population initialization in [7] as well as

the continuous population updating have a negative impact in

convergency time of the GA algorithm, making it slower.

V. CONCLUSION

A customization of GA operators for solving the p-median

problem is proposed in this study. When applied to solve the

PMPs of OR-library, the proposed algorithm found OPT

solutions in 37 of 40 PMPs, with a mean deviation of 0.002%

and with a mean time of 17.7s.

ACKNOWLEDGMENTS

This research was financial supported by Samsung

Electronica da Amazonia Ltda, under the terms of the

Brazilian Federal Law number 8.387/91, through an

agreement signed with Center for R&D in Electronic and

Information Technology- CETELI/UFAM.

REFERENCES

[1] O. Kariv; S.L. Hakimi. The p-median problems. In: An Algorithmic

Approach to Network Location Problems. SIAM Journal on Applied
Mathematics, 1274, Real World Applications. Philadelphia, 37, 539-

560, 1979

[2] R.Whitaker. A fast algorithm for the greedy interchange for large-scale
clustering and median location problems. INFOR 21, 95-108, 1983

[3] C. Beltran, C. Tadonki, J. Vial. Solving the p-median problem with a

semi-lagrangian relaxation, Logilab Report, HEC, University of
Geneva, Switzerland, 2004

[4] F. Chiyoshi, R.D. Galvão. A statistical analysis of simulated annealing

applied to the p-median problem. Annals of Operational Research
96:61–74, 2000. doi: 10.1023/A:1018982914742

[5] S. Salhi. Defining tabu list size and aspiration criterion within tabu
search methods. Computers and Operations Research 29, 67–86, 2002.

doi: 10.1016/S0305-0548(00)00062-9

[6] O. Alp, E. Erkut, Z. Drezner. An efficient genetic algorithm for the p-
median problem. Annals Operational Research 122:21–42, 2003. doi:

10.1023/A:1026130003508

[7] S. Satoglu. M. Oksuz. G. Kayakutlu, K. Buyukozkan. A genetic
algorithm for the p-Median facility location problem. GJCI2016 –

Global Joint Conference on industrial engineering, Istanbul, 2016.

[8] J. E. Beasley. OR-library: distributing test problems by electronic mail.

Journal of Operations Research Society 41:1069–1072, 1990. doi:

10.2307/2582903

[9] G. Reinelt. TSLIB – a traveling salesman library. ORSA Journal of
Computing, 3, pp. 376-384, 1991. doi: 10.1287/ijoc.3.4.376

[10] H. Chen, N.S. Flann, D.W. Watson. Parallel genetic simulated

annealing: A massively parallel SIMD approach. IEEE Transactions of
Parallel Distributed Computation, 9 (Feb. 1998), pp. 126-136, 1998.

doi: 10.1109/71.663870

[11] Z. Drezner, J. Brinberg, N. Mladenovic, S. Salhi. New heuristic
algorithms for solving the planar p-median problem. Comp. Operations

Research, 62, pp. 296-304, 2015. doi: 10.1016/j.cor.2014.05.010

[12] D. F. Albdaiwi, H.h. AboelFotoh. A GPU-based genetic algorithm for
the p-median problem, Journal of Supercomputing, 73, pp 4221-4244,

2010. doi: 10.1007/s11227-017-2006-x

[13] J. A. Moreno-Perez, J. M. Moreno-Vega, N. Mladenovic, Tabu Search
and Simulated Annealing in p-median Problems. Talk at the Canadian

Operational Research Society Conference, Montreal, 1994.

[14] J. E. Beasley, ‘OR-library’, 1985. [Online]. Available: http://
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html.

[Accessed: 04- Jul- 2019]

[15] D. Corus and P. S. Oliveto. Standard steady state genetic algorithms can
hillclimb faster than mutation-only evolutionary algorithms. IEEE

Tran. on Evolut. Comp., 2017. doi: 10.1109/TEVC.2017.2745715

[16] J. Holland. Adaption in natural and artificial systems. The University
of Michigan Press, Ann Arbor, 1975.

[17] M. Vavouras, K. Papadimitriou, I. Papaefstathiou,. High-speed FPGA-

based implementations of a genetic algorithm, in: International
Symposium on Systems, Architectures, Modeling, and Simulation,

(IEEE2009), pp. 9–16, 2009.

[18] K. Deliparaschos.; G. Doyamis, S. Tzafestas. A parameterised genetic
algorithm IP core: FPGA design, implementation and performance

evaluation Int. Journal of Electronics, 95, pp. 1149-1166, 2008.

[19] R. P. Weicker, “Dhrystone: a synthetic systems programming
benchmark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–
1030, Oct 1984. 41.

SERGIO SILVA ET AL.: CUSTOMIZED GENETIC ALGORITHM FOR FACILITY ALLOCATION USING P-MEDIAN 169

