Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 21

Proceedings of the 2020 Federated Conference on Computer Science and Information Systems

Fast BF-ICrA Method for the Evaluation of MO-ACO Algorithm for WSN Layout

, ,

DOI: http://dx.doi.org/10.15439/2020F10

Citation: Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 21, pages 241249 ()

Full text

Abstract. In this paper, we present a fast Belief Function based Inter-Criteria Analysis (BF-ICrA) method based on the canonical decomposition of basic belief assignments defined on a dichotomous frame of discernment. This new method is then applied for evaluating the Multiple-Objective Ant Colony Optimization (MO-ACO) algorithm for Wireless Sensor Networks (WSN) deployment.

References

  1. J. Dezert, A. Tchamova, D. Han, J.-M. Tacnet, Simplification of multi-criteria decision-making using inter-criteria analysis and belief functions, in Proc. of Fusion 2019 Int. Conf. on Information Fusion, Ottawa, Canada, July 2-5, 2019.
  2. K. Atanassov, D. Mavrov, V. Atanassova, Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues IFSs GNs 11, pp. 1–8, 2014.
  3. K. Atanassov, V. Atanassova, G. Gluhchev, InterCriteria Analysis: Ideas and problems, Notes on IFS, Vol. 21, No. 1, pp. 81–88, 2015.
  4. K. Atanassov et al., An approach to a constructive simplification of multiagent multicriteria decision making problems via intercriteria analysis, C.R. de l’Acad. Bulgare des Sci., Vol. 70, No. 8, 2017.
  5. J. Dezert, F. Smarandache, A. Tchamova, D. Han, Fast Fusion of Basic Belief Assignments Defined on a Dichotomous Frame of Discernment, In Proc. of Fusion 2020 (Online) conference, Pretoria, South Africa, July 2020.
  6. J. Dezert, F. Smarandache, Canonical Decomposition of Dichotomous Basic Belief Assignment, International Journal of Intelligent Systems, pp. 1–21, 2020.
  7. G. Shafer, A Mathematical Theory of Evidence, Princeton Univ. Press, 1976.
  8. J. Dezert, P. Wang, A. Tchamova, On the validity of Dempster-Shafer theory, Proc. of Fusion 2012, Singapore, July 9–12, 2012.
  9. A. Tchamova, J. Dezert, On the Behavior of Dempster’s Rule of Combination and the Foundations of Dempster-Shafer Theory, IEEE IS-2012, Sofia, Bulgaria, Sept. 6-8, 2012.
  10. J. Dezert, A. Tchamova, On the validity of Dempster’s fusion rule and its interpretation as a generalization of Bayesian fusion rule, Int. J. of Intelligent Syst., Vol. 29, Issue 3, pages 223–252, March 2014.
  11. F. Smarandache, J. Dezert, On the consistency of PCR6 with the averaging rule and its application to probability estimation, Proc. of Fusion 2013, Istanbul, Turkey, July 2013.
  12. F. Smarandache, J. Dezert (Editors), Advances and applications of DSmT for information fusion, American Research Press, Vol. 1–4, 2004–2015, http://www.onera.fr/staff/jean-dezert?page=2
  13. F. Smarandache, J. Dezert, J.-M. Tacnet, Fusion of sources of evidence with different importances and reliabilities, in Proceedings of Fusion 2010 conference, Edinburgh, UK, July 2010.
  14. https://bfasociety.org/
  15. R. Yager, On the Dempster-Shafer framework and new combination rules, Information Sciences, Vol. 41, pp. 93–138, 1987.
  16. D. Dubois, H. Prade, Representation and combination of uncertainty with belief functions and possibility measures, Comput. Intell., 4, 1988.
  17. S. Fidanova, J. Dezert, A. Tchamova, Inter-criteria analysis based on belief functions for GPS surveying problems, in Proc. of IEEE Int. Symp. on INnovations in Intelligent SysTems and Applications (INISTA 2019), Sofia, Bulgaria, July 3-5, 2019.
  18. J. Dezert, D.Han, H. Yin, A New Belief Function Based Approach for Multi-Criteria Decision-Making Support, Proc. of Fusion 2016 Conf.
  19. D. Han, J. Dezert, Y. Yang, New Distance Measures of Evidence based on Belief Intervals, Proc. of Belief 2014, Oxford, UK, Sept. 2014.
  20. S. Fidanova, O. Roeva, Multi-objective ACO Algorithm for WSN Layout: InterCriteria Analysis, in Large-Scale Scientific Computing, Springer, 2020.
  21. M. Dorigo, T. Stutzle, Ant Colony Optimization, MIT Press, Cambridge, 2004.