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Abstract—The complexity of managing the capacities of large
IT infrastructures is constantly increasing as more network
devices are connected. This task can no longer be performed man-
ually, so the system must be monitored at runtime and estimations
of future conditions must be made automatically. However, since
using a single forecasting method typically performs poorly, this
paper presents a framework for forecasting univariate network
device workload traces using multiple forecasting methods. First,
the time series are preprocessed by imputing missing data and
removing anomalies. Then, different features are derived from
the univariate time series, depending on the type of forecasting
method. In addition, a recommendation approach for selecting
the most suitable forecasting method from this set of algorithms
for each time series based only on its historical values is proposed.
For this purpose, the performance of the forecasting methods
is approximated using the historical data of the respective
time series under consideration. The framework is used in the
FedCSIS 2020 Challenge and shows good forecasting quality with
an average R

2 score of 0.2575 on the small test data set.

I. INTRODUCTION

O
VER the last decades, the network load in large IT

systems has grown considerably. Thus, coping with the

increased data traffic is becoming more and more difficult.

Typical reactive mechanisms that adapt the system to the

current condition are no longer applicable, as this leads to tem-

porary overload situations with resulting delays. To overcome

this problem, proactive adaptation algorithms are required that

analyze historical data and automatically forecast future con-

ditions to enable early decision making. However, the decision

making component is beyond the scope of this paper, as this

paper is part of the FedCSIS 2020 Network Device Workload

Prediction Challenge [1]. To achieve sufficient forecasting per-

formance, no single method can be used since the “No-Free-

Lunch-Theorem” states that there cannot be a single algorithm

that outperforms all others on every kind of data [2]. For this

reason, we developed a hybrid approach that recommends the

best forecasting method for a given time series based only

on its known historical values. In addition, we introduce an

algorithm for missing data imputation and a technique for

eliminating anomalies to preprocess the time series in advance.

The remainder of this paper is structured as follows: In Sec-

tion II, we present related work on time series forecasting. The

foundations of the applied forecasting methods are described

in Section III. In Section IV, we introduce the preprocessing

steps that were applied prior to the modelling part of the

approach (Section V). Experimental results are presented in

Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

Forecasting time series is a widely studied field of research

for which many different approaches exist. Firstly, individual

methods can be used to forecast time series. This area ranges

from the application of statistical methods [3] to machine

learning models [4]. However, according to the “No-Free-

Lunch-Theorem”, there is no single method that surpasses all

other methods for every type of data [2]. Therefore, more so-

phisticated approaches implement hybrid forecasting methods.

That is, several individual forecasting methods are applied and

the final result is either a weighted combination [5], [6], a

sequential execution of methods on different parts of the time

series [7], [8], or the forecast of a recommended method.

First approaches towards forecasting method recommenda-

tion use manually created expert systems [9]. One of the first

works using automatic rule induction methods is by Arinze

et al. [10]. More recent approaches to the recommendation

of forecasting methods are by Wang et al. [11] and Züfle

et al. [12]. However, all of these automatic rule learning

approaches calculate characteristics of the time series in a

large training data set and assess the forecasting accuracy

of the available methods on them. Then, a rule induction

technique is applied to map the characteristics of the time

series to the best performing forecasting method. Therefore,

these approaches require a large training data set that equally

covers all time series characteristics. In contrast, the approach

presented in this paper does not require such a large training

data set. Instead, the performance of the different forecasting

methods is estimated on a part of the time series to be forecast.

Furthermore, no rule learning approach is required because our

framework selects the forecasting method with the highest R2

score on the validation part of the considered time series.

III. BACKGROUND

In this section, the applied forecasting methods and the

FedCSIS 2020 Challenge data set are briefly presented.

A. Time Series Forecasting Methods

In this paper, we apply six different forecasting methods

from three different categories. The first category consists of

two simple statistical features, i.e., median and mode. For

time series with very little information content, forecasting

these constant values can achieve a better accuracy than using

more sophisticated forecasting methods. The second category

are machine learning methods that require derived features
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as input. Here, we apply two regression techniques, i.e.,

Random Forest [13] and XGBoost [14]. We also use Random

Forest in classification mode when the time series meets a

certain requirement. In some previous works, we have already

developed a novel forecasting method for seasonal, univariate

time series [15], [16]. This method is called Telescope and is

available on our GitHub repository1. We use Telescope in two

alternative ways, which forms our third category of forecasting

methods. Telescope does not require feature generation by the

user. Instead, Telescope includes an internal feature generation

mechanism. First, Telescope estimates the frequency of the

seasonal pattern and removes anomalies in an internal prepro-

cessing step. Next, Telescope generates features by splitting

the univariate time series into seasonal, trend, and residual

components. Here, a heuristic is implemented that estimates

whether the time series exhibits an additive or multiplicative

composition. If the composition is multiplicative, a logarithm

is applied to the time series to transform the composition

into additive mode. Each of the components is then forecast

separately. The fine-grained seasonal pattern is continued,

since the definition of seasonality states that the seasonal

pattern must not change. In addition, categorical information

is extracted and forecast using an artificial neural network.

The trend is predicted using an ARIMA model. Finally,

the categorical information, the seasonal forecast, and the

trend forecast are passed to XGBoost, which recombines the

forecasts and predicts the residual component. For more details

on how this forecasting method works, see [15] and [16].

B. Challenge Data Set

The data set of the FedCSIS 2020 Challenge consists

of network device workload traces. Each trace consists of

the target variable Mean, the corresponding time_window in

hourly resolution, and up to eight additional features captured

between 2 December 2019 and 20 February 2020. Thus, each

feature of a trace consists of a maximum of 1924 monitoring

entries. However, the traces also contain missing data. These

data gaps range from individual entries up to several hours.

Finally, the goal of the challenge was to forecast the Mean

one week in advance, i.e., 168 values, for 10,000 time series.

IV. PREPROCESSING

As our approach relies on time series forecasting, we did not

go deeper into the features other than time_window, nor did

we examine time series other than those needed to be forecast.

A. Missing Data Imputation

After analyzing the data, we found that most of the missing

values are at the beginning of the time series or that only a few

consecutive data points are missing. We did not reconstruct

missing values at the beginning of a time series, since these

gaps can extend to several hundred values. The reconstruction

of such long data series is typically highly error-prone and

would therefore worsen our model. In addition, missing data

at the beginning is not critical, since it merely shortens the

1GitHub link to Telescope: https://github.com/DescartesResearch/telescope

time series. To impute the missing values within the time

series, we assume a daily pattern within the data. Since the

data are aggregated hourly, we set this seasonal time offset

to 24. In addition to the daily pattern, we analyze whether

there is a trend between the day of the missing data and the

next or previous day. Then, the algorithm implants the missing

value by multiplying, respectively dividing, the known value

one season before, respectively after, the missing value by the

derived trend factor. We apply this procedure in chronological

order so that imputed values can be used to impute subsequent

missing values. In case that there are still few missing values

after applying this method (i.e., the values one season before or

after the missing value are also missing), the value is imputed

by linear interpolation between the last known value before

and the first known value after the missing value.

B. Anomaly Removal

While analyzing the time series, we also saw that some

time series had high spikes. Since these outliers worsen the

learned models, we apply a method for detecting anomalies.

Here, we use a modified version of the well-known “three-

sigma rule”. In contrast to the typical three sigma rule, we use

the median instead of the mean value as a baseline, since the

distributions of the time series are not necessarily symmetrical.

Furthermore, we calculate the standard deviation only between

the 1st and 99th percentile of the data, since potential outliers

would already influence the standard deviation if it was

calculated over the entire time series. We also set the tolerance

multiplier to a more conservative value (i.e., 10-sigma rule)

because we do not want to remove the normal peaks in a

daily workload pattern. After detecting outliers, the algorithm

overwrites these values with a linear interpolation between the

non-anomalous predecessor and the non-anomalous successor.

V. MODELLING

After imputing missing values and removing outliers, the

main part, i.e., the modelling, takes place. Fig. 1 shows the

simplified overall workflow of our approach.

A. Frequency Estimation

In the modelling part, we first estimate the seasonal fre-

quency of the time series. Telescope already provides such

a frequency estimation method, which uses a periodogram

to extract the most dominant frequencies and searches for

meaningful human-based frequencies nearby. Here, we have

limited the possible results of the frequency estimation method

to -1 (no frequency found), 24 (daily), and 168 (weekly).

B. Feature Generation

Afterwards, the lags of the univariate time series are gen-

erated. We used the lags one to six for all time series and if

the time series has a seasonal pattern (i.e., the frequency is

24 or 168), we also added the lags 24 and 168 to provide not

only the most recent data as features for the machine learning

models, but also those from a day ago and a week ago.

In addition to the delayed time series, we also provide the

hour of the day, the day of the week, and whether the day is
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Fig. 1. The overall workflow of the framework including preprocessing and modelling.

a holiday or not as features for the machine learning models.

These features are required as they can contain additional sea-

sonal information or explain deviations from normal behavior.

C. Classification

The algorithm then determines the number of unique values

within the time series. We have found that the data set contains

several time series with only a few different values and, most

importantly, no trend pattern. In such cases, classification can

be advantageous over regression models. Thus, if we observe

that a time series consists of less than six different values,

we learn a random forest [13] multi-class classification model

with each class representing the corresponding value.

In the specific case that the time series consists of only a

single value, we predict exactly this value since the available

training data does not contain any further information.

D. Regression Method Recommendation

In contrast, we apply six different regression methods when

we find six or more different values in a time series (“No-Free-

Lunch-Theorem”). For this purpose, we have again split the

training data into a training and a validation set. The validation

set consists of the last 168 values, while the training part

contains all previous values. In the following, we use the term

training data for this subset of the FedCSIS 2020 Challenge

training data and validation data for this horizon within the

FedCSIS 2020 Challenge training data. For the test data, we

still refer to the unknown data that was used by the creators

of the FedCSIS 2020 Challenge for the final evaluation.

The used methods are median, mode, Telescope with and

without enabled frequency estimation, Random Forest, and

XGBoost. The first two methods forecast the median, respec-

tively the mode, of the training part for the entire horizon.

Both versions of Telescope learn internal features but do not

use the features created above, while Random Forest and

XGBoost only get the lagged time series, hour of day, day of

the week, and holiday as features. For both machine learning

methods, we have carried out a hyper-parameter optimization.

Since we predict 168 values at once, we have to fill our lag

features during runtime by starting with the original values

given by the training data and gradually filling them with our

forecasts. That is, we forecast each value in the horizon as

a one-step-ahead forecast, and after each of these one-step-

ahead forecasts, we must create the feature set for the next

value. However, the model remains the same, only the feature

set must be recreated for each value in the forecast horizon.

To estimate the best method for a given time series, we

use the validation data to calculate the R2 score of each

method. Then, we select the method that achieved the highest

R2 score and learn a new model using the entire time series

(i.e., training and validation data). Finally, we forecast the

168 values using the presumably best forecasting method

and adjust the forecasts under the assumption that the data

should not contain negative values. Therefore, we set negative

forecasts to zero if all values in the training data are non-

negative. There are only few time series with negative values in

the training data. For these time series, we set the forecasts that

are smaller than the minimum in the training data to exactly

this minimum as we interpret it as a kind of zero-baseline.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results of our frame-

work based on the FedCSIS 2020 Challenge data set. First,

Fig. 2 shows a time series with a gap of seven missing

values. Here, the original time series is depicted in black,

while the green color indicates the imputation generated by our

algorithm. It can be seen that the imputation creates reasonable

reconstructions. In particular, the imputation algorithm even

reconstructs a first spike for the double-spiked seasonal pat-

tern, similar to the other seasonal highs, because the algorithm

considers precursors and successors with a distance equal to

the frequency of the seasonal pattern.

Fig. 3 shows an exemplary anomaly removal in one of the

competition time series. The black line shows the corrected

time series, while the red line shows the anomalous values

from the original time series. It can be seen that the peak value

of the daily pattern significantly exceeds the normal range and
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Fig. 2. An example time series with imputed values.

our anomaly detection method therefore overwrites these val-

ues by interpolating between the first non-anomalous precursor

and the next non-anomalous successor. If such anomalies

were not removed before modelling, the forecasting methods

could learn a different, incorrect behavior. In particular, if the

anomaly is at the end of a time series, as shown in Fig. 3, the

trend component can be manipulated so that the approximation

would erroneously detect an exponential trend.

The measure of the FedCSIS 2020 Challenge is the R2 value

with fi and yi representing the forecast and real value at time

i, respectively, while y is the mean value of the time series:

R2(f, y) = 1−

∑
i
(yi − fi)

2

∑
i
(yi − y)2

The following results are based only on the small test

data set of the FedCSIS 2020 Challenge. Using only single

forecasting methods with the features explained in Section V,

XGBoost yielded the best results with an R2 score of −0.0072.

By adding mode, median, and Random Forest regression

together with the recommendation strategy, the R2 score rose

to 0.2012. After including both versions of Telescope into the

set of possible forecasting methods, our framework achieved

an R2 score of 0.2544. Finally, by using Random Forest

classification for time series with only a few different values,

we achieved our highest R2 score of 0.2575. Since the baseline

has an R2 score of 0.2267, our last two versions clearly surpass

the baseline on the small test data set.

The distribution of forecasting methods recommended by

our framework is as follows: 124 time series show no variation

and therefore, the constant value is forecast. Random Forest

classification is applied for 104 time series that have more than

one and less than six individual values. For the remaining 9772

time series, regression is used. Mode and median are used

593 and 768 times, respectively. Although XGBoost performed

best as a single method, it is only used 1510 times for the entire

data set, while Random Forest regression is used most often,

i.e., 3280 times. Both Telescope alternatives are applied almost

equally often. Telescope without internal frequency estimation

is used for 1809 time series, while the Telescope with internal

frequency estimation is used for 1812 time series.

VII. CONCLUSION

In this paper, we introduced our approach used for the

FedCSIS 2020 Data Mining Challenge. First, we imputed the

time series as they contained missing values and removed

anomalous peaks. To tackle the “No-Free-Lunch-Theorem”,
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Fig. 3. An example time series with removed anomalies.

our approach uses the corrected data to learn several models,

from median and mode to univariate time series forecasting

and machine learning models with lags and time information

as features. Furthermore, our approach applies a recommenda-

tion to estimate the best of these methods based on the training

performance for each time series. For time series with only a

few different values, we apply Random Forest classification

instead of regression. For the small testing set, we obtained

an R2 score of 0.2575, which clearly exceeds the baseline.
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