
Depth Map Improvements for Stereo-based

Depth Cameras on Drones

Daniel Pohl

Intel Corporation,

Konrad-Zuse-Bogen 4,

Krailling, Germany

daniel.pohl@intel.com

Sergey Dorodnicov

Intel Corporation,

Rachel 4,

Haifa, Israel

sergey.dorodnicov@intel.com

Markus Achtelik

Intel Corporation,

Konrad-Zuse-Bogen 4,

Krailling, Germany

markus.achtelik@intel.com

Abstract—Using stereo-based depth cameras outdoors on
drones can lead to challenging situations for stereo algorithms
calculating a depth map. A false depth value indicating an object
close to the drone can confuse obstacle avoidance algorithms and
lead to erratic behavior during the drone flight. We analyze the
encountered issues from real-world tests together with practical
solutions including a post-processing method to modify depth
maps against outliers with wrong depth values.

Index Terms—depth camera, stereo, computer vision

I. INTRODUCTION

In the last decade, depth cameras have become available in

more affordable versions which increased the usage both in

the industrial as well as in the consumer space. One interesting

use case is on drones, where stereo-based depth cameras

generate data for obstacle avoidance algorithms to keep the

drone safe. However, the algorithms used to calculate depth

information are trying to solve an under-determined problem.

From two-dimensional images, data in three dimensions is

reconstructed. Therefore, it seems only natural that in certain

cases the generated depth images might contain wrong data as

shown in Figure 1. Specifically, when used in larger outdoor

environments at different weather conditions like drones would

exhibit, the set of parameters and requirements might be very

different from other common use cases for depth sensors

as found in indoor scenarios like finger tracking or gesture

recognition.

In this paper, we present the encountered challenges of using

depth cameras on drones and how we overcame them. Our

contributions are:

• Description of stereo camera issues on drones

• Solutions to minimize the encountered problems

• Release of the solutions as highly optimized open

source code

In the following, we will first give an overview of related

work in the space of drones with different depth cameras.

Next, we describe the use case of the depth sensor on our

drone and issues observed for enabling automatic obstacle

avoidance. After specifying the hardware and software system,

we take a look at incorrect depth values from the used depth

cameras. Having all of this laid out, we provide improvements

against depth outliers through a variety of methods like

calibration, depth camera settings and post-processing methods.

Figure 1. The top image shows the depth map from the scene at the bottom.
The colors are applied depending on the distance in meters as shown in the
scale on the right part of the image. At the light gray wall with thin horizontal
stripes, the algorithm of the depth sensor wrongly estimates an object close to
the camera.

We compare the results of the post-processing steps and provide

a performance analysis of the used algorithms. We discuss

current limitations and give an outlook on further improvements.

Last, we conclude and link to our open source implementation.

II. RELATED WORK

There are various devices to measure depth to other ob-

jects. Options which have also been used on drones include

ultrasonic [1], lidar [2], [3], radar [4] or depth camera-based

systems [5]–[8]. While all of these have their advantages and

drawbacks, we focus in this work on depth camera-based

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 341–348

DOI: 10.15439/2019F66

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 341



systems due to their light weight, detailed depth information

and relatively low cost.

In the category of depth cameras, we describe two very

common types and their differences [9].

Time Of Flight (TOF) cameras: a laser or LED is used to

illuminate where the camera is pointing at [10]. As the constant

speed of light is known, the round-trip time of such a light

signal returning to the camera sensor can be used to calculate

an approximate distance. Common advantages of these depth

sensors are simplicity, efficient distance algorithm and their

speed. Their drawbacks show in bright outdoor usage where the

background light might interfere with measurements, potential

interference with other TOF devices and issues at reflections.

Stereo-based depth sensors: these devices are taking two

images with a fixed, known offset between the two image

cameras. Using stereo matching algorithms [11], [12] together

with the known intrinsic and extrinsic parameters of the camera,

they can generate approximate depth values for the image.

Usually, these sensors consume less power compared to TOF

cameras.

III. DRONE USE CASE

To avoid accidents, injuries and crashes, it is very important

for drones to avoid flying into obstacles. Depth cameras help

the drone to "see" the environment. The obstacle avoidance

algorithms that we use are taking the depth image from one

or more depth cameras. As we know the mounted camera

position and orientation on the drone and the GPS location of

the drone, we transform the data from the depth image into

world space. We map those depth values to 3D voxel locations.

For the voxel value, we update the probability of that space to

be occupied. Having the voxel map available, we check the

drone’s heading and velocity against potential obstacles in that

direction. If we find any, we redirect to avoid a collision.

As we found in real-world usage of drones with depth

sensors, there are sometimes issues that the depth values are

not correct and can therefore lead to problems. For example,

suddenly, a wrong, very close depth value appears in front of

the drone. This might be interpreted as an obstacle to which our

safety distance is not kept and strongly violated. A common

reaction might be to move the drone quickly away from that

obstacle or to at least not move further into the direction of

the obstacle. For a drone operator on the ground observing

what happens in the sky, such behavior of the drone is not

comprehensive. The operator sees that there is no obstacle, yet

the drone behaves in an undesired way trying to avoid invisible

objects.

IV. SYSTEM

In the following scenarios, we use the Intel NUC7i7BNH

platform with the Intel Core i7-7567U (2 cores, 4 threads) at

a base frequency of 3.5 GHz with 16 GB memory. Given

the requirements of being able to work outside in bright

environments and the goal of having a low power consumption,

we decided to use a stereo-based depth sensor. The model

is Intel RealSense [13] D435i with the firmware 5.11.6.250.

Figure 2. Drone with depth sensor

Figure 3. A case in which parts of the blinds on the windows are wrongly
indicating depth which is very close to the camera. Near distances are
represented in an intense red, while the farther away it gets, the coloring
changes to blue.

The system runs Ubuntu 18.04 with the Intel RealSense SDK

2.0 (build 2.23.0). Some of the visualizations are generated

with the RealSense Viewer 2.23.0. For image operations,

we use OpenCV 3.4.5. The depth camera is mounted on

an Intel Falcon 8+ octocopter (Figure 2). We use a camera

resolution of 848× 480 pixels at 30 frames per second.

V. INCORRECT DEPTH VALUES

As mentioned in Section III, we discovered some cases in

which depth values in the depth map were not accurate and

disturb the obstacle avoidance algorithms. Figure 1 shows one

example. We provide another case in Figure 3.

Both cases have in common that there is a structure with

repetitive content which can easily disturb stereo feature

matching as almost the same color values are frequently

repeated in neighboring areas.

342 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



VI. IMPROVEMENTS

In this section, we provide improvements for the previously

described depth maps with some incorrect depth values.

A. Calibration

Depth cameras are shipped with a previously executed

factory calibration. Due to the stress on the modules endured

by a potential air freight delivery with different pressure

conditions at such high altitudes and potential shaking during

transportation, it can happen that physical properties of the

device slightly differ from the state it was during calibration.

At least in one case we found significant improvements

when running a local calibration on the device. As test setup,

we used a carpet intended for children to play with small toy

vehicles on it. The carpet provides strong features which can

be picked up by the stereo algorithm. For this test, we used

very strict camera settings which rejected depth values if their

confidence was not extremely high.

For the Intel RealSense D435i camera, there are tools that

allow a recalibration within a few minutes. As shown in

Figure 4, this can increase the confidence in depth values

and therefore provide more valid inputs. In most real-world

cases the differences will not be as high as illustrated here, but

this shows how important an accurate camera calibration is.

B. Depth Camera Settings

As a guideline for outdoor depth sensing as used on drones,

we prefer having fewer depth values at a high confidence

compared to receiving many values which are less certain to

be valid. In the RealSense D435i camera, there are various

settings affecting this which can be modified through visual

tools like the RealSense Viewer and can be stored in .json files.

Those configuration files can be uploaded in the application

via API calls. We describe the most relevant changes in the

settings that we made compared to the default. To give a better

understanding of the parameters on the resulting images, we

show different settings in the Appendix.

texturecountthresh, texturedifferencethresh: These set-

tings describe how much difference in intensity in the gray scale

stereo image needs to be to determine a valid feature. In outdoor

usage, the sky and clouds provide an almost similar color

with only small deviations. Walls captured during inspection

flights might have areas of the same color which do not make

strong features. To increase the confidence on depth values,

we increased the values of texturecountthresh, which sets how

many pixels of evidence of texture are required from 0 to 4 and

set the value of texturedifferencethresh, how big a difference

is required for evidence of texture, to 50.

secondpeakdelta: When analyzing the disparities of an area

in the stereo images for a match, there might be one clear

candidate indicating a large peak in terms of correlation. In

some cases, multiple candidates could be viable at different

peak levels. The second peak threshold determines how big

the difference from another peak needs to be, in order to

have confidence in the current peak being the correct one. We

increased this value from a default of 645 to 775.

Figure 4. The top gray scale image shows the carpet for toys as target in a
test setup. The middle image shows the depth values before manual calibration
with camera settings for very high confidence of depth values. The bottom
image shows the depth values after recalibration.

scanlinep1, scanlinep1onediscon, ...: For finding the best

correlation form the disparities, a penalty model is used as

described in [14]. In addition to estimating the validity of a

current correlation, neighboring areas with their estimate are

analyzed and taken into account. A small difference can be

expressed in a small penalty (scanlinep1 = 30) while a larger

difference leads to a second penalty value (scanlinep2 = 98).

Both penalties are added together in an internal cost model for

the likelihood of a correlation to be the correct one. Further

fine tuning on large color or intensity differences between the

left and right image can be set with scanlinep1onediscon and

scanlinep1twodiscon.

medianthreshold: When looking for a peak regarding

correlation, we want it to have a significantly large value

DANIEL POHL, SERGEY DORODNICOV: DEPTH MAP IMPROVEMENTS FOR STEREO-BASED DEPTH CAMERAS ON DRONES 343



to clearly differ from the median of other correlation values.

While the default is set to 796, we found that we were able

to lower this value safely to 625. This did not introduce any

noticeable artefacts, but made more valid depth values available.

autoexposure-setpoint: The autoexposure setting can be

changed to deliver a darker (lower value) or brighter image. It

is set to 1500 by default. For outdoor usages, we found the

brighter value of 2000 to work better. Details in the sky like

clouds are not relevant for us, so if this part is overexposed,

it has no negative effect. On the positive side, increasing

brightness makes darker objects like the bark on a tree brighter

and enables better feature detection on it.

We present the full .json file with all settings in the Appendix.

C. Post-processing of Depth Images

With a good depth camera calibration and the modified

parameters, we area able to get good images with relatively

high confidence features. However, for our purpose this is still

not enough and cases with invalid depth values have still been

observed. We tried many different other parameter settings, but

in the end, we were not able to remove the outliers just through

parameters without losing almost all other valid depth data.

Instead, to handle the invalid depth values, we are applying

post-processing steps to the received depth image. As described

in [15], there are various known methods for post-processing

like downsizing the image in certain ways to smooth out camera

noise, applying edge-preserving filtering techniques or doing

temporal filtering across multiple frames.

In our outdoor drone use case, we apply different post-

processing methods. For the ones we describe, we additionally

require reading out the left rectified camera image stream which

is synchronized with the depth image. In our depth camera

model this image is in an 8-bit gray scale format. The pseudo-

code for our post-processing operations is in this listing:

1 c o n s t i n t reduceX = 4 ;
2 c o n s t i n t reduceY = 4 ;
3 c v R e s i z e G r a y s c a l e I m a g e ( reduceX , reduceY ) ;
4 res izeDepthImageToMinimumInBlock ( reduceX , reduceY ) ;
5

6 / / c r e a t e edge mask
7 cvSchar rX ( grayImage , maskEdgeX ) ;
8 cvSchar rY ( grayImage , maskEdgeY ) ;
9

10 conve r tSca l eAbsX ( maskEdgeX ) ;
11 conve r tSca l eAbsY ( maskEdgeY ) ;
12

13 cvAddWeighted ( maskEdgeX , maskEdgeY , maskEdge , 0 . 5 ) ;
14 c v T h r e s h o l d ( maskEdge , 192 , 255 , THRESH_BINARY) ;
15

16 / / c r e a t e c o r n e r mask
17 c v H a r r i s ( g r a y I m a g e F l o a t , maskCorners , 2 , 3 , 0 . 0 4 ) ;
18 c v T h r e s h o l d ( maskCorners , 300 , 255 , THRESH_BINARY) ;
19

20 / / combine bo th masks
21 c v B i t w i s e O r ( maskCombined , maskEdge , maskCorners ) ;
22

23 / / a p p l y m o r p h o l o g i c a l open ing
24 cvMorphOpen ( maskCombined , MORPH_ELLIPSE ( 3 , 3 ) ) ;
25

26 / / u se mask on d e p t h image
27 dep thImage . cvCopy ( d e p t h I m a g e F i n a l , maskCombined ) ;

Figure 5. Steps for creating the edge mask. The top row shows the Scharr
images in X and Y dimension. The second row applies the absolute function
to the values from the top row. The last row shows left the added images from
the middle row. On the right, it shows the final mask with the applied binary
threshold function.

In the lines 1-4, we are downsizing both the depth and the

camera image by a factor of four in each dimension. For the

depth map, we search within a 4x4 pixel block for the closest

depth value which is not zero, meaning not invalid. We take

this value as the downsized pixel value. The reason for this

selection is that for obstacle avoidance our most important

information is which object might be the closest to us. For

the gray scale image, we can use regular OpenCV downsizing.

In our case, nearest-neighbor downsizing was sufficient, but,

depending on the performance budget, bilinear filtering might

be chosen as well. After resizing, the depth image and camera

image have been lowered from a resolution of 848 × 480

pixels to 242× 120 pixels. With 16 times fewer pixels, further

processing on the images will be much faster.

Edges and corners are very robust features for stereo

matching. To achieve even higher confidence in the depth

values, we want to mask out all depth values which do not

have edges or corners in the corresponding area of the gray

scale image. To do this, we create an image mask for edges and

one for corners. For edge detection, we use the OpenCV Scharr

operator [16] as shown in lines 7 and 8 of the pseudo-code

listing. For the intermediate images in X and Y dimension,

we apply the absolute function and convert them into an 8-bit

format (line 10, 11). We add both images together and apply

a binary threshold on the mask (lines 13, 14). Using the case

from Figure 3, we visualize these processing steps in Figure 5.

For creating the corner mask, we use the Harris Corner

Detector [17] in OpenCV (line 17). Again, we apply a threshold

in the line below. We combine the mask for edges with the

mask for corners in line 21. To eliminate too small areas in

the mask, we apply the morphological opening operation on

the mask which applies an erosion followed by a dilation on

the image (line 24). We apply the final mask to the resized

depth image. Only where positive values are in the mask, the

344 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



Figure 6. Steps for creating the corner mask. Top left shows the corners as
detected by Harris. On the right, the binary threshold is applied to that. In the
second row on the left, the combined edge and corner mask is shown. On the
right side the final mask is shown after the opening function has been applied.
The bottom row shows left the original, resized depth map. On the right, the
mask has been applied to it. This is the final version of the depth map without
outliers of wrong depth.

depth value will be copied into the final image, otherwise it

will be set to zero, indicating no valid depth information (line

27). We visualize these steps in Figure 6.

D. Results

Using recalibration, tuning of the depth camera parameters

and applying the post-processing steps as described, we got a

much higher quality depth map as the example with the result

in Figure 6 (bottom right) shows. A comparison between the

before and after images with a resolution of 242×120 = 29040

pixels, is shown in Table I.

Table I
COMPARING THE BEFORE AND AFTER IMAGE FROM FIGURE 6 (BOTTOM).

THE FIRST NUMBER INDICATES THE AMOUNT OF PIXELS IN AN IMAGE WITH

A RESOLUTION OF 242× 120 PIXELS. THE SECOND NUMBER SHOWS THE

PERCENTAGE OF PIXELS IN THAT IMAGE.

original our method
number of depth values 7375 (25%) 2802 (10%)
number of outliers 94 (0.3%) 0 (0%)

While the image loses more than half of its valid depth

information with our method, it also eliminates all outliers. As

it can be seen in comparing both images, the loss happens

relatively evenly across areas. For our obstacle avoidance this

means that we still have enough information in these areas to be

aware of potential objects in our path. To repeat the statement

we made before: we prefer having fewer depth values at a high

confidence compared to receiving many values which are less

certain to be valid. Using our method, this goal is achieved.

We tested our method on multiple hours of log files from

various drone flights. In almost all cases, we were able to

filter out wrong depth measures that would have impacted the

drone’s obstacle avoidance to work correctly.

E. Performance

The post processing steps will increase the required compute

load. We optimized our code to make use of AVX2 functions for

our custom-written resizing function which we make available

as open source. OpenCV, compiled with the right flags, will

use AVX2 intrinsics for the relevant functions. We measured

how much time the individual steps for post-processing took

for processing 30 frames (the amount of frames we receive

within one second from the depth camera) and show this in

Table II.

Table II
TIME IN MS FOR POST-PROCESSING STEPS FOR 30 FRAMES.

resize gray scale 1.2
resize depth map 1.5
create edge mask 2.9
create corner mask 9.3
combine masks 1.8
opening mask 1.3
apply mask 0.3

total 18.3

VII. LIMITATIONS AND OUTLOOK

There are still some rare cases in which wrong depth

makes it through all the suggested methods. The area of

pixels with wrong depth is already much smaller with our

methods. To increase the robustness against these rare outliers,

we recommend using the depth data in a spatial mapping like

in a 3D voxel map. Popular libraries like Octomap [18] are

a good starting point. Before values are entered into such a

spatial structure, it might be required to have multiple positive

hits for occupancy over multiple frames and/or observations

of obstacles from slightly different perspectives. In the case of

drones, movement is pretty common and even when holding

the position, minimal movements from wind might already

change what the depth camera delivers. The position of a wrong

depth value and its corresponding 3D space might change by

such a small movement. As the incorrect depth values are not

geometrically consistent, they might be filtered out through the

spatial mapping technique.

While the performance impact of our routines is already

relatively low for a modern PC-based system, the overhead

might still hurt performance on highly embedded systems. In

future versions of depth cameras, it might be a desired step to

have our described methods directly implemented in hardware.

VIII. CONCLUSION

In this work, we described the issues of receiving wrong

depth data that was observed in some drone flights outdoors.

Through proper calibration, modification of internal depth cam-

era parameters and a series of post-processing steps on the depth

map, we were able to clean up almost all outliers with wrong

DANIEL POHL, SERGEY DORODNICOV: DEPTH MAP IMPROVEMENTS FOR STEREO-BASED DEPTH CAMERAS ON DRONES 345



depth. The resulting depth data can be used for robust obstacle

avoidance with spatial mapping of the environment. Our highly

optimized algorithms for post-processing are released as open

source under https://github.com/IntelRealSense/librealsense.

REFERENCES

[1] N. Gageik, T. Müller, and S. Montenegro, “Obstacle

Detection and Collision Avoidance using Ultrasonic

Distance Sensors for an Autonomous Quadrocopter”,

University of Wurzburg, Aerospace information Technol-

ogy Wurzburg, pp. 3–23, 2012.

[2] L. Wallace, A. Lucieer, C. Watson, and D. Turner, “De-

velopment of a UAV-LiDAR System with Application

to Forest Inventory”, Remote Sensing, vol. 4, no. 6,

pp. 1519–1543, 2012. DOI: 10.3390/rs4061519.

[3] A. Ferrick, J. Fish, E. Venator, and G. S. Lee, “UAV Ob-

stacle Avoidance using Image Processing Techniques”,

in IEEE International Conference on Technologies for

Practical Robot Applications (TePRA), 2012, pp. 73–78.

DOI: 10.1109/TePRA.2012.6215657.

[4] K. B. Ariyur, P. Lommel, and D. F. Enns, “Reactive

Inflight Obstacle Avoidance via Radar Feedback”, in

Proceedings of the 2005 American Control Conference,

IEEE, pp. 2978–2982. DOI: 10 . 1109 / ACC . 2005 .

1470427.

[5] K Boudjit, C Larbes, and M Alouache, “Control of Flight

Operation of a Quad rotor AR. Drone Using Depth Map

from Microsoft Kinect Sensor”, International Journal of

Engineering and Innovative Technology (IJEIT), vol. 3,

pp. 15–19, 2013.

[6] A Deris, I Trigonis, A Aravanis, and E. Stathopoulou,

“Depth cameras on UAVs: A first approach”, The Inter-

national Archives of Photogrammetry, Remote Sensing

and Spatial Information Sciences, vol. 42, p. 231, 2017.

DOI: 10.5194/isprs-archives-XLII-2-W3-231-2017.

[7] I. Sa, M. Kamel, M. Burri, M. Bloesch, R. Khanna,

M. Popovic, J. Nieto, and R. Siegwart, “Build Your Own

Visual-Inertial Drone: A Cost-Effective and Open-Source

Autonomous Drone”, IEEE Robotics & Automation

Magazine, vol. 25, no. 1, pp. 89–103, 2018. DOI: 10.

1109/MRA.2017.2771326.

[8] S. Kawabata, K. Nohara, J. H. Lee, H. Suzuki, T.

Takiguchi, O. S. Park, and S. Okamoto, “Autonomous

Flight Drone with Depth Camera for Inspection Task

of Infra Structure”, in Proceedings of the International

MultiConference of Engineers and Computer Scientists,

vol. 2, 2018.

[9] H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect Range

Sensing: Structured-Light versus Time-of-Flight Kinect”,

Computer vision and image understanding, vol. 139,

pp. 1–20, 2015. DOI: 10.1016/j.cviu.2015.05.006.

[10] P. Zanuttigh, G. Marin, C. Dal Mutto, F. Dominio,

L. Minto, and G. M. Cortelazzo, “Time-of-Flight and

Structured Light Depth Cameras”, Technology and

Applications, 2016. DOI: 10.1007/978-3-319-30973-6.
[11] S. T. Barnard and M. A. Fischler, “Computational

Stereo”, 1982. DOI: 10.1145/356893.356896.

[12] T. Kanade and M. Okutomi, “A Stereo Matching

Algorithm with an Adaptive Window: Theory and

Experiment”, in Proceedings. 1991 IEEE International

Conference on Robotics and Automation, pp. 1088–1095.

DOI: 10.1109/ROBOT.1991.131738.

[13] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen,

and A. Bhowmik, “Intel RealSense Stereoscopic Depth

Cameras”, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops,

2017, pp. 1–10. DOI: 10.1109/CVPRW.2017.167.

[14] M. Michael, J. Salmen, J. Stallkamp, and M. Schlips-

ing, “Real-time Stereo Vision: Optimizing Semi-Global

Matching”, in IEEE Intelligent Vehicles Symposium,

2013, pp. 1197–1202. DOI: 10.1109/IVS.2013.6629629.

[15] A. Grunnet-Jepsen and D. Tong, Depth Post-Processing

for Intel RealSense D400 Depth Cameras, https://www.

intel . com / content / dam / support / us / en / documents /

emerging-technologies/intel-realsense-technology/Intel-

RealSense-Depth-PostProcess.pdf.

[16] H. Scharr, “Optimale Operatoren in der digitalen Bild-

verarbeitung”, 2000. DOI: 10.11588/heidok.00000962.

[17] K. G. Derpanis, “The Harris Corner Detector”, York

University, 2004.

[18] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss,

and W. Burgard, “Octomap: An Efficient Probabilistic

3D Mapping Framework Based on Octrees”, Autonomous

robots, vol. 34, no. 3, pp. 189–206, 2013. DOI: 10.1007/

s10514-012-9321-0.

APPENDIX

To give a better overview of the impact of changing some of

the mentioned RealSense depth camera parameters, we provide

examples of the resulting images from Figure 7 to Figure 11. In

order to find the best matching values, this was tested and fine-

tuned on various environments: natural, industrial, residential

and mixtures of those. The height was varied between looking

at objects almost at the same height and from a much higher

perspective, e.g. 30 to 50 meters above ground. When testing

different parameters on the ground, we recommend using the

Intel RealSense Viewer in which the parameters can be changed

in real-time through sliders to directly see the impact on the

images.

346 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



Figure 7. Gray scale images with different auto exposure values: 1500, 2000 (ours), 2500.

Figure 8. Depth images with different secondpeakdelta values: 400, 645, 775 (ours).

Figure 9. Depth images with different penalty values (scanlinep2onediscon): 50, 105 (ours), 235.

Figure 10. Depth images with different values for texturecountthresh and texturedifferencethresh: (0, 0), (4, 50) (ours), (8, 100).

Figure 11. Depth images with different values for medianthreshold: 500, 625 (ours), 796.

DANIEL POHL, SERGEY DORODNICOV: DEPTH MAP IMPROVEMENTS FOR STEREO-BASED DEPTH CAMERAS ON DRONES 347



The following is the text for the .json file that can be loaded in Intel RealSense tools and API calls to configure the cameras as

described in the paper.

"aux-param-autoexposure-setpoint": "2000",

"aux-param-colorcorrection1": "0.298828",

"aux-param-colorcorrection10": "0",

"aux-param-colorcorrection11": "0",

"aux-param-colorcorrection12": "0",

"aux-param-colorcorrection2": "0.293945",

"aux-param-colorcorrection3": "0.293945",

"aux-param-colorcorrection4": "0.114258",

"aux-param-colorcorrection5": "0",

"aux-param-colorcorrection6": "0",

"aux-param-colorcorrection7": "0",

"aux-param-colorcorrection8": "0",

"aux-param-colorcorrection9": "0",

"aux-param-depthclampmax": "65536",

"aux-param-depthclampmin": "0",

"aux-param-disparityshift": "0",

"controls-autoexposure-auto": "True",

"controls-autoexposure-manual": "8500",

"controls-depth-gain": "16",

"controls-laserpower": "0",

"controls-laserstate": "on",

"ignoreSAD": "0",

"param-autoexposure-setpoint": "2000",

"param-censusenablereg-udiameter": "9",

"param-censusenablereg-vdiameter": "9",

"param-censususize": "9",

"param-censusvsize": "9",

"param-depthclampmax": "65536",

"param-depthclampmin": "0",

"param-depthunits": "1000",

"param-disableraucolor": "0",

"param-disablesadcolor": "0",

"param-disablesadnormalize": "0",

"param-disablesloleftcolor": "0",

"param-disableslorightcolor": "1",

"param-disparitymode": "0",

"param-disparityshift": "0",

"param-lambdaad": "751",

"param-lambdacensus": "6",

"param-leftrightthreshold": "10",

"param-maxscorethreshb": "1423",

"param-medianthreshold": "625",

"param-minscorethresha": "4",

"param-neighborthresh": "108",

"param-raumine": "6",

"param-rauminn": "3",

"param-rauminnssum": "7",

"param-raumins": "2",

"param-rauminw": "2",

"param-rauminwesum": "12",

"param-regioncolorthresholdb": "0.784736",

"param-regioncolorthresholdg": "0.565558",

"param-regioncolorthresholdr": "0.985323",
"param-regionshrinku": "3",

"param-regionshrinkv": "0",

"param-robbinsmonrodecrement": "5",

"param-robbinsmonroincrement": "5",

"param-rsmdiffthreshold": "1.65625",

"param-rsmrauslodiffthreshold": "0.71875",

"param-rsmremovethreshold": "0.809524",

"param-scanlineedgetaub": "13",

"param-scanlineedgetaug": "15",

"param-scanlineedgetaur": "30",

"param-scanlinep1": "30",

"param-scanlinep1onediscon": "76",

"param-scanlinep1twodiscon": "86",

"param-scanlinep2": "98",

"param-scanlinep2onediscon": "105",

"param-scanlinep2twodiscon": "33",

"param-secondpeakdelta": "775",

"param-texturecountthresh": "4",

"param-texturedifferencethresh": "50",

"param-usersm": "1",

"param-zunits": "1000"

348 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019


