Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 21

Proceedings of the 2020 Federated Conference on Computer Science and Information Systems

Instance Segmentation Model Created from Three Semantic Segmentations of Mask, Boundary and Centroid Pixels Verified on GlaS Dataset

, ,

DOI: http://dx.doi.org/10.15439/2020F175

Citation: Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 21, pages 569576 ()

Full text

Abstract. Segmentation is the key computer vision task in modern medicine applications. Instance segmentation became the prevalent way to improve segmentation performance in recent years. This work proposes a novel way to design an instance segmentation model that combines 3 semantic segmentation models dedicated for foreground, boundary and centroid predictions. It contains no detector so it is orthogonal to a standard instance segmentation design and can be used to improve the performance of a standard design. The presented custom designed model is verified on the Gland Segmentation in Colon Histology Images dataset.

References

  1. T. Adams, J. Dörpinghaus, M. Jacobs, and V. Steinhage, “Automated lung tumor detection and diagnosis in ct scans using texture feature analysis and svm,” in Communication Papers of the 2018 Federated Conference on Computer Science and Information Systems, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., vol. 17. PTI, 2018, pp. 13–20. [Online]. Available: http://dx.doi.org/10.15439/2018F176
  2. M. Li, Q. Yin, and M. Lu, “Retinal blood vessel segmentation based on multi-scale deep learning,” in Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., vol. 15. IEEE, 2018, pp. 117–123. [Online]. Available: http://dx.doi.org/10.15439/2018F127
  3. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.1556
  4. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015. IEEE Computer Society, 2015, pp. 1–9. [Online]. Available: https://doi.org/10.1109/CVPR.2015.7298594
  5. J. Kang and J. Gwak, “Ensemble of instance segmentation models for polyp segmentation in colonoscopy images,” IEEE Access, vol. 7, pp. 26 440–26 447, 2019. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2019.2900672
  6. A. O. Vuola, S. U. Akram, and J. Kannala, “Mask-rcnn and u-net ensembled for nuclei segmentation,” in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, April 2019, pp. 208–212. [Online]. Available: http://dx.doi.org/10.1109/ISBI.2019.8759574
  7. L. Podlodowski, S. Roziewski, and M. Nurzyński, “An ensemble of deep convolutional neural networks for marking hair follicles on microscopic images,” in Position Papers of the 2018 Federated Conference on Computer Science and Information Systems, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., vol. 16. PTI, 2018, pp. 23–28. [Online]. Available: http://dx.doi.org/10.15439/2018F389
  8. B. D. Brabandere, D. Neven, and L. V. Gool, “Semantic instance segmentation with a discriminative loss function,” CoRR, vol. abs/1708.02551, 2017. [Online]. Available: http://arxiv.org/abs/1708.02551
  9. J. Dai, K. He, Y. Li, S. Ren, and J. Sun, “Instance-sensitive fully convolutional networks,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer International Publishing, 2016, pp. 534–549. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-46466-4_32
  10. F. A. Guerrero-Peña, P. D. Marrero Fernandez, T. Ing Ren, M. Yui, E. Rothenberg, and A. Cunha, “Multiclass weighted loss for instance segmentation of cluttered cells,” in 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, October 2018, pp. 2451–2455. [Online]. Available: http://dx.doi.org/10.1109/ICIP.2018.8451187
  11. L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, April 2018. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2017.2699184
  12. S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance segmentation,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, June 2018, pp. 8759–8768. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2018.00913
  13. J. Respondek and W. Westwańska, “Counting instances of objects specified by vague locations using neural networks on example of honey bees,” in Proceedings of the 2019 Federated Conference on Computer Science and Information Systems, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki, Eds., vol. 18. IEEE, 2019, pp. 87–90. [Online]. Available: http://dx.doi.org/10.15439/2019F94
  14. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017, pp. 2980–2988. [Online]. Available: http://dx.doi.org/10.1109/ICCV.2017.322
  15. Y. Xu, Y. Li, Y. Wang, M. Liu, Y. Fan, M. Lai, and E. I. Chang, “Gland instance segmentation using deep multichannel neural networks,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 12, pp. 2901–2912, December 2017. [Online]. Available: http://dx.doi.org/10.1109/TBME.2017.2686418
  16. A. Böhm, A. Ücker, T. Jäger, O. Ronneberger, and T. Falk, “Isoodl: Instance segmentation of overlapping biological objects using deep learning,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, April 2018, pp. 1225–1229. [Online]. Available: http://dx.doi.org/10.1109/ISBI.2018.8363792
  17. K. Sirinukunwattana, J. P. Pluim, H. Chen, X. Qi, P.-A. Heng, Y. B. Guo, L. Y. Wang, B. J. Matuszewski, E. Bruni, U. Sanchez, A. Böhm, O. Ronneberger, B. B. Cheikh, D. Racoceanu, P. Kainz, M. Pfeiffer, M. Urschler, D. R. Snead, and N. M. Rajpoot, “Gland segmentation in colon histology images: The glas challenge contest,” Medical Image Analysis, vol. 35, pp. 489 – 502, January 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1361841516301542
  18. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer International Publishing, 2015, pp. 234–241. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-24574-4_28
  19. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, June 2016, pp. 770–778. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2016.90
  20. F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, July 2017, pp. 1800–1807. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2017.195
  21. S. Manivannan, W. Li, J. Zhang, E. Trucco, and S. J. McKenna, “Structure prediction for gland segmentation with hand-crafted and deep convolutional features,” IEEE Transactions on Medical Imaging, vol. 37, no. 1, pp. 210–221, January 2018. [Online]. Available: http://dx.doi.org/10.1109/TMI.2017.2750210
  22. J. Yi, P. Wu, D. J. Hoeppner, and D. Metaxas, “Pixel-wise neural cell instance segmentation,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, April 2018, pp. 373–377. [Online]. Available: http://dx.doi.org/10.1109/ISBI.2018.8363596
  23. S. Graham and N. M. Rajpoot, “Sams-net: Stain-aware multi-scale network for instance-based nuclei segmentation in histology images,” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, April 2018, pp. 590–594. [Online]. Available: http://dx.doi.org/10.1109/ISBI.2018.8363645
  24. G. Payyavula, “Nuclei segmentation in microscope cell images,” 2018. [Online]. Available: https://www.kaggle.com/gangadhar/nuclei-segmentation-in-microscope-cell-images/
  25. S. Graham, H. Chen, Q. Dou, P.-A. Heng, and N. M. Rajpoot, “Mild-net: Minimal information loss dilated network for gland instance segmentation in colon histology images,” Medical Image Analysis, vol. 52, pp. 199–211, 2019. [Online]. Available: http://dx.doi.org/10.1016/j.media.2018.12.001
  26. A. Khvostikov, A. Krylov, I. Mikhailov, O. Kharlova, N. Oleynikova, and P. Malkov, “Automatic mucous glands segmentation in histological images,” ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W12, pp. 103–109, 2019. [Online]. Available: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W12/103/2019/
  27. N. Oleynikova, A. Khvostikov, A. Krylov, I. Mikhailov, O. Kharlova, N. Danilova, P. G. Mal’kov, N. Ageykina, and E. Fedorov, “Automatic glands segmentation in histological images obtained by endoscopic biopsy from various parts of the colon,” Endoscopy, vol. 51, 04 2019. [Online]. Available: http://dx.doi.org/10.1055/s-0039-1681188