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Abstract—Explicit constructions in Extremal Graph Theory
give appropriate lower bounds for Turan type problems. In
the case of prohibited cycles, the explicit constructions can
be used for various problems of Information Security. We
observe recent applications of algebraic constructions of regular
graphs of large girth and graphs with large cycle indicator to
Coding Theory and Cryptography. In particular, we present a
new multivariate platforms of postquantum Non-commutative
Cryptography defined in graph theoretical terms.

Index Terms—graphs of large girth, graphs of large cycle
indicator, graph based stream ciphers, multivariate cryptography,
non-commutative cryptography

I. SOME DEFINITIONS OF EXTREMAL GRAPH THEORY

T
HE missing definitions of graph-theoretical concepts in

the case of simple graphs which appears in this paper

can be found in [1]. All graphs we consider are simple ones,

i. e. undirected without loops and multiple edges. When it

is convenient, we shall identify Γ with the corresponding

antireflexive binary relation on V (Γ), i.e. E(Γ) is a subset of

V (Γ)×V (Γ). The girth of a graph Γ, denoted by g = g(Γ), is

the length of the shortest cycle in Γ. The diameter d = d(Γ) of

the graph Γ is the maximal length of the shortest pass between

its two vertices.

Let gx = gx(Γ) be the length of the minimal cycle through

the vertex x from the set V (Γ) of vertices in graph Γ. We

refer to Cind(Γ) = max {gx, x ∈ V (Γ)} as cycle indicator

of the graph Γ. The family Γi of connected k-regular graphs

of constant degree is a family of small world graphs, if

d(Γi) ≤ c logk(vi), for some constant c, c > 0. Recall that

family of regular graphs Γi of degree k and increasing order

vi is a family of graphs of large girth, if g(Γi) ≥ c logk(vi), for

some independent constant c, c > 0. We refer to the family of

regular simple graphs Γi of degree k and order vi as a family

of graphs of large cycle indicator, if Cind(Γi) ≥ c logk(vi)
for some independent constant c, c > 0.

Notice that for vertex -transitive graph its girth and cycle

indicator coincide. Defined above families plays an important

role in Extremal Graph Theory, Theory of LDPC codes and

Cryptography (see [2] and further references).

II. THE ALGEBRAIC GRAPHS A(n,K) AND D(n,K), SOME

RESULTS AND OPEN QUESTIONS

Below we consider the family of graphs A(n,K) and

D(n,K), respectively where n > 5 is a positive integer and

K is a commutative ring. In the case of K = Fq , we denote

A(n, q) and D(n, q), respectively. We define these graphs as

homomorphic images of infinite bipartite graphs A(K) and

D(K) for which partition sets P and L formed by two copies

of Cartesian power KN, where K is the commutative ring

and N is the set of positive integer numbers. Elements of

P will be called points and those of L lines. To distinguish

points from lines we use parentheses and brackets. If x ∈ V ,

then (x) ∈ P and [x] ∈L. The description is based on the

connections of these graphs with Kac-Moody Lie algebra with

extended diagram A1.

The vertices of D(K) are infinite dimensional tuples

over K. We write them in the following way (p) =
(p0,1, p1,1, p1,2, p2,1, p2,2, p

′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . . ),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . . ].

We assume that almost all components of points and lines are

zeros. The condition of incidence of point (p) and line [l],
i.e. (p) I [l], can be written via the list of equations below.















li,i − pi,i = l1,0pi−1,i,

l′i,i − p′i,i = p0,1li,i−1,

li,i+1 − pi,i+1 = p0,1li,i,

li+1,i − pi+1,i = l1,0p
′
i,i.

(1)

This four relations are defined for i ≥ 1, with p′1,1 = p1,1,

l1,1 = l1,1.

Similarly we define graphs A(K) on the

vertex set consisting of points and lines (p) =
(p0,1, p1,1, p1,2, p1,2, p2,2, p2,3, . . . , pi,i, pi,i+1, . . . ),
[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l2,3, . . . , li,i, li,i+1, . . . ] such

that point (p) is incident with the line [l], i.e. (p) I [l], if the

following relations between their coordinates hold:

{

li,i − pi,i = l1,0pi−1,i,

li,i+1 − pi,i+1 = p0,1li,i.
(2)
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It is clear that the set of indices A = {(1, 0); (0, 1);
(1, 1); (1, 2); (2, 2); (2, 3); . . . , (i − 1, i); (i, i); . . . } is a

subset in D = {(1, 0); (0, 1); (1, 1); (1, 2); (2, 2); (2, 2)′;
. . . ; (i − 1, i); (i, i − 1); (i, i); (i, i)′; . . . }. Points and lines

of D(K) are functions from KD−{(1,0)} and KD−{(0,1)} and

their restrictions on A − {(1, 0)} and A − {(0, 1)} define

homomorphism Ψ of graph D(K) onto A(K). For each

positive integer m ≥ 2 we consider subsets A(m) and D(m)
containing first m+1 elements of A and D with respect to the

above orders. Restrictions of points and lines of D(K) onto

D(m) − {(1, 0)} and D(m) − {(0, 1)} define graph homo-

morphism D∆(m) with image denoted as D(n,K). Similarly

restrictions of points and lines of A(K) onto A(m)−{(1, 0)}
and A(m)−{(0, 1)} defines homomorphism A∆(m) of graph

A(K) onto graph denoted as A(m,K).

We also consider the map ∆(m) on vertices of graph

D(m,K) sending its point (p) ∈ K|D(m)−{(1,0)}| to its restric-

tion into D(m)∩A−{(1, 0)} and its line [l] ∈ K |D(m)−{(0,1)}|

to its restriction onto D(m) ∩ A − {(0, 1)}. This map is ho-

momorphism of D(m,K) onto A(n,K), n = |D(m)∩A|−1.

Graph D(q) = D(Fq) is q-regular forest. Its quotients D(n, q)
are edge transitive graphs. So their connected components

are isomorphic. Symbol CD(n, q) stands for the graph which

is isomorphic to one of such connected components. Family

CD(n, q), n = 2, 3, . . . is a family of large girth for each

parameter q, q > 2 (see [3] and further references). The

question “Whether or not CD(n, q) is a family of small world

graphs?” is still open. Graph A(q), q > 2 is a q-regular tree.

Graphs A(n, q) are not vertex transitive. They form a family of

graphs with large cycle indicator, which is q-regular family of

small world graphs [4]. The question “Whether or not A(n, q),
n = 2, 3, . . . is a family of large girth?” is still open. Graphs

CD(n, q) and A(n, q) are expanding graphs (see [10], [20],

[45], [46]) with spectral gap q − 2
√
q.

Groups GD(n,K) and GA(n,K) of cubical transformations

of affine space Kn associated with graphs D(n,K) and

A(n,K) are interesting objects of algebraic transformation

group theory because of composition of two maps of degree 3

for vast majority of pairs will have degree 9. Applications of

these groups to Symmetric Cryptography are observed in [5],

[6], they are used in Multivariate Cryptography (see [7]-[13]).

Papers [14],[15], [16] devoted to applications of these groups

as so called platforms of Non-commutative Cryptography (see

[17]). Cryptographic applications of other graphs are observed

in [18].

III. ON LINGUISTIC AND EXTREMAL GRAPHS AND STABLE

NONLINEAR SUBGROUPS OF AFFINE CREMONA GROUP

All graphs defined in section 2 belong to class L of

linguistic graphs Γ = Γ(K) of type (1, 1, n − 1), n ∈ N

or n = ∞ defined over commutative ring K which contains

bipartite graphs with the point set Pn = Kn and line set

Ln = Kn such that (p) = (p1, p2, . . . , pn) ∈ Pn and

[l] = [l1, l2, . . . , ln] ∈ Ln form an edge of Γ if the following

conditions holds


















2 bl2 − 2 ap2 = 2 f(p1, l1),
3 bl3 − 3 ap3 = 3 f(p1, p2, l1, l2),
...
n bln − n apn = n f(p1, p2, . . . , pn−1, l1, l2, . . . , ln−1),

(3)

where i a and i b , i ≥ 2 are elements of multiplicative group

K∗ (see [43] or [44]) and i f are multivariate polynomials. We

define colours ρ((p)) and ρ([l]) of the point (p) and the line [l]
as their first coordinates p1 and l1. We introduce well defined

the neighbour operator N(v, a) of computing the neighbour

of vertex v of colour a ∈ K and the colour jump operator

J(v, a) sending point or line v = (v1, v2, . . . , vn) to u =
(a, v2, v3, . . . , vn).

Let S(Kn) stands for the Cremona semigroup of polynomial

transformations of free module Kn and C(Kn) be affine

Cremona group of invertible elements of S(Kn) with the

polynomial inverse. These algebraic structures are important

objects of algebraic geometry. One of the difficult problem

is about constructions of families of stable subgroups Gn of

C(Kn) (or semigroup Sn of S(Kn)), i.e. groups of polynomial

transformation with maximal degree equals to constant c.

Notice that for the majority of pair f, g ∈ C(Kn) of degrees

r and s their composition has degree rs. So this problem is

difficult, it has strong cryptographical motivations.

We consider totality St(K) of strings of kind

(f1, f2, . . . , fk), where fi ∈ K[x]. We will identify

polynomial f and the map x → f(x) from S(K). The

product of two chains (f1, f2, . . . , fk) and (g1, g2, . . . , gt) is

the chain (f1, f2, . . . , fk, g1(fk), g2(fk), . . . , gt(fk)). Empty

string is the unity of semigroup St(K). In fact St(K) is a

semidirect product of a free semigroup over the alphabet

K[x] and Cremona semigroup S(K). We refer to St(K) as

semigroup of polynomial strings. Let St′(K) stands for the

semigroup of strings of even length from St(K) and
∑

(K)
be subsemigroups of strings of even length with coordinates

of kind x+ c, c ∈ K.

In the case of linguistic graph Γ = Γ(K) of type (1, 1, n−1)
the path consisting of its vertices v0, v1, v2, . . . , vk is uniquely

defined by initial vertex v0, and colours ρ(vi), i = 1, 2, . . . , k
of other vertices from the path. We can consider graph Γ′ =
Γ(K[x1, x2, . . . , xn]) defined by the same with Γ equations but

over the commutative ring K[x1, x2, . . . , xn]. So the following

symbolic computation can be defined. Take the symbolic

point x = (x1, x2, . . . xn), where xi are generic variables of

K[x1, x2, . . . , xn] and polynomial string C ∈ St′(K) which

is a tuple of polynomials f1, f2, . . . , fk from K[x1] with even

parameter k (x = x1). Form the path of vertices v0 = x and

ρ(v0) = x1, v1 such that v1 I v0 and ρ(v1) = f1(x1), v2 such

that v2 I v1 and ρ(v2) = f2(x1), . . . , vk such that vk I vk−1

and ρ(vk) = fk(x1). We choose parameter k as even number.

So vk is the point from the partition set K[x1, x2, . . . , xn] of

the graph Γ′.

We notice that the computation of each coordinate of vi
depending on variables x1, x2, . . . , xn and polynomials
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f1, f2, . . . , fk needs only arithmetical operations of ad-

dition and multiplication. As it follows from the definition

of linguistic graph final vertex vk (point) has coordinates

(h1(x1), h2(x1, x2), h3(x1, x2, x3),. . . , hn(x1, x2, . . . , xn)),
where h1(x1) = fk(x1). Let us consider the map Γ H(C) :
xi → hi(x1, x2, . . . , xn), i = 1, 2, . . . , n, which corresponds

to polynomial string C.

Proposition 1: The map Γ η : C → Γ H(C) is a homomor-

phism of St′(K) into Cremona semigroup S(Kn).

More general form of this statement is proven in [20]. We

refer to Γ η as the linguistic compression map. If K is finite

then the map converts totality of potentially infinite strings

into finite semigroup.

Theorem 2: If Γ is one of graphs D(n,K) and A(n,K),
then Γ η(

∑

(K)) is stable subgroup of C(Kn) of degree 3.

We denote Γ η(
∑

(K)) for Γ = D(n,K) and Γ = A(n,K)
as GD(n,K) and GA(n,K). These groups were already used

in all cryptographical applications of graphs D(n,K) and

A(n,K).

Proposition 3: Homomorphisms δ of D(n,K) onto

A(m,K), n > m described in section 2 induces homomor-

phism of GD(n,K) onto GA(m,K), n > m.

IV. ON LINGUISTIC GRAPHS AND EXPANSIONS OF STABLE

NONLINEAR SUBGROUPS OF AFFINE CREMONA GROUP

Let St′(K) stands for the semigroup of strings of even

length from St(K) and
∑

(K) be subsemigroups of strings

of even length with coordinates of kind x+ c, c ∈ K.

In the case of linguistic graph Γ = Γ(K) of type (1, 1, n−1)
the sequence of even length k = 2r consisting of initial vertex

v0 and v1 = J(v0, a1), v2 = N(v1, b1), v3 = J(v2, a2),
v4 = N(v3, b2), . . . , vk−1 = J(vk−2, ar), vk = N(vk−1, br)
is uniquely defined by initial vertex v0, and colours parameter

(a1, a2, . . . , ar) and (b1, b2, . . . , br). We can consider graph

Γ′ = Γ(K[x1, x2, . . . , xn]) defined by the same with Γ
equations but over the commutative ring K[x1, x2, . . . , xn].
So the following symbolic computation can be defined. Take

the symbolic point x = (x1, x2, . . . , xn), where xi are

generic variables of K[x1, x2, . . . , xn] and polynomial string

C ∈ St′(K), which is a tuple of polynomials f1, f2, . . . ,

fk from K[x1] with even parameter k (x = x1). Form the

path of vertices v0 = x, v1 such that v1 = J(v0, f1(x1)),
v2 = N(v1, f2(x1)), v3 = J(v2, f3(x1)), v4 = N(v3, f4(x1)),
. . . , vk−1 = J(vk−2, fk−1(x1)), vk = N(vk−1, fk(x1)) and

ρ(v2) = f2(x1). We choose parameter k as even number.

So vk is the point from the partition set K[x1, x2, . . . , xn]
of the graph Γ′. We notice that the computation of each

coordinate of vi depending on variables x1, x2, . . . , xn and

polynomials f1, f2, . . . , fk needs only arithmetical operations

of addition and multiplication. As it follows from the definition

of linguistic graph final vertex vk (point) has coordinates

(h1(x1), h2(x1, x2), h3(x1, x2, x3), . . . , hn(x1, x2, . . . , xn)),
where h1(x1) = fk(x1). Let us consider the map Γ L(C) :
xi → hi(x1, x2, . . . , xn), i = 1, 2, . . . , n, which corresponds

to polynomial string C.

Proposition 4: The map Γ µ : C → Γ L(C) is a homomor-

phism of St′(K) into Cremona semigroup S(Kn).

More general form of this statement is proven in [Us pust].

Theorem 5: If Γ is one of graphs D(n,K) and A(n,K) then
Γ µ(

∑

(K)) is stable subgroup of C(Kn) of degree 3.

We denote Γ µ(
∑

(K)) for Γ = D(n,K) and Γ = A(n,K)
as JD(n,K) and JA(n,K). As it follows from definitions

JD(n,K) > GD(n,K) and JA(n,K) > GA(n,K).

Proposition 6: Homomorphisms δ of D(n,K) onto

A(m,K), n > m described in section 2 induces homomor-

phism of JD(n,K) onto JA(m,K), n > m.

V. ON CRYPTOSYSTEMS BASED ON NEW MULTIVARIATE

PLATFORMS OF NON-COMMUTATIVE CRYPTOGRAPHY

Non-commutative cryptography appeared with attempts to

apply Combinatorial group theory to Information Security. If

G is noncom-mutative group then correspondents can use con-

jugations of elements involved in protocol, some algorithms

of this kind were suggested in [22], [23], [24], [25], where

group G is given with the usage of generators and relations.

Security of such algorithms is connected to Conjugacy Search

Problem (CSP) and Power Conjugacy Search Problem (PCSP),

which combine CSP and Discrete Logarithm Problem and their

generalizations. Currently Non-commutative cryptography is

essentially wider than group based cryptography. It is an

active area of cryptology, where the cryptographic primitives

and systems are based on algebraic structures like groups,

semigroups and noncommutative rings (see [26]-[33]). This

direction of security research has very rapid development (see

[34], [35] and further references in these publications).

One of the earliest applications of a non-commutative alge-

braic structures for cryptographic purposes was the usage of

braid groups to develop cryptographic protocols. Later several

other non-commutative structures like Tompson groups and

Grigorchuk groups have been identified as potential candidates

for cryptographic post quantum applications. The standard way

of presentations of groups and semigroups is the usage of

generators and relations (Combinatorial Group Theory). Semi-

group based cryptography consists of general cryptographic

schemes defined in terms of wide classes of semigroups and

their implementations for chosen semigroup families (so called

platform semigroups).

The paper is devoted to some research on the intersection of

Non Commutative and Multivariate Cryptographies. We try to

use some abstract schemes in terms of Combinatorial Semi-

group Theory for the implementation with platforms which

are semigroups and groups of polynomial transformations of

free modules Kn where K is commutative ring.

The most popular form of Multivariate cryptosystem is the

usage of a single very special map f in a public key mode.

First examples were based on families of quadratic bijective

transformation fn (see [36], [37], [38]), such choice implies

rather fast encryption process.

Some of recent applications of extremal graphs are con-

nected with other aspects of Multivariate cryptography when
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some subsemigroup of affine Cremona semigroup of all poly-

nomial transformations is used instead of a single transforma-

tion. Notice that the implementation of the idea to use several

multivariate generators in its standard form has to overcome

essential difficulties. At first glance this idea looks as unre-

alistic one because of com-position of two maps of degree r

and s taken in ”general position ” will be a transformation of

degree rs. So in majority of cases deg(F ) = d, d > 1 implies

very fast growth of function d(r) = deg(F r). Of course in

the case of generator in common position not only degree but

a density (total number of monomial terms of the map in its

standard forms) grows exponentially.

So we have to search for special conditions on subsemigroup

of affine Cremona group which guarantee the polynomial

complexity of procedure to compute the composition of several

elements from subsemigroup. Such conditions can define

a basis of Noncommutative Multivariate Cryptography. The

stability condition on subsemigroup which we discussed above

is one of them. Recently we noticed that condition of minimal

possible density (each fi in standard form has density 1)

also guarantee efficiency of computations (see [19]). The

idea to combine representative of stable group (for example

GD(n,K) or GA(n,K)) and non-bijective transformation of

minimal density is used in [40] and [41] for the construction

of new postquantum cryptosystems.

The abstract schemes of Nonlinear Cryptography has to be

modified to work with stable subsemigrouos or subsemigroups

of minimal density. The following TAHOMA CRYPTOSYS-

TEM on stable transformations were suggested in [15].

Let K be a commutative ring, stable subgroups nG of

S(Kn) act naturally on Kn and mS(n,K) be a subgroup

of S(Km) such that there is a tame homo-morphisn ∆ =
∆(m,n) of mS(n,K) onto nG. We assume that m = m(n)
where m > n. Alice takes b1, b2, . . . , bs, s > 1 from
mS(n,K) and a1, a2, . . . , as, where ai = ∆(bi)

−1. She

takes g ∈ C(Qm) and h ∈ C(Tn) where Q and T

are extensions of the commutative ring K and forms pairs

(gi, hi) = (g−1big, h
−1aih), i = 1, 2, . . . , s and sends them

to Bob. We assume that g = g′T , h = h′T ′ where semigroup

< g′,m S(n,K) > generated by g′ and elements of mS(n,K)
and group < h′, G > are stable semigroups of degree d and

T ∈ AGLn(T), T
′ ∈ AGLm(Q).

As in the previous algorithm Bob writes the word

w(z1, z2, . . . , zs) in the alphabet z1, z2, . . . , zs together

with the reverse word w′(z1, z2, . . . , zs) formed by characters

of w written in the reverse order. He computes element

b = w(g1, g2, . . . , gs) via specialization zi = gi and a =
w′(h1, h2, . . . , hs) via specialization zi = hi. Bob keeps a for

himself and sends b to Alice.

She computes a−1 as h−1∆(gbg−1)h. Alice writes her

message (p1, p2, . . . , pn) from Tn and sends ciphertext

a−1(p1, p2, . . . , pn) to Bob. He decrypts with his function a.

Symmetrically Bob sends his ciphertext a(p1, p2, . . . , pn) to

Alice and she decrypts with a−1 (see [21]). Let nTC(K,T,Q)
stand for Tahoma cryptosystem as above.

Paper [16] is devoted to implementations of Affine Tahoma

scheme with platforms of cubical stable groups GD(n, q) and

GA(n, q). They were defined via families of linguistic graphs

which form projective limits and the standard homomorphisms

between two members of this sequences. So we have pairs

(Gn,∆n), where Gn < S(Kn), ∆n is a homomorphism of

Gn onto Gm, m = m(n) such that projective limits lim(Gn),
n → ∞, and lim(∆(Gn)), n → ∞, coincide with the same

infinite transformation group G.

The article [42] is devoted to another computer experiment

with the new platform which uses the same groups Gn

but different tame homomorphisms ηn. In the new scheme

lim(Gn), n → ∞, equals to G, but lim(ηn(Gn)), n → ∞,

coincides with the image of homomorphism of G with an

infinite kernel.

We believe that option to vary tame homomorphisms in the

chosen sequence of semigroup makes the task of cryptanalytic

much more difficult.

Extensions of groups GD(n,K) and GA(n,K) to new

essentially large groups JD(n,K) and JA(n,K) allows to

use new groups and defined above homomorphism between

them for new more secure realisations of Tahoma schemes.

Obviously WP problem is harder un the case of generators

freely chosen from the larger group.

Other advantage of the implememtation of Tahoma cryp-

tosystems with groups m S(m,K) = JD(m,K) and n G =
JA(n,K) and homomorphism δ of Proposition 6 between

them is much faster computation of generator bi as images

of words wi under Γ µ, Γ = D(m,K) and ai = δ(bi)
−1

in comparison with case of GD(m,K) and GA(n,K). To

make comparison fair we have to assume that length of words

from St′(K) is fixed. Currenly we are working on detailed

complexity estimates and investigation of statistical mixing

properties on the base of computer simulation.

VI. CONCLUSION

We present a short survey of our recent algorithms on appli-

cations of Extremal Expander Graphs to Cryptography which

appear after publication of [2] at memorial Erdos conference

and announce the theorem about new explicitly constructed

families of stable groups. The main added instruments are

(1) usage of non-bijective transformations defined in terms

of algebraic graphs for the constructions of new stream

ciphers and public key cryptosystems,

(2) usage of compositions of stable transformation of affine

space Kn and transformation of minimal possible den-

sity (n),
(3) work on the bridge between Multivariate Cryptography

and Non-commutative Cryptography, modification of

schemes of protocols and El Gamal cryptosystems for

platforms of elements of affine Cremona semigroup,

search for feasibility conditions,

(4) constructions of new graph based stable groups and

semigroups.
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