Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 21

Proceedings of the 2020 Federated Conference on Computer Science and Information Systems

Parallel implementation of a PIC simulation algorithm using OpenMP

, , , , ,

DOI: http://dx.doi.org/10.15439/2020F130

Citation: Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 21, pages 381385 ()

Full text

Abstract. Particle-in-cell (PIC) simulations are focusing on the individual trajectories of a very large number of particles in self-consistent and external electric and magnetic fields; they are widely used in the study of plasma jets, for example. The main disadvantage of PIC simulations is the large simulation runtime,which often requires a parallel implementation of the algorithm. The current paper focuses on a PIC1d3v simulation algorithm and describes the successful implementation of a parallel version of it on a multi-core architecture, using OpenMP, with very promising experimental and theoretical results.

References

  1. Omura, Y., Matsumoto, H. “KEMPO1: Technical Guide to One-dimensional Electromagnetic Particle Code", in Computer Space Plasma Physics: Simulation Techniques and Software, edited by H. Matsumoto and Y. Omura, pp. 21-65, Terra Scientific Publishing Company, Tokyo, 1993.
  2. Voitcu, G. "Kinetic simulations of plasma dynamics across magnetic fields and applications to the physics of planetary magnetospheres”, PhD thesis, University of Bucharest, Romania, 2014.
  3. Birdsall, C. K., Langdon, A. B.“Plasma physics via computer simulation”, Boca Raton: CRC Press, 1991, http://dx.doi.org/10.1201/9781315275048.
  4. Hockney, R. W., Eastwood, J. W. “Computer simulation using particles”, Boca Raton: CRC Press, 1988, http://dx.doi.org/10.1201/9780367806934.
  5. Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdic, P., Karlsson, T., Lee, S. H., Omidi, N., Palmroth, M., Roytershteyn, V., Schmid, D., Sergeev, V., Sibeck, D. Jets Downstream of Collisionless Shocks, Space Science Reviews, 214, 81, 2018, http://dx.doi.org/10.1007/s11214-018-0516-3.
  6. Hietala, H., Partamies, N., Laitinen, T. V., Clausen, L. B. N., Facsko, G., Vaivads, A., Koskinen, H. E. J., Dandouras, I., Reme, H., Lucek, E. A. “Supermagnetosonic subsolar magnetosheath jets and their effects: from the solar wind to the ionospheric convection”, Annales Geophysicae, 30, 33, 2012, http://dx.doi.org/10.5194/angeo-30-33-2012.
  7. Archer, M. O., Hietala, H., Hartinger, M. D., Plaschke, F., Angelopoulos, V. “Direct observations of a surface eigenmode of the dayside magnetopause”, Nature Communications, 10:615, 2019, http://dx.doi.org/10.1038/s41467-018-08134-5.
  8. Karlsson, T., Liljeblad, E., Kullen, A., Raines, J. M., Slavin, J. A., Sundberg, T. “Isolated magnetic field structures in Mercury’s magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets”, Planetary and Space Science, 129, 61, 2016, http://dx.doi.org/10.1016/j.pss.2016.06.002.
  9. Nishikawa, K.-I., Frederiksen, J. T., Nordlund, A., Mizuno, Y., Hardee, P. E., Niemiec, J., Gomez, J. L., Peer, A., Dutan, I., Meli, A., Sol, H., Pohl, M., Hartmann, D. H. “Evolution of global relativistic jets: collimations and expansion with kKHI and the Weibel instability”, The Astrophysical Journal, 820:94, 2016, http://dx.doi.org/10.3847/0004-637X/820/2/94.
  10. Echim, M. M., Lemaire, J. F. “Laboratory and numerical simulations of the impulsive penetration mechanism”, Space Science Reviews, 92, 565, 2000, http://dx.doi.org/10.1023/A:1005264212972.
  11. Voitcu, G., Echim, M. “Transport and entry of plasma clouds/jets across transverse magnetic discontinuities: Three-dimensional electromagnetic particle-in-cell simulations”, Journal of Geophysical Research - Space Physics, 121, 5, 4343-4361, 2016, http://dx.doi.org/10.1002/2015JA021973.
  12. Voitcu, G., Echim, M. „Tangential deflection and formation of counterstreaming flows at the impact of a plasma jet on a tangential discontinuity”, Geophysical Research Letters, 44, 12, 5920-5927, 2017, http://dx.doi.org/10.1002/2017GL073763.
  13. Voitcu, G., Echim, M. „Crescent-shaped electron velocity distribution functions formed at the edges of plasma jets interacting with a tangential discontinuity”, Annales Geophysicae, 36, 1521-1535, 2018, http://dx.doi.org/10.5194/angeo-36-1521-2018.
  14. Bart, G, Peltz, C, Bigaouette, N, Fennel, T, Brabec, T, Varin, C. Massively parallel microscopic particle-in-cell. Computer Physics Communications. 2017 Oct 1;219:269-85.
  15. Miller, KG, Lee, RP, Tableman, A, Helm, A, Fonseca, RA, Decyk, VK, Mori, WB. Dynamic load balancing with enhanced shared-memory parallelism for particle-in-cell codes. arXiv preprint https://arxiv.org/abs/2003.10406. 2020 Mar 23.
  16. Shah, K, Phadnis, A, Shah, M, Chaudhury, B. Parallelization of the Particle-In-Cell Monte Carlo Collision (PIC-MCC) Algorithm for Plasma Simulation on Intel MIC Xeon Phi Architecture. In proceedings of International Conference for High Performance Computing 2017.
  17. Sáez, X., Soba, A., Cela, J.M., Sánchez, E., Castejón, F. Particle-In-Cell algorithms for Plasma simulations on heterogeneous architectures. In 2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing 2011 Feb 9 pp. 385-389, http://dx.doi.org/10.1109/PDP.2011.42
  18. Marszałek, Z., Woźniak, M., Połap, D., Fully flexible parallel merge sort for multicore architectures. Complexity, 2018, http://dx.doi.org/10.1155/2018/8679579
  19. Palkowski, M., Bielecki, W., "Parallel cache-efficient code for computing the McCaskill partition functions," 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), Leipzig, Germany, 2019, pp. 207-210, http://dx.doi.org/10.15439/2019F8.
  20. Roth, M., De Keyser, J., Kuznetsova, M. M. “Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas”, Space Science Reviews, 76, 251, 1996, http://dx.doi.org/10.1007/BF00197842.
  21. Echim, M. M., Lemaire, J. F., Roth M. “Self-consistent solution for a collisionless plasma slab in motion across a magnetic field”, Physics of Plasmas, 12, 072904, 2005, http://dx.doi.org/10.1063/1.1943848.