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Abstract—Big data processing in the Smart Grid context has
many large-scale applications that require real-time data analysis
(e.g., intrusion and data injection attacks detection, electric device
health monitoring). In this paper, we present a big data platform
for anomaly detection of power consumption data. The platform
is based on an ingestion layer with data densification options,
Apache Flink as part of the speed layer and HDFS/KairosDB
as data storage layers. We showcase the application of the
platform to a scenario of power consumption anomaly detection,
benchmarking different alternative frameworks used at the speed
layer level (Flink, Storm, Spark).

I. INTRODUCTION

B
IG data architectures are designed to handle ingestion,
processing and analysis of data that possesses the five

V’s properties: Volume, Velocity, Value, Variety, Veracity [1],
[2]. In the context of Smart Grids (SG), utilities have to deal
with an increasing volume of data leading to typical big data
problems. According to Zhang et al. [3], the five V’s in the
SG domain are represented by several needs: to analyze large
amounts of data in real-time, like from smart meter readings
(Volume), to deal with quick generation of records (Velocity),
and diversity of data structures (Variety), with multiplicity of
use case, such as anomaly detection or load balancing that
bring value to the customers (Value), and inherent problemat-
ics of data in terms of possible measurement errors (Veracity).
To exemplify, with a sampling rate of 15 minutes, a sample
of 1 Million Smart Meter devices installed results in around
3 Petabytes of data in one year (3000TB, ~35Billion records
at a size of 5KB each record) [4].

There are a plethora of use cases for the application of
big data analysis in the context of SGs [5], [6], like anomaly
detection methods to detect power consumption anomalous be-
haviours [7], [8], the analysis of false data injection attacks [9],
load forecasting for efficient energy management [10], among
others. Such data analysis requirements create needs to define
architectures and platforms to support large scale data analysis.

In this paper, we focus on power consumption data anomaly
as the application scenario: dealing with the identification of
anomalous patterns from energy consumption traces collected
from smart meters, that can have several benefits for utilities,
such as load optimizations based on determined patterns of
energy usage [5], [7] or clustering of customers [11]. The final

goal is the definition and evaluation of a big data platform for
power consumption anomaly detection.

We have two main contributions in this paper:
• the provision of a big data platform for power con-

sumption anomaly detection with the main components
mapped to the reference architecture proposed by Pääkkö-
nen and Pakkala [12].

• the results of a scenario run with public datasets to
assess the applicability of batch-oriented (Apache Spark),
stream-oriented (Apache Storm), or hybrid (Apache
Flink) frameworks in the speed layer of the platform.

The paper is structured as follows. In Section II, we discuss
the background of big data analysis in the context of Smart
Grids. In Section III, we discuss big data energy management
platforms that can be comparable to our proposal. In Section
IV, we propose a platform for big data power anomaly detec-
tion with components mapped to the reference architecture in
Pääkkönen and Pakkala [12]. In Section V, we propose a power
consumption scenario aimed at showcasing the application of
the platform and the evaluation at the speed layer level of three
frameworks from the Apache Software Foundation (Spark,
Flink, Storm). The conclusions are presented in Section VI.

II. BACKGROUND - BIG DATA ANALYSIS ARCHITECTURES

Big data processing is assuming more and more relevance
in many fields of modern society. For energy utilities, the
needs to manage energy resources based on the vast amount of
information collected from sensors and the ICT infrastructure
is nowadays of paramount importance [3].

In the context of big data processing, we can have a
first distinction between batch and stream processing. Batch
processing is a type of processing executed on large blocks
(batches) of data stored over a period of time. These data
blocks are appended to highly scalable data stores and period-
ically analyzed in batches by big data processing frameworks.
This approach to data processing is very effective in case
of large datasets for use cases that are not time-critical,
as the main drawbacks are higher latencies in processing
requests [13]. On the other hand, stream processing allows
dealing with data in real-time, getting approximate results
that can be complemented, if needed, from the analysis of
batch processing. Managing streams of data usually implies
the capabilities of online learning. Some authors also consider
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an intermediate category: micro-batch processing [13], that
overcomes some of the issues of batch and stream processing:
near real-time performance is granted by considering streams
of data in micro-batches sent to the batch processing engine.

There are two popular architectures that were proposed over
time, Lambda and Kappa [13], [14]. They were mainly based
on the relevance that is given to batch and stream processing.
Lambda architecture is a processing architecture designed to
handle massive amount of data efficiently by taking advantage
of both batch and stream-processing methods. Efficiency in
this context means high-throughput, fault-tolerance and low
latency [13]. The rise of the Lambda architecture is correlated
with the growth of data and the speed at which they are being
generated, real-time analytics and the drive to mitigate big
latencies of map-reduce [15].

Fig. 1. Lambda Architecture

Generally, a Lambda architecture consists of three distinct
layers (Fig. 1): a batch layer (batch processing), a speed layer
(stream processing) and a serving layer (data storage). The
batch layer is responsible for bringing comprehensive and
accurate views of batch data while simultaneously, the speed
layer provides near-real-time data views. Stream processing
can take advantage of batch views and may be joined before
presentation. Data streams entering the system are dual fed
into both batch and speed layer.

The batch layer stores raw data as it arrives and computes
the batch views in intervals. When the data gets stored in the
data store using different data storage systems, the batch layer
processes the data using one of the big data processing frame-
works that implement the map-reduce programming paradigm.
Popular frameworks that support batch processing are Apache
Hadoop, Apache Spark, and Apache Flink.

The speed layer processes data streams in real-time with
the focus on minimal latencies. Usually latencies vary from
milliseconds to several seconds. This layer often takes advan-
tage of pre-computed batch views. Popular frameworks that
support stream processing are Apache Flink, Apache Storm,
Apache Spark, and Apache Samza.

The serving layer aggregates the outputs from batch and
speed layers, storing the data in a datastore. As storage, highly

scalable and distributed data lakes are often used. Among
popular big data datastores belong Apache Cassandra, Apache
HBase, Hadoop Distributed File System, OpenTSDB, and
KairosDB.

Fig. 2. Kappa Architecture

Kappa architecture is an alternative to the Lambda archi-
tecture proposed to overcome some of the limitations, like
maintaining two code bases for batch and speed layers and
the general complexity of the platform [16]. The Kappa
architecture consists of two distinct layers (Fig. 2): a speed
layer and a serving layer. The speed layer processes streams
of data in the same way as Lambda architecture. The only
main difference is that when the code changes, data needs
to be reprocessed again. This is because parts of the Kappa
architecture act as an online learner.

Big data analysis frameworks often do not support both
batch and stream processing, thus a hybrid combination of
frameworks is the choice, e.g., Apache Hadoop and Apache
Storm can be used to fully support a Lambda architecture [17].

In the context of SGs, we can find some examples of the
main constituting layers of both architectures. A batch layer
in Spark, distributed in-memory computing framework, was
used to pre-compute a statistical-based model using linear
regression for anomaly predictions of energy consumption data
[7]. A stream layer was used for the detection of defective
smart meters, solution implemented using the Flink stream
processing engine [18]. As a serving layer, KairosDB, time-
series database built on top of Apache Cassandra, could handle
the workload of a large city with around six million smart
meters. During this experiment, KairosDB was installed in a
cluster of 24 nodes [19].

The next section will discuss more in detail about big data
energy management platforms that have been proposed so far.
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III. RELATED WORKS—BIG DATA ENERGY

MANAGEMENT PLATFORMS

We have discovered several proposed big data architectures
in the SG domain that we mapped to either Lambda or Kappa
based on the available information. We found that the majority
of the architectures are cloud-oriented and that several energy
management architectures do not specify the applicability
to the big data context. Therefore, they might use different
architectural structure than pure Lambda or Kappa.

A. Big Data energy management architectures

Mayilvaganan and Sabitha [20] proposed a SG architecture
which uses HDFS and Cassandra to store historical data for
the prediction of energy supply and demand. In this work, only
MapReduce processing was used.

Munshi and Mohamed [21] presented a SG big data ecosys-
tem based on the Lambda architecture. Smart meter data are
being ingested to a cloud with Flume. For the batch layer of the
Lambda architecture Hadoop is used, and Spark for the speed
layer. Authors also performed data mining and visualization
applications on top of this ecosystem with real data.

Liu and Nielsen [22] designed a smart meter analytic sys-
tem. The architecture is divided into data ingestion, processing,
and analytics layer. It can process both batch and stream data.
In the processing module, they list several tools which can be
used, like Spark, Hive, or Python. In the end, the data are sent
to the analytics layer, which contains a PostgreSQL database,
analytics libraries, and applications for users. This architecture
can be viewed as Lambda-based because usage of Hive can be
considered as a batch layer and the usage of Spark as a speed
layer. The analytics layer of this architecture can be mapped
to a serving layer.

Fernández et al. [?] proposed an architecture that improves
energy efficiency management in a smart home. It consists of
four modules: data collection, data storage, data visualization,
and a machine learning module. It is designed to work with
both batch and real-time processing. The data storage module
consists of three blocks: acquisition, real-time, and batch
block. From those processing blocks, the data are available
to blocks that can be mapped to a service layer of a Lambda
architecture. Therefore this architecture is also considered as
Lambda-based.

Balac et al. [23] proposed an architecture for real-time pre-
dictions in energy management. The data streams are collected
to the server, which provides management functionality like
dashboards, alerting, and basic reporting. From this server,
data are transferred to their high-performance file system
where the real-time analysis is performed. The analysis results
are then passed back to the server but are also archived in
the cloud storage for some later batch processing task. Based
on this description, this architecture can be viewed more as
Kappa-based.

Al-Ali et al. [24] proposed a system for energy management
in a smart home. They specify both hardware and software
architecture. The software architecture contains three mod-
ules: data acquisition, a middleware, and a client application

module. In this architecture, data are stored and then used
by several services. Therefore it does not represent neither a
Lambda nor a Kappa architecture.

Daki et al. [25] presented an architecture which is composed
of five parts: data sources, integration, storage, analysis, and
visualization that can be used for the analysis of customer data.
They provide a set of technologies which might be used and
can be considered as either a Lambda or a Kappa architecture,
depending on the use cases.

B. Other energy management architectures

Yang et al. [26] proposed an energy management system that
uses a service-oriented architecture in the cloud. For storage,
they use distributed software as MySQL Cluster and HDFS.
However, authors do not specifically mention big data. Ali et
al. [27] proposed a computing grid based framework for the
analysis of system reliability and security. The architecture
consists of three layers: application, grid middleware, and
resource layer, with focus on high-performance computing.
Rajeev and Ashok [28] presented a cloud computing architec-
ture for power management of microgrids, consisting of four
modules: infrastructure, monitoring, power management, and
a cloud service module.

IV. PROPOSED PLATFORM

In this section, we propose our big data platform for smart
meters power consumption anomaly detection, based on our
previous research ([29], [8], [30], [31]). The goal of such
platform is to process large amounts of data from smart
meters and weather information sources to detect anomalous
behaviours from the side of customers. Such analysis can allow
to further create customer profiles that can be used to cluster
users according to their power consumption behaviours [11].
The five V’s in this area derive from several aspects, namely
volume: the large amount of information traces generated
by smart meters multiplied by the number of users [4],
velocity: the needs for real-time analysis of such traces that
are constantly generated [4], variety: multiple data sources
involved, either structured or unstructured, mainly about power
consumption and weather data [3], value: the added value that
analyses can have for utilities, that can create customer profiles
to optimize power production and balancing of the whole
grid [11], and veracity: the many issues that measurements
errors might pose, such as corrupted or missing data from
smart meters [32].

We map our proposed architecture to the reference ar-
chitecture by Pääkkönen and Pakkala [12]. The reference
architecture for big data systems is technology independent
and is based on the analysis of published implementation
architectures of several big data use cases. We mapped all
the functionalities, data stores and data flows contained within
our platform proposal to the reference architecture diagram to
allow for easier comparison with other platforms (Fig. 3):

Data sources. Our platform supports two possible data
sources. First, a stream of semi-structured data is being col-
lected from smart meters datasets. These can either be live data
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Fig. 3. Architecture Mapping to Pääkkönen and Pakkala [12] Reference Architecture

from smart meters or private/public available datasets. Another
way for data to enter the platform is reading data available in
the Hadoop Distributed File System (HDFS).

Data extraction. a Kafka producer corresponds to the
stream extraction functionality and a Kafka broker serves as
temporary data store. An ingestion manager extracts data from
HDFS and sends data to the Kafka broker.

Data loading and pre-processing. Data extracted from
HDFS using the ingestion manager can be further densified.
Densification can increase the itemset for smaller datasets
(e.g., for benchmarking reasons). Currently, two densification
methods are available in the platform – multiplication (repli-
cating n times the dataset) and interpolation (constructing new
data points based on interpolating previous intervals n times).
However, more advanced methods can be implemented, such
as regression-based and probability-based methods [33].

Data processing. Flink’s stream-processing jobs read in-
coming data streams from Kafka. These jobs can also ac-
cess HDFS to read pre-computed models or datasets and
merge them before producing results. The output of stream-
processing jobs can be sent back to Kafka, HDFS or to the
time-series datastore KairosDB.

Data analysis. Flink’s batch-processing jobs can read data
from HDFS and perform data analytics. The output can be
further stored in HDFS.

Data loading and transformation. Results of stream-
processing jobs stored in KairosDB can be loaded into a
Grafana server. In this context, Grafana server serves as a
temporary data store until the graphs are generated.

Data storage. The following data storage technologies
(temporary or persistent) are supported by the platform: Kafka
broker, HDFS, KairosDB and Grafana.

Interfacing and visualization. There are several user inter-
faces that allow interacting with the platform. HDFS provides
an UI with information regarding storage and the file system.
Flink UI gathers statistics about running jobs, e.g. records
processed per second by an operator. A dashboard component
displays graphs produced by Grafana. A React front-end
application allows users to upload or delete datasets and shows
datasets previews. It is also possible to select the dataset for
ingestion, which invokes the ingestion Manager to read the
dataset from HDFS and ingests the data into Kafka.

Job and model specification. Submitting stream and batch
processing jobs can be done either by uploading a JAR file
with all dependencies using the Flink UI or by submitting
the code using an ad-hoc code-editor contained within a
React front-end application. The JAR file has to include the
source code for the processing job (e.g., an anomaly detection
algorithm like in [7]), all the dependencies the job requires
and the path to the entry Java file to be executed.

Discussing the platform’s architecture (Fig. 4), data itemsets
generated by smart meter devices are forwarded to the platform
using a publish/subscribe messaging system. Kafka can be
used as a data source and a data sink for Flink’s jobs and
the Kafka Connector provides access to event streams without
manual implementation needs — making it a good choice
for the platform. Each of the technologies is capable of
running in clusters, providing scalability and fault-tolerance.
Each technology can be scaled independently based on the use
cases, making the platform flexible in terms of configuration.

Apart from the integration of existing big data tools, we
implemented three separate applications to support the needs
of smart meters data analysis (Fig. 4). These applications
are: i) an ingestion manager, responsible for densification and
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Fig. 4. Platform Architecture

ingestion of datasets into Kafka, ii) a Spring Boot Application,
i.e. a back-end implementation with a RESTful API which
enables execution of ingestions, Apache Flink job submissions,
and uploading and deleting datasets to/from HDFS, iii) a React
front-end application that allows users to submit ingestions,
upload and delete datasets. Apache Flink provides both batch
and stream processing of the data, thus a Lambda architecture
is fully supported, as discussed in the background section.
As the main data storage, HDFS was chosen and KairosDB
is used to provide real-time views on the data. Grafana can
be integrated with KairosDB and produce real-time graphs of
data. Generated graphs can be further shown in the dashboard
of the application.

V. POWER CONSUMPTION ANOMALY

DETECTION SCENARIO

We showcase the use of the platform in the context of
power consumption anomaly detection. Studying unusual con-
sumption behaviors of customers and discovering unexpected
patterns is an important topic related to the use of smart
metering devices in the smart grids domain, as discussed in
the previous section and in related research ([7], [8]).

In this context, we propose a scenario to showcase the
platform and to look into the performance of three differ-
ent frameworks for the streaming part: batch-based (Spark),
stream-based (Storm), and hybrid (Flink). As the speed layer

is a key part of the performance of the platform, the selection
of the best framework is an important decision.

A. Compared Frameworks

Apache Spark. Created in 2009, is a general purpose
processing engine suitable for a wide range of use cases. There
are four libraries built on top of Spark processing engine:
Spark SQL for SQL language support, Spark Streaming for
stream processing support, MLlib for machine learning algo-
rithms, GraphX for graph computations. Languages supported
by Spark include: Java, Python, Scala, and R.

Spark applications consist of a driver program that runs the
main function and executes various operations in parallel. The
main abstraction that Spark provides is a resilient distributed
dataset (RDD), which is a collection of elements partitioned
across the cluster nodes. Operations such as map or filter
executed on RDDs are executed in parallel. Spark Streaming
discretizes the streaming data into micro-batches, then latency-
optimized Spark engine runs short tasks to process the batches
and outputs the results. Each batch of data is an RDD [34].

Apache Flink. Created in 2009, is a framework and dis-
tributed processing engine for computations on both batch and
streams of data. Stream processing is supported natively and
provides excellent performance with very low latencies. It also
provides a machine learning library called FlinkML as well as
a graph computation library Gelly. Supported programming
languages are Java, Scala, Python, and SQL.

Flink provides different levels of abstraction that can be
used to develop batch or stream processing applications.
Abstractions from low-level to high-level respectively are as
follows: Stateful Streaming Processing, DataStream / DataSet
API, Table API and SQL. In practice, most applications
would not need the lowest-level abstraction, Stateful Streaming
Processing, but would rather program against the Core APIs
like the DataStream API (bounded/unbounded streams) and
the DataSet API (bounded datasets). These APIs provide
very similar operations as Spark’s RDDs such as map, filter,
aggregation and other transformations [35].

Apache Storm. Created in 2011, is a distributed real-
time processing engine. Storm is a pure stream processing
framework without batch processing ability. Storm provides
great throughput with very low latencies. It was designed to
be usable with any programming language thanks to its Thrift
definition for defining and submitting topologies. Zookeeper is
also required to be installed because Storm uses it for cluster
coordination.

The overall logic of Storm applications is packaged into
a topology. A Storm topology is analogous to a MapReduce
job with the difference that Storm applications run forever.
A topology is an acyclic directed graph (DAG) composed
of spouts and bolts connected with stream groupings. The
stream is a core abstraction in a Storm application. A stream
is an unbounded sequence of tuples that are generated and
processed in parallel. Spouts serve as a source of streams
in a topology. Analogically to Flinks DataStream/DataSet or
Sparks RDDs operations, bolts are responsible for all the
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distributed processing. Bolts can implement operations such
as map, filter or aggregation [36].

We could not find any specific benchmarking study of the
three frameworks based on smart grids related datasets, but
previous studies found contrasting results in other domains.

Karimov et al. [37] found Flink to have more than three
times faster throughput than Spark and Storm for aggrega-
tions. Joins were more than two times faster for Flink than
Spark. Flink outperformed Storm and Spark in six out of
seven benchmark categories including throughput and latency.
However, Spark was found to perform better than the two
other frameworks in case of skewed data, as well to improve
the performance more than the other frameworks in presence
of more than three nodes.

Wang et al. [38] developed a full benchmarking system to
test the performance of Storm, Flink, and Spark. The results
of the application of the benchmark showed that Flink is
three times faster than Spark and six times faster than Storm
in processing advertisement clicks. The final conclusion is
that Storm would be the best choice if very low latency is
requested, while Spark would be a good option if throughput
is a key aspect of the use case. Flink gives a more balanced
performance with low latency and high throughput.

Lopez et al. [39] found that Storm and Flink were consis-
tently better than Spark in terms of throughput. Storm had
in general better throughput than the other frameworks, while
Spark had the worse performance due to the application of
micro-batches, as each batch is grouped before processing.
However, Spark was found to be more reliable in terms of node
failures and recoverability of the functionality. The conclusion
is that the lower performance of Spark Streaming might be
justified in use cases in which absolute reliability is necessary,
considering no messages loss in case of nodes failures.

Chintapalli et al. [40] performed a benchmarking of Spark,
Flink, Storm Streaming focusing on latency. Storm performed
the best with Flink, both having less than 2 seconds latency
at high throughput. The latencies of Spark, on the other hand,
were rising with higher throughput, resulting in latencies of
over 8 seconds.

B. Scenario definition

Our scenario contains three implementations of the same
algorithm using the three different big data processing frame-
works (Spark, Storm, Flink). Implementing the same use case
we can easily compare the performance of each framework by
measuring the processing time of the same dataset.

Dataset. Our first dataset consists of power consumption
data collected from apartments in one building with
a sampling rate of 15 minutes [41]. The apartment
dataset (id, timestamp, consumption(kW))
contains data for 114 single family apartments for the
period 2014-2016. The second dataset contains weather
data (timestamp, temperature, humidity,

pressure, windspeed, ...) with a sampling rate
of one hour. The size of the apartment dataset is 2.1 GBs
and contains 64 million records. For the scenario to better

represent a big data context, we replicated each of these
records eight times. The ingestion manager part of the
platform with multiplication densification method was used
for this purpose. The result size of the testing dataset is 512
million records in CSV format.

Scenario Setup. The scenario was run with three server
nodes: a Master node and two worker nodes (Fig. 5). Apart
from Kafka, each technology runs in a cluster on all three
nodes. Kafka was only running in the Master node, as we con-
sidered it could serve all other nodes without delays. For Kafka
to operate, there is the need to have Apache Zookeeper to
manage the cluster. Because Apache Storm uses Zookeeper for
cluster management as well, we decided to install Zookeeper
in all three nodes. Each of these nodes was configured with
an Intel Xeon E3 (2.4GHz, 4 cores), 8GB RAM

running on Ubuntu 16.04 LTS 64bit Linux 4.4.0

kernel.

Fig. 5. Nodes involved in the experimental setup

Anomaly Detection Algorithm Implementation. We im-
plemented a simple algorithm for finding consumption anoma-
lies using a pre-computed model of consumption predictions
(pseudocode, algorithm 1). For the computation of anomaly
detection, we implemented a Spark batch processing program
in the Java programming language. We did not implement this
algorithm using other big data processing frameworks because
our main focus was on measuring performance of stream
processing. To decide whether a current power consumption
item is an anomaly, we analyse power consumptions of three
previous days. We take each hour of a day as a season,
i.e., t=[0,23], and use previous three days consumptions
at the time t to compute our predictions. We also take into
consideration outside weather because it is highly correlated
with power consumption: during winter power consumption
is higher due to heating, as well as in summer due to the
cooling equipment in function. For each apartment, predic-
tions are made individually because customers have different
living habits and power consumption predictions cannot be
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generalized to all of them.

Input: C, T ⊲ Consumption and Temperature Datasets

Output: P ⊲ Anomaly Detection Model

function CreateAnomalyDetectionModel(C, T):

P ←− ∅ ⊲ Initialize Anomaly Detection Model

foreach d ∈ days(2014− 2016) do

foreach s ∈ 0..23 do

foreach id ∈ apartmentIds do
C1←−MakeAverage(GetConsumptions(d−
1, s, id))

XT1←−
ComputeXT (GetOutsideTemperature(d−
1, s))

C2←−MakeAverage(GetConsumptions(d−
2, s, id))

XT2←−
ComputeXT (GetOutsideTemperature(d−
2, s))

C3←−MakeAverage(GetConsumptions(d−
3, s, id))

XT3←−
ComputeXT (GetOutsideTemperature(d−
3, s))

Prediction←−
(C1 ∗XT1 + C2 ∗XT2 + C3 ∗XT3)/3 + 7

P.insert(d, s, id, Prediction)
end

end

end

return P

Algorithm 1: Anomaly Detection Model Pseudocode:
s=season, n=day, C=avg power consumption, XT=outside
temp variables

The evaluation of the performance of the frameworks hap-
pens at the speed layer. The speed layer of our Lambda
implementation is taking advantage of the pre-computed model
(algorithm 1), based on which we can detect anomalies of
incoming power consumption data. First, we load the anomaly
detection model from the datastore and then we compare smart
meter readings against this model. If the new consumption
value exceeds the value from the model, we consider it as an
anomaly (pseudocode, algorithm 2).

We implemented the stream processing part in Java using
each framework (Spark, Flink, Storm). Each implementation
contains framework specific distributed operations such as
map, filter, foreach.

Input: M,C ⊲ Anomaly Detection Model and New

Consumptions

Output: A ⊲ Anomalies

function AnomalyDetection(M,C):

A←− ∅ ⊲ Initialize Anomalies

foreach c ∈ C do

P ←−M.get(c.day, c.season, c.id)
if c.value > P then

A.insert(c.day, c.season, c.id, P )
end

end

return A

Algorithm 2: Anomaly Detection Streaming Process

Process Flow of Anomaly Detection. The flow of the
process of anomaly detection in this scenario is as follows.
The power consumption dataset, as well as the weather dataset,
were both stored in HDFS. First, Spark loads the datasets into

memory and performs operations in a distributed environment
to generate the prediction model using Algorithm 1 (Fig. 6,
steps 1-2). The output of Spark is stored back into HDFS (Fig.
6, step 3).

Fig. 6. Anomaly Detection Model Data Flow

Real-time Anomaly Detection Data Flow. The data flow of
real-time anomaly detection is shown in Fig. 7. The prediction
model is first loaded into memory from HDFS (Fig. 7, step
1). After the big data processing framework in use (Spark,
Storm, Flink) is initialized and ready, we can start streaming
data into Kafka. This is done using the ingestion manager. The
ingestion manager reads consumption data from HDFS and
sends each record multiple times to Kafka, in this scenario
eight times (Fig. 7, steps 2-3) using the multiplication densi-
fication method. Big data processing frameworks subscribe to
consumption topic and right after new data arrive, they start
processing (Fig. 7, step 4). All found anomalies are sent to
the Kafka topic "anomalies" (Fig. 7, step 5).

Fig. 7. Real-time Anomaly Detection Data Flow

C. Results

We can get several insights about running the platform with
each of the three frameworks as the speed layer (we summarize
them in Table I).

Throughput. Records per seconds processed (Fig. 8)
showed that Storm (~378k records per second) and Flink
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(~438k records per second) were significantly faster than
Spark Streaming (~168k records per second). For the power
consumption dataset used in the scenario (512 million records),
this means average times of ~20min. (Flink), ~25min. (Storm)
and ~50min. (Spark). If throughput is important, Flink seems
to give the best results.

Fig. 8. Throughput. Records per seconds processed (5 runs per framework)

Latency. Internally, Spark Streaming receives live data from
various sources and divides them into batches (micro-batches),
which are then processed by the Spark engine to generate a
stream of results. Thus, it is not considered as native streaming,
but this way it can also efficiently support processing of big
streams of data. However, Spark Streaming strongly depends
on the batch intervals which can range from hundreds of
milliseconds. During the scenario runs, both Flink and Storm
had lower latencies, in terms of milliseconds, while Spark
had latencies in terms of seconds. However, the selection
depends on how important the batch layer (or micro-batch) is
for the specific scenario. For the current scenario using a pre-
computed (batch-level) model or an online learning algorithm
at the speed layer, both Flink and Storm can be better options
than Spark, considering latency.

Support for batch processing. In the scenario, the batch
layer is only used for a pre-computed model, if updating the
model is necessary, Spark natively supports batch processing
and provides a very efficient batch processing engine. Batch
processing in Flink is dealt with as a special case of stream
processing. Apache Flink provides streaming API that can
do both bounded and unbounded use cases, but also offers
different DataSet API and runtime stack that is faster for batch
processing use cases, so it is also possible to process batches
very efficiently. Storm does not support batch processing in the
current version. In this scenario, the pre-computed model was
managed by Spark, so a hybrid combination of frameworks is
necessary for a Lambda architecture, if adopting Storm.

Effort to set-up and configure each framework. Setting
up the cluster nodes for the scenario with the default configu-
ration requires very little time, several minutes to one hour for

TABLE I
SUMMARY OF THE SPEED LAYER FRAMEWORKS COMPARISON

Spark Flink Storm

Performance Medium Very good Good

Latency Medium Very low Very low

Batch processing support Yes Yes No

Cluster configuration effort High Medium Medium

Scale-up effort Low Low Low

Machine learning support Very good Good Medium

all the three frameworks, Spark, Flink, and Storm. However,
fine-tuning each framework brings different considerations.
Spark is very flexible and allows to fine-tune many aspects
that require a deep knowledge of the framework’s architecture.
Such fine-tuning can require a large amount of effort. Also
Flink requires some effort to tune up the configuration for
better performance. This process can take some considerable
amount of time, although we found to be simpler in some
configuration aspects, as the flexibility of Spark can have
drawbacks for the many parameters that can be configured.
For Storm there are similar considerations to Flink in terms of
configuration, understanding the architecture of the framework
is essential for optimization, but also running some tests can
give an evaluation of which parameters can give better results.

Effort required to scale-up the framework. Each of the
three frameworks is relatively easy to scale-up to more nodes.
For each framework is a matter of changes in the configuration
and propagating the changes to the newly added nodes. The
represented scenario can be scaled-up to use more nodes.

Machine learning libraries and algorithms supported.

While in the scenario we used a simple anomaly detection
algorithm, if advanced machine learning operations are nec-
essary, Spark is the framework with the best support. Spark
comes with a machine learning library called MLlib that pro-
vides common machine learning functionalities and multiple
types of machine learning algorithms, such as classification,
regression, clustering, etc. All of this is designed to distribute
the computing across the cluster. FlinkML is a machine learn-
ing library for Flink. It provides algorithms for supervised and
unsupervised learning, recommendations and more. The list of
supported algorithms is still growing and there is an ongoing
work in this area. Storm does not come with any machine
learning library, but there is an ongoing work on third-party
library called SAMOA, that adds machine learning support to
Storm. SAMOA is currently undergoing incubation process
in Apache Software Foundation and provides a collection
of algorithms for most common data mining and machine
learning tasks such as regression, classification, and clustering.

Threats to Validity. There are several threats to validity
that we need to report. For internal validity, the configuration
of the frameworks can have an impact on the results. We
attempted to configure each framework for best efficiency
based on the nodes configuration and resources available
(mainly at the level of memory management, parallelism
and processor setup), but an exhaustive search of all best
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configurations would be unfeasible. Our scenario was more
exploratory with respect to power consumption anomaly
detection. A full experiment would need to take into account
changes to parameters and the impact on the performance.
For example, the number of deployed nodes alone can have
a different impact on each of the considered frameworks.
In our case, we kept a rather simple nodes topology, but
for more complex topologies the results can be different (as
previous research has shown, e.g., [37]). Another internal
threat to validity is given by the implementation differences
of the algorithm on each platform. Each framework provides
different abstractions to develop applications and it is not
possible to implement the algorithm equally, although we
believe this threat is limited due to the simple anomaly
detection algorithm we applied for benchmarking. Another
threat is related to construct validity, the scenario was meant
to compare the frameworks in a common data processing
context and not to be a full experiment in which many factors
are varied, like the number of nodes to which each framework
is distributed. Another threat is related to generalization, the
results apply to the specific scenario discussed to showcase
the platform, other scenarios might have other needs and lead
to different results.

Frameworks versions. In running the power consumption
anomaly detection scenario, the following frameworks ver-
sions have been used:

Apache Zookeeper 3.4.12, Apache Kafka 2.0.0,

Apache Hadoop 2.8.5, Apache Flink 1.7.1,

Apache Spark 2.4.1, Apache Storm 1.2.2,

Scala 2.12, Java JDK 1.8.0201

VI. CONCLUSION

Big data processing in the Smart Grids context has many
applications that require real-time operations and stream pro-
cessing. In this paper, we presented a big data platform
for anomaly detection from power consumption data. The
platform is based on an ingestion layer with data densification,
Apache Flink as part of the speed layer and HDFS/KairosDB
as the data store. We mapped the main components to the ref-
erence architecture proposed by Pääkkönen and Pakkala [12],
and provided the results of a scenario based on power con-
sumption anomaly detection to assess the applicability of dif-
ferent frameworks: batch-based (Spark), stream-based (Storm),
or hybrid (Flink). Overall, we adopted Flink in the platform’s
speed layer, as it provided the best performance for stream
processing and met the requirements for power consumption
datasets anomaly detection in our scenario.

Currently, we are planning to deploy the platform to analy-
size large-scale power consumption datasets in our running
projects, by comparing several anomaly detection algorithms
to help in better identifying clusters of customers based on
smart metering data traces.
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