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Abstract—In the recent years, it has been shown that real
world-problems are often comprised of two, interdependent
subproblems. Often, solving them independently does not lead
to the solution to the entire problem. In this article, a Travel-
ling Thief Problem is considered, which combines a Travelling
Salesman Problem with a Knapsack Problem. A Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) is investigated, along
with its recent modification - a Non-Dominated Tournament
Genetic Algorithm (NTGA). Each method is investigated in two
configurations. One, with generic representation, and genetic
operators. The other, specialized to the given problem, to show
how the specialization of genetic operators leads to better results.
The impact of the modifications introduced by NTGA is verified.
A set of Quality Measures is used to verify the convergence, and
diversity of the resulting PF approximations, and efficiency of
the method. A set of experiments is carried out. It is shown that
both methods work almost the same when generic representation
is used. However, NTGA outperforms classical NSGA-II in the
specialized results.

I. INTRODUCTION

N
P-HARD optimization problems occur in many real-

world scenarios. Be it a lot-sizing problem in economics

[1], a transportation problem [2], or a scheduling problem

[3]. These problems are ubiquitous and very practical, which

makes their solving an important task. In practice, a problem

often has multiple objectives. In scheduling problems, both

time and cost of the schedule can be considered. In finance,

it is desired to maximize the profits, but also to minimize the

potential risks. Hence, multi-objective approaches aim to find

a set of equally-good solutions, called a Pareto Front (PF).

Recently, authors of paper [4] have pointed out, that real-

world problems comprise of multiple subproblems. They con-

tain many dependencies and interwovenness. For that reason,

it is not sufficient to find the solution to each of the sub-

problems. Objectives are interconnected in a way, that the

improvement to one objective can lead to the worse value

of another objective. Hence, combinations of such solutions

do not guarantee the optimal solution to the entire problem.

Authors of [5] proposed a Travelling Thief Problem (TTP),

which has the features of a real-world problem. In this article,

it is used in carried out experiments. It comprises of two

constrained problems - a Travelling Salesman Problem (TSP)

and a Knapsack Problem (KP). They are interconnected in a

way, that makes solving them separately ineffective.

Due to its interdependence and multi-objective nature,

evolutionary approaches show great potential in solving the

TTP [6], [7], [8]. In [4] it has been shown that, in case

of TTP, classical Non-Dominated Sorting Genetic Algorithm

(NSGA-II) [9] with specialized operators outperforms other

methods. Authors of [10] have introduced a Non-Dominated

Tournament Genetic Algorithm. It is based on a NSGA-II,

but contains multiple modifications. The authors carry out the

research on a scheduling problem to show that these modifica-

tions lead to increased effectiveness of the method. This article

attempts to verify the effectiveness of modifications introduced

by NTGA with the combination of operators specialized for

TTP.

A set of quality measures (QMs) proposed in [11] is used to

evaluate the multi-objective results. Convergence and diversity

of the resulting PF approximations are measured, along with

the efficiency of the method.

The rest of the article is structured as follows. Section

II presents existing work related to the subject. The TTP

is described in section III. Section IV presents both used

methods, as well as generic, and specialized representation,

and operators. Results of all experiments along with the visu-

alizations are presented in section V. Moreover, a theoretical

analysis of the results is given. Lastly, section VI presents the

conclusion and outlines the future work.

II. RELATED WORK

The TTP was first introduced in [5]. The authors pointed

out the shortcomings of benchmark problems used in the

literature. The important features of a real-world problems

were identified, namely existence of the subproblems and

their interwovenness. Eventually, a single- and multi-objective

versions of TTP were proposed.

Authors of [12] introduced a benchmark dataset for TTP.

It contains 9720 instances. Each instance contains a TSP and

KP elements. Additionally, the items are assigned to the cities

to create the TTP instance. There are three different weight-

value correlations present in the dataset. Moreover, instances

contain up to 10 items per city.

Many researchers tackled the single-objective version of

TTP. Authors of [13] have proposed three exact algorithms

based on dynamic programming, branch and bound, and
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constraint programming. Moreover, they compared them to

the state-of-the-art solvers. In [8] swarm intelligence was

used. Additionally, the authors investigated a TTP-specific

local search algorithm. A Genetic Algorithm was used in

[14]. Authors solve the overall problem instead of solving

the subproblems separately. Moreover, the initial population

is generated using a TSP specific heuristic. Authors of [18]

used a hyperheuristic approach to select the best combination

of known heuristics to solve the problem.

A multi-objective approach to TTP is considered less com-

mon in literature. However, authors of [15] used a combina-

tion of evolutionary computation and dynamic programming

for the bi-objective TTP. Additionally, novel indicators were

proposed, and the approach was compared to state-of-the-art

methods. In [4], an NSGA-II with specialized representation

and genetic operators was investigated. Various crossover and

mutations method were investigated and the best configuration

was identified. The results were compared to Greedy–based

approaches. It was shown that NSGA-II outperforms other

investigated methods.

NTGA was first proposed in [10]. The authors researched

it on a bi-objective scheduling problem. The results were

compared to classical NSGA-II and a decomposition based

approach.

III. PROBLEM

TTP is a constrained, combinatorial, NP-hard optimization

problem. It comprises of two interwoven subproblems, namely

TSP and KP. In the TSP part of the problem, there is a set of

cities. Each city must be visited exactly once. In each of the

cities there is a set of items, where each item has a weight

and a value. Those items represent the KP part of the problem.

While travelling a decision must be made which items to pick

(if any).

TTP is a bi-objective problem. On one hand, the the goal is

to find the quickest route between the cities. On the other, the

total value of picked items must be maximized. However, each

picked item decreases the speed of travel based on its weight.

Hence, an improvement of the profit leads to an increase of

the travelling time. TTP can be formally defined by equations

1 and 2.

min fτ (π, z) (1)

max fP (z) (2)

where π is the permutation vector of all visited cities, and z

is the picking plan.

The interaction between the subproblems is defined by

equation 3. The total travelling time calculated as the sum of

travelling times between each pair of consecutive cities plus

the travelling time back to the first city. Each of those travelling

times is influenced by all the picked items up to the given city.

fτ (π, z) =

n−1
∑

i=1

dπi,πi+1

v(w(πi))
+

dπn,π1

v(w(πn))
(3)

dπi,πi+1
is the distance between two consecutive cities from

the permutation vector. n is the number of all cities. v(w(πi))
is the velocity in city πi, considering the current weight w of

picked items, and is defined by equation 4.

v(w) = vmax −
Wc

W
(vmax − vmin) (4)

Wc is the current weight, which is the sum of weights of all

currently picked items. W is the capacity of the knapsack.

vmax and vmin define the maximum and minimum allowed

speed respectively.

The second objective, total profit, is the sum of values of

all picked items. It is described by equation 5.

fP (z) =
m
∑

j=1

zjz
profit
j (5)

m is the number of all items, zj defines whether j’th item has

been picked and is equal to either 0 or 1. z
profit
j is the profit

of j’th item.

Additional constraints must be satisfied for the TTP solution

to be feasible. The route must contain all cities, and each city

must be visited exactly once. The sum of weights of all picked

items cannot be greater than the capacity of the knapsack.

IV. APPROACH

All approaches researched in the article are described in this

section. First, definitions of important terms are given, namely

dominance relation and a Pareto Front (PF). Next subsection

describes used representation of an individual and is divided

into two parts. First, a generic representation is described,

and then one specialized for TTP. Similarly, the description of

genetic operators starts with the operators used with generic

representation. Later, the description of operators specialized

for TTP is provided. Eventually, descriptions of NSGA-II and

NTGA close out the section.

A. Definitions of Terms

This subsection contains a description of important terms.

They are relevant for all used approaches.

1) Dominance Relation: One of the challenges of multi-

objective optimization is the comparison of two solutions.

Each solution is described by more than one objective, hence a

numerical comparison is not sufficient. A Dominance Relation

is defined for that purpose. A solution dominates another, if it

has the value of at least one objective better and value of no

objective worse, that that solution.

2) Pareto Front: A true PF contains all globally non-

dominated solutions. However, in practice, a true PF is often

not known. Hence, in this article, PF refers to the approxi-

mation found by the method, which contains all found non-

dominated solutions.
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B. Representation

An individual used in evolutionary algorithms consists of

a vector of numbers, a genotype. It represents the solution

to the given problem. In this article, two representations are

used. A generic one, presented in [10], and specialized for

TTP, presented in [4].

1) Generic: The genome comprises two parts. The first one

represents the solution to TSP. It assigns each city a priority.

Then, the travelling plan is built by ordering the cities by that

priority. The second part of the genome defines the solution

to KP. It contains the number of genes equal to the number

of items. Each item is assigned either 0 or 1, which defines

whether the item should be picked or not.

For example a genome [1, 3, 3, 2, 0, 0, 1, 1] for a problem

with 4 cities and 4 items means that the first city is visited first,

then the last one, then second, and then third. Additionally,

only the last 2 items are picked.

2) Specialized: Specialized representation defines the trav-

elling plan with a permutation vector of all cities. The second

part of genome is the same as in the case of generic represen-

tation.

For example a genome [1, 2, 4, 3, 1, 0, 0, 1] for a problem

with 4 cities and 4 items means that the the first city is visited

first, then the second one, then the last one, and finally the

third one. The first and the last items are picked.

C. Genetic Operators

This section describes the genetic operators used in the

methods, for both representations.

Initial population generation is common for all methods and

does not depend on the representation. A random initialization

is used.

Selection operator is similarly independent of the represen-

tation, but is different for each method and is described in the

appropriate method section (IV-D1 and IV-E1).

1) Generic: In case of generic representation, a standard

single crossover and mutation operator is used for both parts of

the genome. In the case of NSGA-II a single-point crossover is

used. First, a random cut-point is selected within the genome.

The first child is created by copying the genes on the left of

that point from the first parent and copying the rest from the

second parent. The second child is created similarly, by first

copying the genes from the second parent and then from the

first one. NTGA utilizes a single-point crossover.

Both methods use the same random mutation operator. First,

a random gene is selected. Next, its value is randomly changed

to a different, valid domain value.

2) Specialized: In the case of specialized representation, to

include a problem domain knowledge a different crossover and

mutation operator is used for each part of the genome. The

Edge Operator (introduced in [16])is used as the crossover

for the part responsible for TSP. It aims to introduce as few

as possible additional paths. It does so, by reusing existing

edges when generating the children. First, a list is generated,

which contains the neighbour cities from both parents for each

city. Then, the first city from the first parent is copied to the

child genome and it is removed from the neighbour list. Then,

iteratively, neighbours of that city with the fewest neighbours

are copied over and removed from the list consecutively. If

there are no more neighbours for a given city, a random city

is selected. The second child is created similarly, by starting

the process with the first city from the second parent. For the

KP part of the genome, a uniform crossover is used. Children

are created by copying each gene from a random parent with

equal probability.

A swap mutation is utilized for the TSP part of the

genome. Two random cities are selected and their position in

the genome is swapped. For the KP part, a bitflip mutation

is used. A random item is selected and the value of its gene

is flipped.

In generic representation, there may occur a situation that

makes an individual, a not feasible one. For example, some

cities may have the same priority (cities are visited in defined

order). In specialized representation crossover/mutation assure

the feasibility of TSP-part of genome. However, another

situation may exist in both representations when items picked

by individual exceed knapsack capacity – items with min

profit/weight ratio are removed from the solution.

D. Non-Dominated Sorting Genetic Algorithm II

This section contains the description of a Non-Dominated

Sorting Genetic Algorithm II (NSGA-II). It starts with the

description of a pseudocode. Then, the selection and crowding

distance, which are unique for this method are described.

NSGA-II is an evolutionary method. It processes a popu-

lation of individuals in an iterative manner. Each individual

represents a single solution to the given problem. The algo-

rithm runs for the predefined number of generations, where

a generation is a process of creating an offspring population

from the current population. Each generation utilizes genetic

operators to select parents and generate children individuals.

Eventually, all non-dominated individuals found during the

computation constitute a PF approximation. NSGA-II is de-

scribed in pseudocode 1.

A PopulationSize parameter is stored in the first line.

Then, in the second line, an initial population of that size is

generated. In the third line, the entire population is evaluated.

Each individual gets assigned the values of all objectives. Line

4 uses a non-dominated sorting to sort the population based

on the rank and crowding distance, which are described in

sections IV-D2 and IV-D3 respectively. In line 5, the loop

begins, which iterates over all generations. Then, line 6 begins

the loop to effectively double the size of the population. First,

2 parents are selected in line 7, using a selection described in

IV-D1. In line 8, the crossover is used to create 2 children

individuals. They are then mutated in line 9. Finally, the

children are evaluated in line 10, and added to the current

population in line 11. After the size of population has been

doubled, it is again sorted in line 13. The population is

truncated to its original size in line 14. Only the better half
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Algorithm 1 Pseudocode of NSGA-II [9]

N ← PopulationSize

2: Pcurrent ← generateInitialPopulation(N)
evaluate(Pcurrent)

4: nonDominatedSorting(Pcurrent)
for i← 0 to generationLimit do

6: while |Pcurrent| < 2N do

parents← select(Pcurrent)
8: children← crossover(parents)

children← mutate(children)
10: evaluate(children)

Pcurrent ← Pcurrent ∪ children

12: end while

nonDominatedSorting(Pcurrent)
14: truncate(Pcurrent, N)

end for

16: return Pcurrent

of the population remains. After all the generations have been

processed, the last population is returned in line 16.

1) Selection: Selection in NSGA-II starts with taking 2

random individuals from the population. Then, those 2 individ-

uals are compared based on the rank and crowding distance,

which are described in sections IV-D2 and IV-D3 respectively.

The individual with the lower rank is selected. If both have

the same rank, individual with the larger crowding distance

is selected. Selection returns only one parent, so during the

algorithm it is performed twice, to obtain 2 parents.

2) Rank : During the NSGA-II each individual is assigned a

rank, based on its quality. The lower rank means the individual

is better. It is computed in an iterative manner. First, all non-

dominated individuals are assigned the rank equal to 1. Then,

all individuals that remain-dominated, while not considering

the individuals with the rank already set, have the rank set to

2. The process is repeated, until al individuals are assigned

a rank. Intuitively, the process divides the population into

multiple PF approximations. The rank describes to which of

those approximations the individual belongs.

3) Crowding Distance: Crowding distance is calculated for

each individual. First, the largest possible box is drawn around

the individual, that contains only that individual from the

population. The crowding distance is the volume of that box.

The larger values mean that the individual lies in the poorly

explored part of the space. At the same time, lower values

mean that there are many individuals around given individual.

E. Non-Dominated Tournament Genetic Algorithm

This section contains the description of a Non-Dominated

Tournament Genetic Algorithm (NTGA). First a pseudocode

is given. Then its selection and clone elimination methods are

described.

NTGA is based on a classical NSGA-II method. It intro-

duces 4 modifications that aim to improve the effectiveness

of the method. First, it separates parent and child populations.

Then, it utilizes a selection method with stronger selective

pressure. Finally, it introduces a clone elimination method and

archive usage. NTGA is presented in pseudocode 2.

Algorithm 2 Pseudocode of NTGA [10]

N ← PopulationSize

2: archive← ∅
Pcurrent ← generateInitialPopulation(N)

4: evaluate(Pcurrent)
updateArchive(Pcurrent)

6: for i← 0 to generationLimit do

Pnext ← ∅
8: while |Pnext| < |Pcurrent| do

parents← selecttour(Pcurrent)
10: children← crossover(parents)

children← mutate(children)
12: while Pnext contains children do

children← mutate(children)
14: end while

evaluate(children)
16: Pnext ← Pnext ∪ children

updateArchive(children)
18: end while

Pcurrent ← Pnext

20: end for

return archive

First line stores the PopulationSize parameter. An empty

archive is initialized in line 2. It is designed to store all found

non-dominated individuals. In line 3, an initial population of

given size is created. It is then evaluated in line 4. In line

5, the archive is updated with all currently non-dominated

individuals. The loop, in line 6, iterate over a predefined

number of generations. In line 7, an empty population is

initialized, which is going to store the next population. The

loop, in line 8, runs until the size of next population is

equal to the size of current population. In line 9, parents

are selected with the selection method described in IV-E1.

Then, the children are created with the crossover in line 10.

They are mutated in line 11. The clone elimination method

is described between lines 12 and 13. If the next population

already contains generated children, they are mutated. After

that, the children are evaluated in line 15. Finally, they are

added to the next population in line 16. In line 17 the archive

is updated. The children are added to it, if they are non-

dominated. Then, all individuals, that the children dominate,

are removed from the archive. When the next population has

been fully generated, it replaces the current population. At the

end, the archive of non-dominated individuals is returned. The

archive contains the PF approximation.

1) Selection: NTGA uses a tournament selection. First,

given number of individuals is randomly drawn from the

population. Then, they are compared according to their rank

(described in IV-D2). The individual with the lowest rank is

selected. If there are multiple individuals that match, the first

one is selected. It is worth noting that the crowding distance

is not considered during the comparison.
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2) Clone Elimination: Clone elimination aims to increase

the diversity of the population. The clones are defined as

individuals with the identical genome. Before adding a child

individual to the population, a check is performed, to verify

whether an identical individual already exists. If so, the child

is mutated until it is no longer a clone. Only then, it is added

to the next population.

V. EXPERIMENTS AND RESULTS

The experiments carried out in this article aim to verify

the effectiveness of NTGA on TTP. Moreover, it is verified

whether the modifications of NTGA are effective in the

context of specialized operators. To answer those question

the experiments on 4 configurations are carried out. NSGA-II

and NTGA are researched with both generic, and specialized

representation, and operators. A set of selected QMs is used

to verify the convergence and diversity of the resulting PF

approximations.

First, selected data instances and quality measures are

described. Then, the experimental procedure is presented and

selected parameter values are provided. A full set of experi-

ments is carried out on all 4 configurations and the results are

presented. Finally, the last subsection contains the theoretical

analysis.

A. Data Instances

A benchmark dataset, first presented in [12], is used in this

article. In literature, an eil51 instances are often used [17]

[18], and so they have been selected for the research. 12

instances have been selected with 51 cities and the number

of items between 50 and 500. 3 types of correlation between

item weight and profit can be identified within the set. A strong

correlation, where increased profit also means increased value.

No correlation, but all the items have similar weights. The last

group has no correlation between the items.

B. Quality Measures

A set of QMs presented in [11] is used to verify the

effectiveness of the methods. Convergence, diversity of the PF

approximation, and the efficiency of the method is verified. A

Perfect Point and a Nadir Point are used as a reference in 2

of the measures.

1) Perfect Point: A Perfect Point contains the best values of

all objectives. It does not have to an achievable solution. The

value of travelling time is calculated as the length of minimum

spanning tree of the tour. A brute force search algorithm is

used to calculate the value of profit.

2) Nadir Point: A Nadir Point contains the worst values

of all objectives from among the non-dominated solutions.

It often has to be approximated. Additionally, to make the

comparison fair even worse values can be selected [19]. The

value of travelling time is calculated by taking the value of

travelling time from a Perfect Point and doubling it. It is an

upper bound of the TSP. The profit is set to 0 and represents

a solution where no items are picked.

3) Euclidean Distance: Euclidean Distance (ED) is a mea-

sure of convergence. It shows how close the PF approximation

is to the true PF. Since the true PF is not known, ED utilizes

the Perfect Point. Value of ED is obtained by calculating the

average distance between every point on the PF approximation

and the Perfect Point. It can be formally defined by equation

6.

ED(PF ) =

∑|PF |
i=1

di

|PF |
(6)

PF is the Pareto Front, di is the distance from the i’th point

to the Perfect Point.

4) Hypervolume: Hypervolume (HV ) is a measure of

diversity. It is a volume of a hypercube defined by the Nadir

Point and the PF approximation. It measures the spread, but is

also influenced by the convergence and uniformity of the PF

approximation. HV can be formally defined by equation 7.

HV (PF ) = Λ(
⋃

s∈PF

{s′|s ≺ s′ ≺ snadir}) (7)

PF is an approximation of PF. s is the point of approximated

PF. snadir is a NadirPoint. Λ is a Lebesgue measure, which

is the generalization of a volume. ≺ is a domination relation.

5) Pareto Front Size: Pareto Front Size (PFS) measures

the diversity in terms of the cardinality of the PF approx-

imation. It is defined as the number of points on the PF

approximation.

6) Ratio of Non-Dominated Individuals: Ratio of Non-

Dominated Individuals (RNI) measure the efficiency of the

method. It is defined as the number of points on the PF

approximation divided by the number of all visited points.

7) Spacing: Spacing (S) measures the uniformity of the

PF approximation. It ensures that the solutions are evenly

distributed and identifies the clustering effect. To calculate it,

first, the distances between all consecutive points on the PF

approximation are calculated. The standard deviation of those

distances is the S measure. It can be defined with equation 8.

S(PF ) =

√

√

√

√

1

|PF |

|PF |
∑

i=1

(di − d)2 (8)

PF is the approximation of the PF. di is the distance from

the i− th point the next consecutive point.

The intuition of QMs is: ED should be minimized and mea-

sures the closeness to the true PF. HV should be maximized

and it is influenced by both spread of the PF approximation and

its distance to the true PF. PFS is simply the cardinality of the

approximation, while RNI measures efficiency, by calculating

the ratio of points on the approximation to all explored points.

Spacing (S) should be minimized and it measures how closely

the approximation resembles the uniform distribution.
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C. Experimental Procedure

First, the parameters of all methods have been tuned

separately. Then, both NSGA-II and NTGA have been ran

with both representations, on every instance. Due to the

stochastic nature of evolutionary algorithms, each experiment

has been repeated 50 times and results have been averaged.

Next, a set of selected QMs has been calculated for each

PF approximation. Statistical significance has been verified.

Eventually, visualizations for selected instances are presented

and theoretical analysis is described.

D. Parameters

The first step in parameter tuning was to define a set of

configurations of different parameter values. Taguchi Orthog-

onal Arrays have been used for that purpose. Then, each

configuration has been ran 10 times and the QMs have been

calculated for the resulting PF approximations. Next, a Multi-

Objective Grey Relational Grade is calculated and a Taguchi

Method is used to identify the impact of the parameters on

the results [20]. Finally, the best parameter configuration is

selected. This process has been repeated for all 4 configura-

tions. The experiments show that a 1000 generations should

be sufficient, however the limit has been set to 2000 to make

sure the results converge.

Table I contains the selected configurations of parameter

values for each researched method.

E. Experiments

Tables II and III contain the results of experiments for

NSGA-II and NTGA respectively. Both tables show the results

on generic representation. Tables IV and V contain the results

for NSGA-II and NTGA with specialized representation.

1) Results: Comparison of the results for the generic rep-

resentation shows no significant difference between the results

of QMs. The largest difference can be observed for HV for the

benefit of NSGA-II, but it is within a single standard deviation.

Specialized operators improve the results significantly. The

largest difference can again be observed for HV . NSGA-II

with specialized operators have achieved better values of HV

for all researched instances. Specialization has improved ED

for 6 out of 12 instances. Overall, smaller instances show

more improvement in terms of ED. Interestingly, PFS has

been decreased almost 6 times. However, large values for

generic representation might suggest that the solutions are

far from local optima. There is no statistical difference in

values of RNI . Values of S have also deteriorated. The largest

difference can be seen for instances eil51_n250_uncorr_01

and eil51_n500_uncorr_01. The difference can be justified

by much larger spread of the approximation, which can be

confirmed by the larger values of HV .

NTGA with specialized operators improves the results even

further. On average, values of ED have been improved by

almost 40%. The largest difference can be observed for larger

instances. Values for eil51_n50_bounded-strongly-corr_01 and

eil51_n50_uncorr-similar-weights_01 are worse than in case

of NSGA-II. Better values of HV have been achieved for all

12 instances, which suggest much better diversity of the PF

approximations. Similarly, larger PFS has been achieved for

all 12 instances. For eil51_n250_uncorr-similar-weights_01

the value has been almost tripled. NTGA has also proved

to be more efficient. It can be observed by larger values

of RNI . The only instance that has not been improved is

eil51_n50_uncorr-similar-weights_01. Achieved values of S

measure are also lower, however they are still almost 3 times

larger than the values achieved for configurations with generic

representation. Results compared to specialized versions of

NSGA-II and NTGA presented in this section have been

statistically confirmed by Wilcoxon signed-rank (W0.05 = 78

> Wc = 13) for all QM’s. All difference are statistically

significant.

2) Visualizations: This section contains visualization

for two selected instances. Figure 1 presents instance

eil51_n50_bounded-strongly-corr_01. It presents the case,

where specialized NTGA has achieved the worse result than

specialized NSGA-II in terms of ED measure. ED depends

on a Perfect Point, which lies closest to the middle of PF.

NSGA-II has achieved a large spread, but its approximation

has very few points on the edges. Hence, average distance to

the Perfect Point is relatively low. PF approximation generated

by NTGA is more evenly distributed, and so many points lie

far from the Perfect Point. Hence, ED deteriorates.

Figure 2 presents the second selected instance. For

eil51_n500_uncorr-similar-weights_01 specialized NTGA im-

proved the results the most in comparison to other configu-

rations. Interestingly, specialized NSGA-II has generated the

solutions with better profit than specialized NTGA.

Moreover, visualization of all achieved PF approxima-

tions for instance eil51_n250_bounded-strongly-corr_01 is

presented in Figure 3. A modified version of empirical at-

tainment function (EAF) [21] is used to get the “averaged”

Pareto Front approximations. For clarity, only specialized

configurations are shown. It can be seen, that NTGA achieves

better results on average. Additionally, the deviations in the

results are also smaller. However, NSGA-II has generated

points with very high profit, that have not been dominated

by any of the runs of NTGA.

F. Summary

Table VI contains the summary of all obtained results for all

configurations. NTGA does not improve the results in case of

generic representation. Values of all measures are very similar

for both NSGA-II and NTGA.

Specialization has improved the convergence and diversity

of the PF approximation. It can be observed by the improved

values of ED and HV . Specialization has decreased the value

of PFS. However, in case of generic representation, achieved

solutions are far from optimal, so their larger number is less

significant. Specialized representation also led to increased

distances between the points of the PF approximation. It might

have been caused by the larger achieved spread.

In case of specialized representation, NTGA has improved

the results significantly, even in comparison to specialized
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TABLE I
SELECTED PARAMETER CONFIGURATIONS

representation populationSize generationLimit Pmtsp Pmkp
Pxtsp Pxkp

tournamentSize

NSGA-II generic 200 2000 0.005 0.005 0.9 0.9 2
specialized 100 2000 0.1 0.05 0.6 0.8 2

NTGA generic 50 2000 0.005 0.005 0.9 0.9 6
specialized 50 2000 0.1 0.05 0.6 0.8 6

TABLE II
VALUES OF SELECTED QMS FOR NSGA-II WITHOUT SPECIALIZATION

ED HV PFS RNI S
Instance avg std avg std avg std avg std avg std

eil51_n50_bounded-strongly-corr_01 0.4255 0.0486 0.7865 0.0297 65.4 8.3 0.0002 0.0000 0.0075 0.0029
eil51_n50_uncorr-similar-weights_01 0.3452 0.0338 0.6275 0.0122 3.3 1.6 0.0000 0.0000 0.0148 0.0109
eil51_n50_uncorr_01 0.3093 0.0319 0.8121 0.0064 34.0 8.2 0.0001 0.0000 0.0100 0.0025
eil51_n150_bounded-strongly-corr_01 0.3124 0.0156 0.7644 0.0198 169.0 46.6 0.0004 0.0001 0.0029 0.0011
eil51_n150_uncorr-similar-weights_01 0.3106 0.0390 0.6896 0.0586 47.4 27.6 0.0001 0.0001 0.0051 0.0025
eil51_n150_uncorr_01 0.2351 0.0130 0.7975 0.0131 90.6 25.2 0.0002 0.0001 0.0036 0.0011
eil51_n250_bounded-strongly-corr_01 0.2924 0.0111 0.7297 0.0173 206.1 57.1 0.0005 0.0001 0.0019 0.0009
eil51_n250_uncorr-similar-weights_01 0.3129 0.0175 0.7162 0.0152 97.3 29.5 0.0002 0.0001 0.0035 0.0012
eil51_n250_uncorr_01 0.2291 0.0108 0.8029 0.0160 144.5 33.1 0.0004 0.0001 0.0017 0.0005
eil51_n500_bounded-strongly-corr_01 0.2647 0.0119 0.7157 0.0186 253.7 101.1 0.0006 0.0003 0.0009 0.0002
eil51_n500_uncorr-similar-weights_01 0.3208 0.0190 0.6967 0.0139 162.1 57.2 0.0004 0.0001 0.0022 0.0010
eil51_n500_uncorr_01 0.2588 0.0086 0.7578 0.0076 189.9 56.5 0.0005 0.0001 0.0011 0.0006

Average 0.3014 0.0217 0.7414 0.0190 121.9 37.7 0.0003 0.0001 0.0046 0.0021

TABLE III
VALUES OF SELECTED QMS FOR NTGA WITHOUT SPECIALIZATION

ED HV PFS RNI S
Instance avg std avg std avg std avg std avg std

eil51_n50_bounded-strongly-corr_01 0.4216 0.0451 0.7591 0.0330 55.4 13.5 0.0001 0.0000 0.0084 0.0052
eil51_n50_uncorr-similar-weights_01 0.3307 0.0247 0.6439 0.0155 5.3 2.2 0.0000 0.0000 0.0140 0.0103
eil51_n50_uncorr_01 0.2951 0.0290 0.8175 0.0103 31.0 8.4 0.0001 0.0000 0.0109 0.0042
eil51_n150_bounded-strongly-corr_01 0.3119 0.0147 0.7441 0.0218 144.3 52.0 0.0004 0.0001 0.0038 0.0016
eil51_n150_uncorr-similar-weights_01 0.3123 0.0334 0.6932 0.0383 49.1 25.2 0.0001 0.0001 0.0049 0.0019
eil51_n150_uncorr_01 0.2376 0.0118 0.7893 0.0123 86.6 28.2 0.0002 0.0001 0.0029 0.0008
eil51_n250_bounded-strongly-corr_01 0.2963 0.0140 0.7118 0.0110 202.4 79.0 0.0005 0.0002 0.0022 0.0012
eil51_n250_uncorr-similar-weights_01 0.3057 0.0195 0.7052 0.0166 93.0 39.8 0.0002 0.0001 0.0030 0.0010
eil51_n250_uncorr_01 0.2343 0.0148 0.7885 0.0143 116.3 40.5 0.0003 0.0001 0.0021 0.0021
eil51_n500_bounded-strongly-corr_01 0.2726 0.0097 0.6965 0.0171 263.0 105.6 0.0007 0.0003 0.0011 0.0011
eil51_n500_uncorr-similar-weights_01 0.3397 0.0276 0.6669 0.0335 159.9 73.5 0.0004 0.0002 0.0021 0.0010
eil51_n500_uncorr_01 0.2608 0.0185 0.7481 0.0165 214.8 51.9 0.0005 0.0001 0.0009 0.0004

Average 0.3016 0.0219 0.7303 0.0200 118.4 43.3 0.0003 0.0001 0.0047 0.0026

NSGA-II. Both ED and HV values have been improved.

Additionally, efficiency of the algorithm has been improved,

which can be observed by the increased value of RNI. Value

of S measure has been improved in comparison to specialized

NSGA-II. However, it remains higher than in case of generic

representation.

G. Theoretical Analysis

In NTGA, parent individuals do not have to compete with

children individuals. There is no possibility that an individual

will survive for multiple generations. Hence, more unique

points are explored by the method. In combination with

increased selective pressure it also leads to increased conver-

gence. Interestingly, introduction of clone prevention has not

improved the diversity. Larger values of HV are caused by

the larger distance from the Nadir Point and not by the larger

spread of the approximation. More significant improvement

can be observed for larger instances.

Modifications of NTGA lead to no significant improvement

in case of generic representation. Non-specialized operators

have a low probability of improving the result. In consequence,

increased selective pressure has much less significance.

The crowding distance has been removed from NTGA.

Instead, each new individual has to be compared with the

existing individuals to verify whether it is a clone. In most

cases the comparison is done only once. However, if the

individual is a clone, it is mutated and the check is performed

again. In an edge case the comparison must be done multiple

times, which might negatively affect the performance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper NTGA has been investigated in the context of

TTP. A bi-objective problem, which comprises of two subprob-

lems. The subproblems are interconnected, which makes solv-

ing them independently ineffective. NTGA has been compared

to classical NSGA-II. All experiments have been carried out

MACIEJ LASZCZYK, PAWEŁ B. MYSZKOWSKI: A SPECIALIZED EVOLUTIONARY APPROACH TO THE BI-OBJECTIVE TRAVELLING THIEF PROBLEM 53



TABLE IV
VALUES OF SELECTED QMS FOR NSGA-II WITH SPECIALIZED REPRESENTATION

ED HV PFS RNI S
Instance avg std avg std avg std avg std avg std

eil51_n50_bounded-strongly-corr_01 0.3239 0.0484 0.8492 0.0092 30.2 6.3 0.0002 0.0000 0.0301 0.0140
eil51_n50_uncorr-similar-weights_01 0.4049 0.0592 0.7106 0.0067 9.8 2.7 0.0000 0.0000 0.0639 0.0286
eil51_n50_uncorr_01 0.2094 0.0172 0.8444 0.0091 11.6 3.5 0.0001 0.0000 0.0188 0.0072
eil51_n150_bounded-strongly-corr_01 0.2315 0.0240 0.8094 0.0131 33.5 8.4 0.0002 0.0000 0.0233 0.0299
eil51_n150_uncorr-similar-weights_01 0.2283 0.0289 0.7877 0.0127 16.0 7.3 0.0001 0.0000 0.0312 0.0469
eil51_n150_uncorr_01 0.2016 0.0506 0.8202 0.0101 16.5 4.5 0.0001 0.0000 0.0379 0.0642
eil51_n250_bounded-strongly-corr_01 0.2349 0.0492 0.8060 0.0169 31.7 10.2 0.0002 0.0001 0.0466 0.0459
eil51_n250_uncorr-similar-weights_01 0.2890 0.1075 0.7956 0.0138 16.9 8.7 0.0001 0.0000 0.0829 0.0801
eil51_n250_uncorr_01 0.2756 0.0942 0.8269 0.0099 18.4 5.4 0.0001 0.0000 0.1072 0.0785
eil51_n500_bounded-strongly-corr_01 0.3336 0.0805 0.7776 0.0157 33.4 11.1 0.0002 0.0001 0.0800 0.0397
eil51_n500_uncorr-similar-weights_01 0.4108 0.0836 0.8049 0.0094 26.9 10.2 0.0001 0.0001 0.0894 0.0253
eil51_n500_uncorr_01 0.4596 0.1021 0.8136 0.0090 25.0 8.1 0.0001 0.0000 0.1372 0.0395

Average 0.3003 0.0621 0.8038 0.0113 22.5 7.2 0.0001 0.0000 0.0624 0.0417

TABLE V
VALUES OF SELECTED QMS FOR NTGA WITH SPECIALIZED REPRESENTATION

ED HV PFS RNI S
Instance avg std avg std avg std avg std avg std

eil51_n50_bounded-strongly-corr_01 0.3881 0.0424 0.8752 0.0098 51.3 10.6 0.0005 0.0001 0.0211 0.0078
eil51_n50_uncorr-similar-weights_01 0.4234 0.0738 0.7365 0.0039 12.9 4.2 0.0001 0.0000 0.0533 0.0145
eil51_n50_uncorr_01 0.2205 0.0221 0.8786 0.0052 19.2 4.3 0.0002 0.0000 0.0167 0.0063
eil51_n150_bounded-strongly-corr_01 0.2107 0.0190 0.8513 0.0112 67.1 18.1 0.0007 0.0002 0.0058 0.0025
eil51_n150_uncorr-similar-weights_01 0.2199 0.0373 0.8286 0.0105 37.5 17.8 0.0004 0.0002 0.0129 0.0060
eil51_n150_uncorr_01 0.1544 0.0062 0.8553 0.0065 31.6 8.8 0.0003 0.0001 0.0045 0.0026
eil51_n250_bounded-strongly-corr_01 0.1777 0.0151 0.8447 0.0119 67.8 16.4 0.0007 0.0002 0.0053 0.0063
eil51_n250_uncorr-similar-weights_01 0.1821 0.0183 0.8471 0.0096 53.9 18.3 0.0005 0.0002 0.0073 0.0028
eil51_n250_uncorr_01 0.1478 0.0068 0.8639 0.0063 33.9 8.8 0.0003 0.0001 0.0031 0.0025
eil51_n500_bounded-strongly-corr_01 0.1645 0.0103 0.8265 0.0102 70.6 17.8 0.0007 0.0002 0.0041 0.0070
eil51_n500_uncorr-similar-weights_01 0.1659 0.0131 0.8459 0.0098 64.9 22.0 0.0006 0.0002 0.0051 0.0047
eil51_n500_uncorr_01 0.1553 0.0114 0.8442 0.0081 36.5 9.9 0.0004 0.0001 0.0084 0.0294

Average 0.2175 0.0230 0.8415 0.0086 45.6 13.1 0.0005 0.0001 0.0123 0.0077

Fig. 1. Comparison of selected approx. Pareto Fronts for data instance eil51_n50_bounded-strongly-corr_01
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Fig. 2. Comparison of selected approx. Pareto Fronts for data instance eil51_n500_uncorr-similar-weights_01

Fig. 3. Comparison of EAF average approx. Pareto Fronts for data instance eil51_n250_bounded-strongly-corr_01

TABLE VI
SUMMARY OF ALL RESULTS

ED HV PFS RNI S
avg std avg std avg std avg std avg std

NSGA-II
generic 0.3014 0.0217 0.7414 0.0190 121.9 37.7 0.0003 0.0001 0.0046 0.0021
specialized 0.2991 0.0622 0.8029 0.0124 22.3 6.9 0.0002 0.0001 0.0659 0.0431

NTGA
generic 0.3016 0.0219 0.7303 0.0200 118.4 43.3 0.0003 0.0001 0.0047 0.0026
specialized 0.2158 0.0208 0.8419 0.0084 45.4 12.2 0.0005 0.0001 0.0120 0.0079
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in configurations with generic, and specialized representation.

It has been shown, that for larger instances specialized NTGA

achieves better results than specialized NSGA-II.

Increased selective pressure of NTGA led to improved

results. However, more research could be done regarding

selection, that would also promote diversity of the PF ap-

proximation. An introduction of heuristics, that would further

improve the solutions for the subproblems might be worth

investigating. Additionally, a hyperheuristic that would com-

bine the benefits of multiple evolutionary methods could prove

beneficial to the results. Moreover, many-objective problems

are fairly uncommon. An interesting avenue of future work

would be to use a benchmark problem with the real-world

characteristics, with a larger number of objectives.
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