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Abstract—Logistic optimization is a strategic element in many
industrial processes, given that an optimized logistics makes
the processes more efficient. A relevant case, in which the
optimization of logistics can be decisive, is the maintenance in a
Wind Farm where it can lead directly to a saving of energy cost.
Wind farm maintenance presents, in fact, significant logistical
challenges. They are usually distributed throughout the territory
and also located at considerable distances from each other, they
are generally found in places far from uninhabited centers and
sometimes difficult to reach and finally spare parts are rarely
available on the site of the plant itself. In this paper, we will
study the problem concerning the optimization of maintenance
logistics of wind plants based on the use of specific vehicle
routing optimization algorithms. In particular a pickup-and-
delivery algorithm with time-window is adopted to satisfy the
maintenance requests of these plants, reducing their management
costs. The solution was applied to a case study in a renewable
energy power plant. Results time reduction and simplification and
optimization obtained in the real case are discussed to evaluate
the effectiveness and efficiency of the adopted approach.

I. INTRODUCTION

T
HE maintenance of wind power plants is a complex
problem with several critical issues, whose optimization

plays a significant role in determining the final costs of the
energy produced [1].

The essence of improving wind turbine reliability is to
reduce downtime and increase availability by optimizing its
design and prescribing a well-organized maintenance schedule.
These strategies require a full understanding of the system and
a detailed analysis of its failure mechanisms and causes.

Several strategies have been devised for this purpose,
like the Supervisory Control and Data Acquisition System
(SCADA) that provides rich information about the plant itself,
giving both error signals as well as components’ performance
information[2][3][4][5][6]. SCADA can connect individual
turbines, the substation, and the meteorological stations to
a central computer which allows the operator to supervise
the behavior of the single wind turbine as well as the whole
wind farm. Several research works exist using these systems
as a primary source and using power-curve and temperature
analysis[7]; they achieved good results in reporting failures
and problems. Some of these research outcomes have been

recognized by industry and turned into applications [8][9]. The
performance of a wind turbine can be monitored systematically
through a proper analysis of the collected SCADA information
that covers all its sub-assemblies. However, other researches
focused on a different input that involves the use of natural
language and the analysis of maintenance reports compiled
by operators. This approach tries to extract meaningful infor-
mation from the semi-structured text and raw notes provided
by maintenance operators using Natural Language Processing
(NLP) techniques. To the best of our knowledge none of the
existing research related to NLP aims at detecting failures
related to a wind turbine, rather they just identify technology
trends [10][11] In [12] the authors present a strategy using both
monitoring and historical data to optimize maintenance, trying
to predict the failures in order both to plan the interventions
of maintenance team as well as the need of spare parts.

Whenever several wind farms must be managed, especially
if they are geographically distributed on a large scale, it is
necessary to pay attention to elements related to the logistic
service (correct spare parts, component footprint, timing, rout-
ing efficiency, to name a few). Effectiveness and efficiency
are the keys to the success of many companies, leading to
reduction of losses and high service levels. A wind turbine
consists of 15-20,000 components and many affect each other
even if they are not directly connected. Furthermore, hard
market competition and high obsolescence of components
lead to a context where demand is volatile and unpredictable,
therefore traditional operating strategies as creating inventories
or increasing the dedicated response time consumers are not
enough to gain a competitive advantage.

This paper reports some of the results of the WEAMS
project [13]. WEAMS project concern with the development
of an innovative asset management platform for the wind in-
dustry. One of the aims of the this project was the engineering
of the platform to manage predictive maintenance strategies in
wind farms. The project analyzed some logistic matters, con-
sidering different strategies to reduce costs and downtime due
to routine and emergency maintenance. Specifically, this paper
presents an algorithm to optimize maintenance scheduling that
takes into account the location of spare parts and distributed
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intervention areas also located in different places, sometimes
even at great distances from each other.

Section II introduces maintenance issues, focusing on logis-
tics matters also referring to existing literature. The case study
is presented in Section III where it is detailed the pickup-
and-delivery algorithm used to manage wind turbine spare
parts delivery. Section IV presents a couple of experiments
in different scenarios. Finally, Section V briefly discusses
advantages and disadvantages of the proposed approach, as
well as open questions.

II. MAINTENANCE & LOGISTIC IN A WIND FARM

A successfully predictive maintenance program, mainly in
the context of wind farms, should take into account both visit
scheduling and spare parts storage and delivery[14][15]. While
the former issue can be tackled in traditional ways, the latter
is quite complex due to the large geographical distribution of
plants, often hard to reach. Moreover, spare parts are usually
very large and heavy objects, difficult to move from storage
to plant. Single components or sub-systems represent very
different levels of the overall maintenance cost for a wind
turbine. Other components exhibit very low-cost but they
result in expensive in the life cycle perspective of the turbine
because they can cause turbines to fail and thereby reduce
the production (e.g. bearings, sensors). Moreover, the planned
maintenance visits can be limited by external events such as
snow or wave motion in the case of offshore wind farms.

A. Maintenance of wind farms

Reactive maintenance of complex and high-value installa-
tion such as wind farms is only possible if there are both a
distributed spare parts storage and an intelligent scheduling
algorithm that permits to reduce costs and shutdown time.

Among other typical problems of maintenance of power
plants, wind farms managers must also tackle the travel times
of the workers needed to reach the site and the transport
of spare parts in a location often far and difficult to reach.
Moreover, the maintenance providers of a wind farm are often
highly specialized and they focus only on specific parts of
the product, thus generating high operational expenditures
(OPEX). Therefore, to stock a lot of large and heavy spare
parts in several places could result in high capital costs
(CAPEX). An adequate predictive maintenance strategy must
take into account not only multiple stakeholders and locations
in the production processes themselves but also the movements
of parts - for instance in offshore plants - and reduction of the
indirect cost of parts stored in a warehouse.

The classical optimization of maintenance spans over six
main categories: Facility location and demand allocation,
Vehicle Routing Problems, Warehouse and stock management,
Goods delivery strategy, Logistic network complexity analy-
sis, and Network performance measurement. Facility location
and demand allocation study where to place the facilities
(distribution centers, regional depots, collection points, etc.)
and what is the optimal number of each type of facility for
the location of the customers. Note how the geographical

distribution typical of Wind park changes the perspective of
the problem. This matter is strictly connected with Vehicle
Routing Problems (VRP) which is one of the most complex
combinatorial optimization problems. It consists in finding a
route sets so that the vehicles can optimally serve customers’
requests (according to a specific function to be optimized)
while respecting constraints. The interest in solving VRP
problems is motivated by their practical relevance and their
inherent difficulty. Of course, the difficulties grow up in the
presence of great distance and hard to reach places.

Warehouse and stock management: the goal is to determi-
nate the correct level of stocks to be kept in the warehouses, to
guarantee business continuity, in choosing the warehouse allo-
cation policy (centralized or distributed), in determining which
component will be stored in each warehouse, which should
be eliminated and in general, the procurement strategies. As
mentioned above, the type of spare parts and their dimension
and cost make this problem more and more difficult to solve.
The same problem impacts Goods delivery strategy optimiza-
tion which studies the modality of movement of spare parts
among the various facilities of the logistics network, including
the calculation of transport costs and any outsourcing decision.

Finally, Logistic networks complexity analysis deals with
the techniques and methods for studying the complexity of
networks, their growth dynamics and weaknesses, to under-
stand their level of competitiveness and performance and the
Network performance measurement that aims at identifying
and measuring the metrics to evaluate the system performance.

However, the context of Energy Power Plant based on
Wind turbines poses new and interesting challenges to each of
the previous categories. Then the design and/or optimization
of a logistics network involves different aspects and many
decisions which can also be sometimes conflicting. Indeed, it
is rarely possible to find a solution that optimizes all aspects.
More realistically, a trade-off between different key factors
must be defined to balance the costs (CAPEX and OPEX)
and the overall networks performance.

As said above, one of the most investigated problems
concerns vehicle routing (VRP)[16]. To overcome the prob-
lem complexity various heuristics have been developed
to produce good solutions with tractable computational
complexity.[17][18][19]. The problem indeed presents sig-
nificant computational challenges by admitting, in its more
general formulation, further constraints such as the respect of
time windows on both customers and deposits or by imposing
a maximum vehicle transport load capacity and a maximum
speed.

In the case presented in this paper, the optimization of the
logistic network of green energy production, like wind and
solar plants, aiming at reducing the overall cost (i.e. number
of vehicles, maintenance team dimension, etc.) and complying
with the time constraints. The problem to be addressed is
twofold; modeling the network using complex network theory,
and optimizing costs while respecting constraints through the
use of VRP optimization techniques.
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B. Related work

The effort typical of maintenance tasks in wind farms is
due to several factors, as both space-related constraints, e.g.
the difficulty of reaching off-shore (but also many on-shore)
locations as well as time-related constraints, e.g. when trying
to accomplish maintenance on the "right" day (as indicated by
optimization algorithms) but a wind storm just hit that area.
The work [14] provides a conceptual classification framework
for the available literature about maintenance strategy opti-
mization and inspection planning of wind energy systems.

An additional related matter is the logistics of spare parts,
whose management significantly affects maintenance tasks;
having the right part at the right time in the right location
is critical to guarantee business continuity and maintenance
performance.

To the best of our knowledge, no works are addressing
this specific issue, e.g. in [20], authors focus mainly on
weather conditions to determine the best time window and
execution order for optimal intervention. Similarly, [17] pro-
poses a hybrid heuristic optimization of maintenance routing
and scheduling in particular for offshore wind farms, where
optimal vessel allocation scheme is crucial (though spare parts
are not considered). In [18], offshore wind farms are also
addressed, in this case finding the best routes for the crew
transfer vessels. Conversely, the work [21] focus on on-shore
wind farms and considers forecast wind-speed values, multiple
task execution modes, and daily restrictions on the routes of
the technicians to determine optimal maintenance operations
scheduling.

All these works tackle the question with different ap-
proaches, for instance [18] is based on the Large Neigh-
bourhood Search meta-heuristic, whereas [21] adopts linear
programming formulations and branch-and-check approach.
In [20] the optimization is achieved simply through brute force
whereas [17] adopts a hybrid optimization using first mixed
particle swarm optimization to determine an optimal vessel
allocation scheme and then discrete wolf pack search (DWPS)
to optimize the maintenance route according to all constraints.
A common feature most works share is the exploitation of real
historical datasets to achieve realistic optimizations.

III. PICKUP AND DELIVERY VEHICLE ROUTING

PROBLEMS WITH TIME WINDOWS

As discussed above, in this work we address the mainte-
nance plan optimization problem by mapping it on a specific
VRP problem. To be more detailed, we employ a pickup
and delivery VRP with time windows algorithm to take into
account all the constraints imposed by our specific problem. It
is known that determining the optimal solution to VRP is NP–
hard, hence to approach such a problem many heuristics have
been developed. Here we employ the algorithm proposed in
[22], which consists of two phases. Indeed, it is recognized that
in a typical VRP minimizing the objective function directly
might not be the most efficient way to decrease the number of
routes and vehicles. This because the objective function leads
many times to solutions with low travel costs and this could

make it difficult to reach solutions with few routes but with a
higher travel cost.

To avoid this problem, the above-mentioned algorithm uses
a two-stage algorithm consisting in

1) The minimization of the number of routes through the
use of a Simulated Annealing algorithm.

2) The minimization of the total travel cost by using a
Large Neighborhood Search algorithm.

In the following, we present the Pickup and Delivery
Vehicle routing problem with time windows (PDPTW) by first
introducing some definitions (taken from [22]).

Customers: The problem is defined in terms of the N

customers, represented by the numbers 1, ..., N , and a deposit,
represented by the number 0. In general, with the term site,
we identify the N customers and the deposit as well, i.e. sites
ranges from 0 to N .

• Customersp denotes the set of withdrawal points
(pickup customers).

• Customersd indicates the delivery points (delivery cus-
tomers).

Travel Cost: The cost of the path between the generic
sites i and j is indicated with cij . It is supposed that such
a cost must satisfy the triangular inequality: cij + cjk >= cik.
The normalized travel cost c

′

ij is also defined as the cost cij
between sites i and j divided by the max cost among all couple
of sites.

Service time: A service time is also associated with every
customer i, together with a demand qi ≥ 0. If i is a pickup
customer, the delivery counterpart is denoted by @i. Given
that, the demand of @i is q@i = −qi.

Vehicles: In this problem, we suppose to have m identical
vehicles of capacity Q each.

Routes: In general, a route starts from the depot, visits a
certain number of customers at most once, and finally returns
to the depot, i.e. a route is a sequence {0, v1, ...vn, }, where vi
is the generic vertex of the path. Note that in a route all vi are
different, i.e. each vertex is touched only once (excluding the
depot). Given a route r = {v1, ...vn, }, we denote with cust(r)
the set of of its customers, i.e. cust(r) = {v1, ...vn, }, With
route(c) we denote the route the customer c belongs to. For a
given route r, its length is indicated by |r|, while the number
of visited customers is denoted by |cust(r)|. The travel cost of
a route is indicated by t(r) and represents the cost of visiting
all of its customers; it is defined as:

{

t(r) = c0v1 + cv1v2
+ ...+ cv(n−1)vn

+ cvn0 if route !=∅

0 otherwise
(1)

Routing plan: it is a set of routes {r1, ..., rm} with (m ≥
N) visiting all customers exactly once:

{

⋃m
i=1 cust(ri) = Customers

cust(ri) ∩ cust(rj) = ∅ (1 ≤ i < j ≤ m)
(2)
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A routing plan assigns a single successor and predecessor
to every customer. Given a routing plan σ and a customer i,
succ(i, σ) and pred(i, σ) are respectively the predecessor and
the successor of i in the routing plan σ (shortly indicate as i+

and i− in the following).
Time Windows: Each site is associated with a temporal

window {ei, li}, where ei represents the earliest arrival time
and li the latest arrival time. This means that a vehicle can
arrive on a site i before ei, but it must wait ei to start the
service. Vehicles must arrive at any site i before the end of the
time window li. In the specific case of the depot, its temporal
window [e0, l0] individuate the time e0 in which all vehicles
leave the depot and the time l0 when all vehicles return to the
depot. The departure time δi of a given customer i is defined
as:
{

δ0 = 0

δi = max(δi− + ci−i, ei) + si (i ∈ Customers)
(3)

The Earliest Service Time ai of a given customer i is defined
as:

ai = max(δi− + ci−i, ei) (i ∈ Customers) (4)

The Earliest Arrival Time a(r) of a route r is defined as:

a(r) =

{

δvn
+ cvn0 if (route! = ∅)

e0 otherwise
(5)

For a customer i the time window constraint is satisfied if
ai ≤ li and, in particular the time window constraint for the
deposit is satisfied if a(r) ≤ l0 ∀r ∈ σ.

Capacities: Let us define the demand of a route r at
customer c as:

q(c) =
∑

i∈cust(r) & δi≤δc

qi (6)

With the constraint that for a customer c, q(c) ≤ Q.
PDPTW: A solution to the PDPTW is a routing plan σ that

satisfies all these constraints:






























q(i) ≤ Q

a(rj) ≤ l0

ai ≤ li

route(i) = route(@i)

δi ≤ δ@i

(7)

where i ∈ Customers and 1 ≤ j ≤ m.
A solution to the PDPTW consists in finding a routing

plan σ satisfying the above-mentioned constraints that also
minimizes the number of vehicles and, in case of ties, the
total travel cost. In formal terms σ minimizes the following
objective function:

f(σ) = 〈|σ|,
∑

r∈σ

t(r)〉 (8)

The algorithm used to find a solution to the PDPTW is
that proposed in [22], consisting in two stages. The first
one performs the minimization of the number of routes via

a simulated annealing algorithm. As a classical simulated
annealing algorithm, it starts from a solution and then produces
a new random solution that is accepted with a probability that
depends on the value produced by a domain-specific evaluation
function. In particular, a new solution is produced by using a
random pair relocation method (see [22] for details), while the
evaluation function it uses is a lexicographic ordering function
defined as in the following:

e(σ) = 〈|σ|,−
∑

r∈σ

|r|2,
∑

r∈σ

t(r)〉 (9)

where the first term is the number of routes, the second term
tends to favor solutions with many customers and the last term
takes into account the travel cost of the routing plan.

The second stage of the algorithm proposed in [22] consists
in minimizing the total travel cost by using a large neigh-
borhood search (LNS) method. It consists of exploring the
neighborhood of a given solution to find a better one, i.e. one
that produces a minor value of the objective function 8. We
refer the reader to [22] for additional details on the above
mentioned algorithms.

IV. EXPERIMENTS

As pointed out in the above sections, the optimization of
VRP in the context of maintenance of Wind turbines is very
complex whilst it has a high-impact on the costs and efficiency
of the whole system. Indeed, the wind farms are unevenly
distributed over the territory of a country as far as the spare
parts deposits. Furthermore they are located in different and
often distant sites.

In this section we present two examples, the former aiming
at testing the effectiveness of the algorithm with a toy example
and the latter to mimic a simplified real scenario. Both
examples concerns a "single spare parts store" scenario.

A. Basic setup

The topology chosen for the first example is based on
10 nodes and 1 depot with a symmetric topology. The cost
between each pair of nodes is assumed equal to 1. In particular,
this setup encompasses five plain routes connecting five places,
called A,B,C,D,E, each route contains only one delivery
and one dispatch point. Therefore, the problem is described
by 10, where P , D, C are the set of Pickups, Deliveries and
Customers respectively, and by the set of routes described in
eq. 11.

P = {A,B,C,D,E}

D = {@A,@B,@C,@D,@E}

C = P ∪ D = {A,B,C,D,E,@A,@B,@C,@D,@E}

(10)

582 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



Fig. 1. Example 1: topology

r1 = {depot, A,@A, depot}

r2 = {depot, B,@B, depot}

r3 = {depot, C,@C, depot}

r4 = {depot,D,@D, depot}

r5 = {depot, E,@E, depot}

(11)

Figure 1 illustrates all the routes that start from depot. Each
connection ha the same cost and it is equal to 1, the earliest
arrival time to the depot is 40 hours and the time needed to
get each customer is 2 hours. The global cost is then equal to
15.

The algorithm tries to optimize the solution according to
the following two steps:

SA the route is reduce with the Simulated Annealing
LNS the route is optimized with the Travel Cost Minimize

Function

Note that the LNS step may not converge; when this
happens, it is advisable to change some values of setup and
restart from scratch. The setting values are summarized in
Table I.

TABLE I
FIRST EXAMPLE SETTING

Step Item Value

SA
Temperature value 28
Temperature Limit value 15
α 0.5
Max Iterations 1
β 1

LNS
Max Searches 5
Max Iterations 1
beta 2

Fig. 2. Example 1: Routes after Simulation Annealing

Fig. 3. Example 1: Routing after LNS

SA step looks for new routes with a better cost, in the
example four routes exist with a global cost of 14.

r0 = {depot, A,@A, depot}

r1 = {depot, B,@B, , depot}

r2 = {depot, C,@C, depot}

r3 = {depot,D,E,@E,@D, depot}

(12)

Figure 2 illustrates all the routes after simulation annealing.
Finally, the LNS optimization produces a single route 13,

shown in 3, which has a cost equal 10 that is much better the
initial value.

r0 = {depot, B,D,E,@E,A,C,@D,@A,@C,@B, depot}

(13)
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B. Experiments on real routes

The supply of spare parts usually deals with two different
scenarios: the former concerns with a single plant where each
node represents a single wind turbine and the latter scenario
concerns with the portfolio of a producer where a single node
represents a whole farm. However, the problem to optimize is
quite the same since we look for the cheaper path connecting
depot with several nodes.

In this paper we present a case study belonging to second
scenario and we suppose that a single warehouse (the depot

node) provides all the farm with the spare parts.
We search for solutions that satisfy all the constraints

defined for the algorithm. Therefore, we define for each site i

a time window [ei, li] representing the lower and upper limits
to perform an effective maintenance. That is, the spares must
not arrive before ei and not after li, if they arrives before ei
they must wait at least until ei before starting maintenance.

The experiments deals with the functional maintenance of
10 farms located in Italy covering the management of very
expensive and large spare parts. Table II defines all involved
nodes (pickup or delivery node), the distance among nodes was
build using Google map services and Table III summarizes the
setup parameters.

TABLE II
PICKUP AND DELIVERY POINTS

Pickup Name Delivery Name

Enna A Brindisi @A
Florence B Genova @B
Catania C Bari @ C
Taranto D Naples @ D
Milan E Pompei @ E
Bologna F Bozen @ F
Rome G Cagliari @ G
Sassari H Pirri @ H
Agrigento I Mele @ I
Viterbo L Palese @ L

TABLE III
EXAMPLE SETTING

Step Item Value

SA
Temperature value 28
TemperatureLimit value 3
α 0.3
MaxIterations 2
β 1

LNS
MaxSearches 2
MaxIterations 2
β 2

In order to complete the setup we selected four routes 14

r0 = {depot, A,@A,B,@B, depot}

r1 = {depot, C,@C,D,@D, depot}

r2 = {depot, E,@E,F,@F,G,@G, depot}

r3 = {depot,H,@H, I,@I, L,@L, depot}

(14)

We assume that each km have a cost of 1, then the global
cost of this four route is calculate using the distance matrix is
equal to 7791.

After SA step the new four routes are shown in 15

r0 = {depot, A,@A,B,@B, depot}

r1 = {depot, C,@C,D,@D, depot}

r2 = {depot, E,@E,F,@F, depot}

r3 = {depot,H,G, ,@G,@H, I,@I, L,@Ldepot}

(15)

Unluckily, In this case the LNS optimization is failed,
therefore changed the setup according to Table IV.

TABLE IV
NEW SETTING

Step Item Value

SA
Temperature value 30
TemperatureLimit value 9
α 0.5
MaxIterations 2
β 3

LNS
MaxSearches 5
MaxIterations 2
β 1

Finally, after both steps, we find the following three routes
(see 16) that save more than 15% of the cost.

r1 = {depot, A,C,D,@D,@C,@A,B,@B, depot}

r2 = {depot, E,@E,F,@F,G,@G, depot}

r3 = {depot,H,@H, I,@I, L,@L,@D,@L, depot}

(16)

V. CONCLUSIONS AND FUTURE WORK

In this paper we described a case study concerning Logistic
optimization, in particular the maintenance in a Wind Farm,
where many challenges exist, from wind turbines location
(sparse and sometimes difficult to reach, especially off-shore
ones), to spare parts management (from stock to wind farm),
to vehicle routing optimization algorithms.

We introduced a pickup-and-delivery algorithm with time
window in a renewable energy power plant scenario, and re-
sults show that both effectiveness and efficiency are achieved.

Further works concern the extension of the proposed ap-
proach to the case of multiple stocks and the adoption of
machine-learning based algorithm to manage and refill these
stocks, with the same purpose of optmizing procurement time
and costs. Moreover, other case studies can be examined to
validate the proposed approach, also considering features as
multi-site and multi-team in addition to multi-stock.
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