Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 22

Position Papers of the 2020 Federated Conference on Computer Science and Information Systems

An Architectural Design for Measurement Uncertainty Evaluation in Cyber-Physical Systems

, , , , , , , , , , ,

DOI: http://dx.doi.org/10.15439/2020F203

Citation: Position Papers of the 2020 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 22, pages 5357 ()

Full text

Abstract. Several use cases from the areas of manufacturing and process industry, require highly accurate sensor data. As sensors always have some degree of uncertainty, methods are needed to increase their reliability. The common approach is to regularly calibrate the devices to enable traceability according to national standards and Syst\`eme international (SI) units - which follows costly processes. However, sensor networks can also be represented as Cyber Physical Systems (CPS) and a single sensor can have a digital representation (Digital Twin) to use its data further on. To propagate uncertainty in a reliable way in the network, we present a system architecture to communicate measurement uncertainties in sensor networks utilizing the concept of Asset Administration Shells alongside methods from the domain of Organic Computing. The presented approach contains methods for uncertainty propagation as well as concepts from the Machine Learning domain that combine the need for an accurate uncertainty estimation. The mathematical description of the metrological uncertainty of fused or propagated values can be seen as a first step towards the development of a harmonized approach for uncertainty in distributed CPS in the context of Industrie 4.0. In this paper, we present basic use cases, conceptual ideas and an agenda of how to proceed further on.

References

  1. Sascha Eichstädt. Metrologie für die Digitalisierungvon Wirtschaft und Gesellschaft. 2017. http://dx.doi.org/10.7795/310.20170401DE.
  2. Qinglin Qi, Dongming Zhao, T. Warren Liao, and Fei Tao. “Modeling of Cyber-Physical Systems and Digital Twin Based on Edge Computing, Fog Computing and Cloud Computing Towards Smart Manufacturing”. In: Volume 1: Additive Manufacturing; Bio and Sustainable Manufacturing. June 2018. http://dx.doi.org/10.1115/msec2018-6435.
  3. Dimitrios Georgakopoulos, Prem Prakash Jayaraman, Maria Fazia, Massimo Villari, and Rajiv Ranjan. “Internet of Things and Edge Cloud Computing Roadmap for Manufacturing”. In: IEEE Cloud Computing 3.4 (2016), pp. 66–73. http://dx.doi.org/10.1109/mcc.2016.91.
  4. Mathias de Brito, Saiful Hoque, Ronald Steinke, and Alexander Willner. “Towards Programmable Fog Nodes in Smart Factories”. In: 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W). Augsburg: IEEE, Sept. 2016, pp. 236–241. http://dx.doi.org/10.1109/FAS-W.2016.57.
  5. Qinglin Qi and Fei Tao. “A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing”. In: IEEE Access 7 (2019), pp. 86769–86777. http://dx.doi.org/10.1109/access.2019.2923610.
  6. Zhi Li, W.M. Wang, Guo Liu, Layne Liu, Jiadong He, and G.Q. Huang. “Toward Open Manufacturing”. In: Industrial Management & Data Systems 118.1 (2018), pp. 303–320. http://dx.doi.org/10.1108/imds-04-2017-0142.
  7. Yan Lu, Frank Riddick, and Nenad Ivezic. “The Paradigm Shift in Smart Manufacturing System Architecture”. In: IFIP Advances in Information and Communication Technology. IFIP Advances in Information and Communication Technology. Springer International Publishing, 2016, pp. 767–776. http://dx.doi.org/10.1007/978-3-319-51133-7_90.
  8. Yuqian Lu, Chao Liu, Kevin I-Kai Wang, Huiyue Huang, and Xun Xu. “Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues”. In: Robotics and Computer-Integrated Manufacturing 61 (2020), p. 101837. http://dx.doi.org/10.1016/j.rcim.2019.101837.
  9. Karthick Thiyagarajan, Sarath Kodagoda, and Nalika Ulapane. “Data-driven machine learning approach for predicting volumetric moisture content of concrete using resistance sensor measurements”. In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). June 2016. http://dx.doi.org/10.1109/iciea.2016.7603783.
  10. C. Vázquez, A.B. Gonzalo, S. Vargas, and J. Montalvo. “Multi-Sensor System Using Plastic Optical Fibers for Intrinsically Safe Level Measurements”. In: Sensors and Actuators A: Physical 116.1 (2004), pp. 22–32. http://dx.doi.org/10.1016/j.sna.2004.03.035.
  11. Yadong Wan, Lei Li, Jie He, Xiaotong Zhang, and Qin Wang. “Anshan: Wireless Sensor Networks for Equipment Fault Diagnosis in the Process Industry”. In: 2008 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. June 2008. http://dx.doi.org/10.1109/sahcn.2008.46.
  12. Stig Petersen, Paula Doyle, Svein Vatland, Christian Salbu Aasland, Trond Michael Andersen, and Dag Sjong. “Requirements, drivers and analysis of wireless sensor network solutions for the Oil & Gas industry”. In: 2007 IEEE Conference on Emerging Technologies & Factory Automation (EFTA 2007). Sept. 2007. http://dx.doi.org/10.1109/efta.2007.4416773.
  13. Nico Kaempchen and Klaus Dietmayer. “Data synchronization strategies for multi-sensor fusion”. In: Proceedings of the IEEE Conference on Intelligent Transportation Systems. Vol. 85. 1. 2003, pp. 1–9.
  14. Tobias Huck, Antje Westenberger, Martin Fritzsche, Tilo Schwarz, and Klaus Dietmayer. “Precise timestamping and temporal synchronization in multi-sensor fusion”. In: 2011 IEEE Intelligent Vehicles Symposium (IV). June 2011. http://dx.doi.org/10.1109/ivs.2011.5940472.
  15. Antje Westenberger, Tobias Huck, Martin Fritzsche, Tilo Schwarz, and Klaus Dietmayer. “Temporal synchronization in multi-sensor fusion for future driver assistance systems”. In: 2011 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication. Sept. 2011. http://dx.doi.org/10.1109/ispcs.2011.6070146.
  16. Yao-Win Hong and A. Scaglione. “A Scalable Synchronization Protocol for Large Scale Sensor Networks and Its Applications”. In: IEEE Journal on Selected Areas in Communications 23.5 (2005), pp. 1085–1099. http://dx.doi.org/10.1109/jsac.2005.845418.
  17. Gauri Shah and Aashis Tiwari. “Anomaly detection in IIoT”. In: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data - CoDS-COMAD ’18. 2018. http://dx.doi.org/10.1145/3152494.3156816.
  18. Eckart Uhlmann, Hakim Laghmouchi, Claudio Geisert, and Eckhard Hohwieler. “Smart wireless sensor network and configuration of algorithms for condition monitoring applications”. In: Journal of Machine Engineering 17 (Jan. 2017), pp. 45–55.
  19. Niall O’ Mahony, Trevor Murphy, Krishna Panduru, Daniel Riordan, and Joseph Walsh. “Adaptive process control and sensor fusion for process analytical technology”. In: 2016 27th Irish Signals and Systems Conference (ISSC). June 2016. http://dx.doi.org/10.1109/issc.2016.7528449.
  20. Eckart Uhlmann, Abdelhakim Laghmouchi, Claudio Geisert, and Eckhard Hohwieler. “Decentralized Data Analytics for Maintenance in Industrie 4.0”. In: Procedia Manufacturing 11 (2017), pp. 1120–1126. http://dx.doi.org/10.1016/j.promfg.2017.07.233.
  21. Eckart Uhlmann, Rodrigo Pastl Pontes, Claudio Geisert, and Eckhard Hohwieler. “Cluster Identification of Sensor Data for Predictive Maintenance in a Selective Laser Melting Machine Tool”. In: Procedia Manufacturing 24 (2018), pp. 60–65. http://dx.doi.org/10.1016/j.promfg.2018.06.009.
  22. Birgit Vogel-Heuser, Christian Diedrich, and Manfred Broy. “Anforderungen an Cps Aus Sicht Der Automatisierungstechnik / Requirements on Cps From the Viewpoint of Automation”. In: at - Automatisierungstechnik 61.10 (2013). http://dx.doi.org/10.1524/auto.2013.0061.
  23. Edward A. Lee. “Cyber Physical Systems: Design Challenges”. In: 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC). May 2008. http://dx.doi.org/10.1109/isorc.2008.25.
  24. Sascha Eichstädt and Björn Ludwig. “Metrologie für heterogene Sensornetzwerke und Industrie 4.0”. In: tm - Technisches Messen 86.11 (Nov. 26, 2019), pp. 623–629. http://dx.doi.org/10.1515/teme-2019-0073.
  25. JCGM. Guide to the expression of uncertainty in measurement. 2008.
  26. G. Persico, H. Raddatz, D. L. Tran, M. Riedl, P. Varutti, and M. Tekkalmaz. “Communication Solutions for the Integration of Distributed Control in Logistics Systems”. In: IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. Vol. 1. 2019, pp. 4203–4208. http://dx.doi.org/10.1109/IECON.2019.8927834.
  27. H. Zipper and C. Diedrich. “Synchronization of Industrial Plant and Digital Twin”. In: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). 2019, pp. 1678–1681. http://dx.doi.org/10.1109/ETFA.2019.8868994.
  28. Holger Prothmann, Sven Tomforde, Jürgen Branke, Jörg Hähner, Christian Müller-Schloer, and Hartmut Schmeck. “Organic Traffic Control”. In: Organic Computing — A Paradigm Shift for Complex Systems. Basel: Springer Basel, 2011, pp. 431–446. http://dx.doi.org/10.1007/978-3-0348-0130-0_28.