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Abstract—Police and various security services use video anal-
ysis when investigating criminal activity. One typical scenario is
the selection of object in image sequence and search for similar
objects in other images. Algorithms supporting this scenario must
reconcile several seemingly contradicting factors: training and
detection speed, detection reliability and learning from sparse
data. In the system that we propose a combined SVM/Cascade
detector is used for both speed and detection reliability. In
addition, object tracking and background-foreground separation
algorithm together with sample synthesis is used to collect rich
training data. Experiments show that the system is effective,
useful and suitable for selected tasks of police surveillance.

I. INTRODUCTION

P
OLICE and various security services use video analysis

when investigating criminal activity. Long surveillance

videos are increasingly searched by dedicated image analysis

software to detect criminal events, to store them and to initiate

proper security actions (see e.g. the P-REACT project [1]).

Solutions to automatic analysis of surveillance videos seem

already to be mature enough, as the research community is

recently also involved in major benchmark initiatives [2], [3].

The computer vision research focus is now shifted to the

analysis of video data coming from handheld, body-worn and

dashboard cameras and on the integration of such analysis

results with police- and public-databases.

In typical object detection scenarios, there are much data

to learn from and major objective is to use them in effective

manner. In a security-oriented environment the user interaction

should be kept as simple as possible and preferably limited

only to marking single object in a selected image frame and

initiating search to find occurrences of similar objects in other

frames of the processed sequence or other sequences. This

imposes several constraints on the Machine Vision solution

that need to be addressed.

First of all the system should learn on-line or nearly on-

line. Secondly - the system must perform per-frame detection

quickly and provide approximate results in short time. And

thirdly - to system must be able to learn from sparse data.

In this paper, an effective and time-efficient algorithm for

instance search and detection in images from handheld video

cameras is proposed. The system uses a discriminative ap-

proach to differentiate the object from its foreground. In order
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to do so a combined Haar-Cascade detector and SVM classifier

are used. We argue that this provides a very attractive trade-off

between detection quality and training/detection times. Both

the positive as well as negative samples are extracted only

from training images.

Comparable detector solutions based on CNNs provide

excellent detection performance [4]. Such solutions, however,

rely on off-line training and training/detection speed is still

a bottleneck for such systems. This effect is to some extent

ameliorated by GPU utilization. Recent developments aim at

reduction of detection times e.g. by cascading CNNs [5] or

by detecting salient regions first using fuzzy logic [6] but

significant reduction of training time is still an open area of

research.

One contribution of the paper is the procedure of collecting

as much realistic training data as possible providing limited

user interaction. Ideally the system should be able to learn

from a single ROI selection, all additional examples should be

obtained automatically. Such least-user-effort approaches were

already discussed e.g. for semi-automatic video annotation and

detection systems, such as [7], [8]. In the cited approach,

however, the user may be asked to annotated video several

time (to decide about samples lying on decision boundary)

which is not necessarily acceptable for all end users. An

example of another successful detector that works on a single

selection is given in [9]. The detector operates on sparse

image representation (collection of SIFT descriptors) so it is

very fast. Our initial experiments have shown that descriptor-

based approaches works the best for highly textured and fairly

complex objects.

The procedure of collecting training data given in this paper

combines object tracking and background subtraction methods

for semi-supervised collection of training windows together

with foreground masks. The samples collected during tracking

are further synthetically generalized (augmented) to enrich the

training set. Scenarios, where tracking results are utilized for

the collection of detector’s training data, were already covered

in literature, especially regarding tracking, with prominent

examples [10], [11] or more recent CNN approaches [12],

[13]. In such approaches the exact foreground-background

separation (which is crucial for effective samples synthesis)

is often neglected, since the algorithms typically have enough

frames to collect rich training data.

The proposed methods were evaluated on a corpus of
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TABLE I: Dictionary of abbreviations

Abbreviation Expansion

CC Cascade Classifier
CNN Convolutional Neural Network
CSK Circulant Structure of Kernels
EER Equal Error Rate
FPR False Positive Rate
GPU Graphic Processing Unit

HD High Definition
HOG Histogram of Oriented Gradients

P-REACT Petty cRiminality diminution through
sEarch and Analysis in multi-source video
Capturing and archiving plaTform

RBF Radial Basis Function
RGB-D Red Green Blue - Depth

ROC Receiver Operator Characteristics
ROI Region of Interest

SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
SVM Support Vector Machine
TPR True Positive Rate

surveillance videos and proved that its efficiency is good

enough to be effective in supporting a user (police officer or

security official) in their common working tasks.

The paper is organized as follows: in section II there is given

a technical background and methodology used in our system,

section III provides experimental results and IV contains

conclusions. For reader’s convenience Table I provides a short

dictionary of abbreviations used in the paper.

II. METHODS

A. Detector overview

In the system described in this paper we utilize a classic

detection framework, where a sliding window with varying

sizes is moved over each frame and for each location the

selected image part is evaluated against information gathered

from training samples. A crucial part of the detector is formed

by a SVM classifier which is responsible for evaluation of

each selected image part. A pure SVM classifier when applied

to hundred of thousands candidate areas would be too slow

to learn and detect, so in our scenario so pre-classification

step utilizing HAAR-like features-based cascade classifier is

applied to limit the number of candidate windows to about

several hundreds. We claim that this simple structure combines

good detection rate together with acceptable detection speed

(about 10 full-HD frames per second on modest Core i5

computer) as well as fine training speed in typical scenarios

(up to few minutes).

In essence the two-stage detector architecture resembles

some significant modern CNN approaches, where the detection

is divided into region-proposal part and the region recognition

part (see: e.g. [14]). In our approach region proposal is

performed by cascade classifier, and final classification is done

by SVM classifier. Both methods offer reasonable training and

detection speeds required for this application.

In our scenario sources of data are naturally sparse. De-

pending on user decision the detector can be trained either

on one or a short sequence of training images. Therefore a

critical part of our system are tools aiding user in an effortless

collection of training examples from short image sequences as

well as methods for artificial synthesis and generalization of

training samples to provide the detector with the training data

as rich as possible. These tools and methods are discussed

in subsequent sections. The overall structure of the training

procedure is given in Fig. 1.

B. Collection of positive training samples

Although for some patterns (which include e.g. flat patterns)

good detection results can be obtained using only one selected

sample that is further generalized and synthesized into a

set with larger variability, in most cases detection results

highly depend on size and diversity of input training set. In

the scenario discussed in this paper these properties of the

training set can (at least partially) be achieved by collecting

samples from a short sequence of input images. Our scenario

is organized as follows: (1) a user select object of interest

using rectangular area, (2) the application tracks the object

in subsequent frames of the sequence (with optional manual

reinitialization), (3) object foreground masks are established

using motion information.

1) Object tracking and foreground-background separation:

For tracking of rectangular area an optimized version of CSK

tracker [15] that utilizes color-names features [16] is used.

As a result of the tracking procedure we obtain a sequence

of rectangular areas that encompass the object of interest in

subsequent frames. In most cases both object foreground as

well as background will be present in the tracked rectangle.

However, if the object is moving against moderately static

background we can exploit motion information to effectively

separate object foreground from background by background

subtraction.

Let the tracking results be described by a sequence of

rectangular areas {R1, . . . , RT } and let us denote coordinates

of pixel i as pi, color attributes for pixel i at time t as cti and

a mean of color attributes in the background as

c̄i =
1

ni

∑

t:pi /∈Rt

cti (1)

where averaging factor ni is the number of frames where

tracking window does not contain pixel i and can be computed

as ni = |{t : pi /∈ Rt}|.
Now we can specify a background training sequence for

each pixel {ĉti}

ĉti =

{

cti if pi /∈ Rt

c̄i if pi ∈ Rt
(2)

In accordance with the rule above, only pixels that at given

time-step do not belong to the tracked area contribute to the

background model computed for the image. Each pixel that

always belong to tracked area is conservatively treated as

foreground.

The background model adopted here follows algorithms

from [17]. In this method scene color is represented inde-

pendently for all pixels. The color for each pixel (both from

364 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



����������	

�����
����

�����
��
�	������
�������

�������
��������
��

��������
������
�������
�

���� ��
�����
	
��
����
��

�����
��������
����
�
!��
��

"�������
 �
#$"

������
��

Fig. 1: Structure of the training procedure

Fig. 2: Results of automatic foreground-background separation

Fig. 3: Division into a positive (P) and negative (N1-N4)

examples

background and foreground BG + FG) given the training

sequence CT , is modelled as:

p(ci|CT , BG+ FG) =

M
∑

m=1

π̂mN (ci; µ̂m, σ̂m) (3)

whereas the background model (BG) is built from the selected

number of largest clusters in the color mixture

p(ci|CT , BG) =

B
∑

m=1

π̂mN (ci; µ̂m, σ̂m) (4)

where µ̂m, σ̂m are estimated means and standard deviation of

normal components in the mixture, π̂m are mixing coefficients

M is the total number of mixtures and B is the selected

number of foreground components. The pixel is decided to

belong to the background when

p(ci|BG) > cthr (5)

Threshold cthr can be interactively adjusted by the user. Exact

algorithms for updating mixture parameters are given in [17].

Sample result of background subtraction procedure is given in

Fig. 2

2) Image stabilization in a short sequence: The foreground-

background segmentation procedure works best when stable

camera position is available or image sequence is stabilized

before segmentation. The system proposed here uses a simple

stabilization procedure basing on matching of SURF features

[18] and computation of homography transformation between

pairs of images. The stabilization works on short subsequences

of the original sequence. First frame to stabilize is the frame

used for marking the initial region of interest. The procedure

than aligns all subsequent frames to the first frame by eval-

uating homographies relating two images. In order to do so,

matching methods from [19] and the Least Median of Squares

principle [20] is utilized. To increase stabilization efficiency

GPU-accelerated procedures for keypoints/descriptors extrac-

tion and matching from OpenCV library are utilized [21].

C. Collection of negative training samples

Negative samples that are used in detector training are

extracted from the same sequence images that positive samples

originated from. For each training image one fragment is used

to extract positive sample, while the remaining part of the

image is divided into at most four sources of negative samples

as given in Fig. 3. Thus, an assumption is made that these

remaining parts of the training sequence images do not contain

positive samples. This assumption is not always valid, but may

be strengthened by asking a user to mark all positive examples

in the training sequence.

D. Positive samples generalization and synthesis

1) Geometric generalization: In this step 3D rotations of

patterns and their masks are applied to collected pattern images

and their masks. It is assumed that patterns are planar, so

this generalization method can be useful only to some extent

for non-planar objects. The rotation effect is obtained by an

applying a homography transformation, imitating application

of three rotation matrices Rx(α), Ry(β), Rz(γ) to a 3D object.

The matrices correspond to rotations around x, y (in-plane

rotations) and z (in-plane rotation) axes correspondingly. 3D

rotation matrices are defined classically

Rx(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ





Ry(θ) =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ





Rz(θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1





(6)
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To compute the transformation, first a homography matrix

is computed using formula

H = R−
tnT

d
(7)

where n is a vector normal to the pattern plane (we set it to

n = (0, 0, 1)T ), d is the distance from the virtual camera to

the pattern (we set it arbitrarily to d = 1, since it only scales

’real-world’ units of measurement) and R is the 3D rotation

matrix and can be decomposed as

R = (Rx(α) · Ry(β) · Rz(γ))
−1 (8)

In order for the image center (having world coordinates C =
(0, 0, d)T ) to remain intact during transformation we define

’correcting’ translation vector as

t = −RC + C (9)

Then we can specify artificial camera matrices as K1 and

K2

K1 =





f 0 cxin
0 f cyin
0 0 1



 , K2 =





f 0 cxout
0 f cyout
0 0 1



 (10)

where (cxin, c
y
in)

T and (cxout, c
y
out)

T are pixel coordinates of

input and output image correspondingly, while f is the artifi-

cial camera focal length given in pixels. In this application

we set f to be fmul times larger input image dimension.

Multiplier fmul decides about the virtual distance of our

virtual camera to the object. Smaller values introduce larger

perspective distortions of the transformation, larger values

introduce smaller distortions. We arbitrarily set fmul to 10
implying only slight perspective distortions.

The final homography transformation applied to the pixels

of the input image is given by

P = K2HK−1

1
(11)

Rotation angles α, β and γ are selected randomly from

the uniform distribution (denoted here as U). The amount of

rotation around axes y is twice times the amount of rotation

around remaining axes to better reflect dominant rotations in

human movement

α ∼ U(−1, 1) · δmax · 0.5,

β ∼ U(−1, 1) · δmax,

γ ∼ U(−1, 1) · δmax. · 0.5

and δmax is the parameters specifying the maximum extent of

allowed rotation.

2) Intensity and contrast synthesis: In the proposed ap-

proach image intensity and contrast synthesis is applied in

addition to geometric transformations. It is especially impor-

tant for Haar-like features that lack intensity normalization. A

simple linear formula is used here. For each pixel gray value

Iin we have

Iout = a ∗ Iin + b (12)

where

a = 1 + cdev , b = Idev − µI · cdev (13)

where µI is the average intensity of the sample and contrast

deviation cdev as well as intensity deviation Idev are sampled

from the uniform distribution cdev ∼ U(−1, 1) · cmax and

Idev ∼ U(−1, 1) · Imax. cmax is a parameter denoting the

maximum allowed contrast change and Imax is a parameter

denoting the maximum allowed intensity change. Changes in

contrast preserve mean intensity of an image. After application

of the formula its results are appropriately saturated.

3) Application of blur: Training and test samples may differ

in terms of quality of image details due to different factors

such deficiencies of optics used or motion blur. In our case

we apply a simple Gaussian filter in order to simulate natural

blur effects

σ = U(0, 1) · σmax ·min(Iwidth, Iheight) (14)

where Iwidth and Iheight are image sample sizes and σmax

controls the maximum size of the Gaussian kernel.

4) Merging with the background: Generalized training im-

ages are superimposed on background samples extracted from

negative examples of size ranging from about 0.25 to 4

times the positive sample size. Gray-level masks are used for

seamless incorporation of positive samples into background

images.

E. Detector training

Before training all training samples are resampled to a

fixed size of 24x24 pixels. The detector training procedure is

divided into two steps. In the first step the cascade classifier

using HAAR-like features is trained. In our scenario for each

cascade stage 300 positive samples and 100 negative samples

are utilized. Minimum true positive rate for each cascade level

is set to 0.995 and maximum false positive rate is set to

0.5. The classifier is trained for a maximum of 15 stages or

until reaching ≈ 0.00003 FPR. The expected TPR is at least

0.99515 ≈ 0.93. By using these settings up to about 1000

detections are generated for each Full-HD test image.

During the second stage of training an SVM classifier

is trained to handle samples that passed the first cascade

classification. For most experiments the SVM classifier is

trained on 300 positive and 300 negative samples. The SVM

classifier uses Gaussian RBF kernel.

K(x,y) = exp(−γ||x− y||2) (15)

The Gaussian kernel size γ and SVM regularization parameter

C are adjusted using automatic cross-validation procedure

performed on the training data. For SVM classification His-

togram of Oriented Gradients features [22] are extracted. For

each sample a 9-element histogram in 4x4 cells is created

with 16x16 histogram normalization window overlapping by

8 pixels, thus giving 4 ∗ 16 ∗ 9 = 576 HOG features in total.

Negative samples are extracted from Cascade Classifier

decision boundary (containing samples that were positively

verified by CC but still negative) if possible. If not - image
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fragments used as background images for positive samples or

other randomly selected samples are used. In all experiments

OpenCV 3.1 [21] Cascade Classifier and SVM implementation

are utilized.

Given our test data, the number of resulting support vectors

in the SVM classifier varies between 200 and 400. Let us

review one specific configuration: ’hat’ pattern trained on 55

images with masks and pattern generalization settings σmax =
cmax = 0, δmax = 0.7, Imax = 50. After SVM metaparameter

optimization we obtain SVM regularization parameter C =
2.5, RBF kernel size γ = 0.5 and the number of support

vectors 233.

F. Detection and post-processing

During detection phase each test image is first processed

by the cascade classifier typically returning several hundreds

candidate areas. After this, each candidate area is examined

by the SVM classifier and a score is assigned to each detec-

tion. The score is computed as the signed distance from the

separating plane in support vector space with lowest negative

scores treated as best matches and high positive scores as worst

matches.

For each image only the best score area is considered

for further processing. Frames from the test sequence are

sampled and processed with increasing density (first,last and

middle frame for start and then intermittent frames), to quickly

produce some results for the user to review (non minima

suppression is used to reduce clutter)

III. EXPERIMENTS

A. Preliminary experiments

During the first stage of experiments there was selected

a single test sequence ’00012’ with 1776 Full-HD frames.

Using this sequence various parameter configurations were

evaluated in order to assess basic properties of the solution

proposed. Basing on these experiments some answers can be

given regarding problems such as impact of utilization of two-

layer detector on detection results and detection/training speed,

impact of the method of selection of training samples on

detection accuracy or impact of values of image synthesis pa-

rameters on overall quality. Above questions will be discussed

in the following paragraphs. All experiments were performed

on Intel Core i5 computer. During the first 3 experiments one

sample pattern ’hat’ was utilized, in the last experiment 3 other

patterns ’logo’, ’helmet’ and ’shirt’ were introduced. Examples

of training samples are given in Fig. 4 and samples marked in

full-frame image are given in Fig. 5. Filtered detection results

for one test sequence presented in the form of a simple GUI

are given in Fig. 6.

a) Two-layer detector: In the first experiment there was

evaluated a trade-off between detection and training speed

for different number of expected cascade stages k (Fig. 8).

Identical parameters were used for all k except for the number

of SVM training samples. For k < 15 there were used 900

positive and negative samples to accommodate for weaker

selectivity of the 1-st detection stage. For k ≥ 15 the default of

300 positive and negative samples were utilized as in all other

experiments. The experiment shows that for low k training

time is dominated by SVM training, for large k cascade

training dominates. A good compromise for our data can be

obtained for k = 15. Larger k obviously means also faster

detection (Fig. 7), but also slightly worse detection results (Fig.

9) (likely due to utilization of more robust HOG features in

the second stage).

b) Collection of training samples: In the next experi-

ments there were compared detector performance for differ-

ent training data collection methods. In the first place the

data samples were collected using automatic tracking and

foreground-background separation methods given in this paper.

In the process 55 data samples from of ’hat’ pattern were

collected together with their automatically generated masks.

The data consisted of images of a hat on top of a head, while

the head was making full 180 degrees rotation around central

axis. For comparison, a short sequence of training samples

representing only 3 extreme head positions (en-face and two

profiles) was utilized. For both sequences either appropriate

foreground-background masks or no masks were used giving

4 different combinations of settings. The detection results are

given in Fig. 10.

Not surprisingly the richest possible data source (55 frames

with generated masks) gives the best results. It is valuable to

note that for our data, application of both object tracking and

automatic mask generation is substantial to get optimal results.

c) Synthetic generalization of training data: In these

experiments different measures and intensities of samples

synthesis were evaluated. The results are given in Fig. 11

and Fig. 12. The results show that moderate geometric as

well as contrast and sharpness generalization provides best

results. However, the selection of appropriate parameters is

object and sequence-specific. E.g. it may be observed that

near-flat surfaces e.g. ’logo’ benefits from aggressive geomet-

ric distortions (i.e. larger rotation angles). In addition, the

reduction of sharpness proved to work best for computer-

graphics-generated samples.

d) Detection of various patterns: In the last of our

preliminary experiments there was evaluated how the detector

handles different types of patterns. Therefore, the pattern

’logo’ was trained on a single training example with no mask,

the pattern ’shirt’ was trained on a sequence of 30 samples

without a mask and the pattern ’helmet’ was trained on 41

samples also without a mask. The result are given in Fig. 13.

It can be noted the relatively worse performance for the

’shirt’ pattern, mainly due to numerous occlusions. Even in the

case of the ’shirt’ pattern we still have about 90% of successful

hits for recall rates of 0.3. For best patterns such as ’helmet’

we have 70% of positive examples with still 0 false positives!

In the course of experiments, it was observed that motion

blur (inherent or originating from de-interlacing) is the most

destructive type of noise regarding both training and detection

phase. In addition, due to quite severe subsampling of the

pattern (down to 24 × 24), the detector may suffer from

problems in distinguishing between patterns differing only in
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Fig. 4: Example training samples of ’hat’, ’logo’, ’helmet’ and ’shirt’

Fig. 5: Frame with marked ’hat’, ’logo’, ’helmet’ and ’shirt’

samples

Fig. 6: Detection results filtered by minimum distance (25

frames) between hits

small details. On the other hand, due to this property, the

detector should well handle also small patterns - only slightly

bigger than the nominal 24× 24 pattern size.

B. Large-scale experiments

Tests of the presented algorithm were conducted on a dataset

containing 11 recordings, with nearly 30 thousand frames in

total, with full HD resolution. Three patterns were created
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Fig. 11: ’hat’ in ’00012’ detection results for different levels of geometric synthesis

ARTUR WILKOWSKI ET AL.: OBJECT DETECTION IN THE POLICE SURVEILLANCE SCENARIO 369



0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
T

P
R

ROC

c
max

=0.00,
max

=0.000

c
max

=0.12,
max

=0.005

c
max

=0.35,
max

=0.010

c
max

=0.70,
max

=0.021

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Precision-Recall

c
max

=0.00,
max

=0.000

c
max

=0.12,
max

=0.005

c
max

=0.35,
max

=0.010

c
max

=0.70,
max

=0.021

Fig. 12: ’hat’ in ’00012’ detection results for different contrast and sharpness synthesis levels
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Fig. 13: ROC and PR curves of ’hat’,’logo’,’helmet’ and ’shirt’ detections in ’00012’ sequence

(Fig. 14), and all sequences were carefully labeled by hand to

create ground-truth data. All patterns were created based on

a single frame (one positive sample). As a training data, high

quality still picture was used, with resolution scaled down to

full HD.

Results of the experiments (ROC curve) for the selected

pattern A is presented on Fig. 15a. EER is similar for all

patterns A,B,C, and is equal to 25.3%, 28.3% and 28.0%

for each pattern respectively. Accumulated EER equals to

27.4%. Obtained results resemble those from small dataset.

Even though the training sample and query images were taken

with different devices and had different quality, the algorithm

gave satisfactory results.

Final addition to the testing scenario was the utilization

of short sequences. For every short sequence, from all the

results only the one with the best response was taken as a

final detection and passed to further processing. Accumulated

results for the sequences of length 5 is presented on Fig. 15b

(remaining charts are given in supplemental materials). EER

for them are, respectively: 27.4%. 15.1% and 14.3%. It was

observed that the longer the sequence the smaller is the quality

gain.

More tests were also conducted using one of the widely

used dataset – RGB-D Object Dataset [23]. It contains multiple

everyday objects, along with masks, that can be used to create

models and short sequences of scenes with multiple objects.

Fig. 15c presents sample results obtained for the cereal_1

object in desk_3 sequence. Model was created using only 7

views of the object in this case.

IV. CONCLUSIONS

In this paper, we presented a solution that can support work

of police officers in surveillance tasks. The system proved to

positively address difficult task requirements concerning sparse
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(A) (B) (C)

Fig. 14: Selected test patterns

(a) (b) (c)

Fig. 15: (a) ROC curve for the pattern A. (b) Accumulated ROC curve for 5-elements sequence analysis. (c) ROC curve for

cereal_1 object in desk_3 sequence

training data, quick learning and fast and reliable detection. An

attractive training/detection speed and recognition rate trade-

off was obtained by the application of 2-layer cascade/SVM

classifier. The system proposed can learn from a single train-

ing sample, but also can collect samples from short image

sequences with only small user supervision in order to obtain

rich training data. Performance of the system vary depending

on the type and quality of training/test data, but we argue

that on average results are satisfactory and even not-the-best

results provide sufficient information to be useful in practical

surveillance scenario.
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