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Abstract—This paper is a continuation of the discussion on
optimization of the quadrature formulas and their applications
in paper [2]. Second-order numerical solutions of Volterra
integral equations are constructed using the quadrature formulas
obtained in [2]. The numerical results presented in the paper
confirm the effectiveness of the methods for numerical solution
of ordinary differential equations.

I. INTRODUCTION

IN PAPER [2] we study the quadrature formulas which

have generating functions G1(x) = π sec(π
√
x/2)/4 and

G2(x) = π tan(π
√
x/2)/(4

√
x). We construct the second-

order quadrature formulas

h

2

(

y0 +

N−1
∑

k=1

EkyN−k +
π − 1

2
yN

)

=

∫ b

a

y(x)dx+O
(

h2
)

,
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h

2

(

y0 +

N−1
∑

k=1

BkyN−k +
π2 − 6

4
yN

)

=

∫ b

a

y(x)dx+O
(

h2
)

,

where h = (b − a)/N and xk = a + kh, yk = y(xk) for

k = 0, 1, · · · , N and Ek and Bk are the coefficients of the

Maclaurin series of the generating functions

Ek =
|E2k|
(2k)!

(π

2

)2k+1

, Bk =
(4k+1 − 1)π2k+2|B2k+2|

(2k + 2)!
, (1)

where Ek and Bk are the Euler and Bernoulli numbers. The

coefficients of the right endpoint expansion formulas are equal

to the coefficients of the Maclaurin series of the functions

Hi(x) = Gi(e
−x) for i = 1, 2. In [2] we construct third-order

and fourth-order quadrature formulas as linear combinations

of the trapezoidal rule

h

2

(

y0 + 2

N−1
∑

k=1

yN−k + yN

)

=

∫ b

a

y(x)dx+O
(

h2
)

, (2)

the two quadrature formulas above and their modifications.

The method for construction of quadrature formulas by first

specifying the generating function is an effective method for

construction of approximations of the fractional derivatives

and integrals (see [1], [3], [4], [5]). The method is applicable
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for construction of approximations of the definite integral and

the integer order derivatives of a function as well. In [7] we

construct approximations of the first derivative which have

exponential and logarithmic generating functions. In the paper

we give a proof for the convergence of the approximations and

applications of the approximations for numerical solution of

ordinary and partial differential equations. The method used

in the paper can be extended for construction of approxima-

tions of the second derivative which are suitable for deriving

approximations of the fractional derivatives. Other methods

for numerical solution of integral equations use Gaussian

quadratures on non-uniform nets and Monte Carlo methods

for numerical integration (see. [8], [9], [10]). Let

h

2

N
∑

i=0

wiyN−i =

∫ b

a

y(t)dt+O
(

h2
)

(*)

be a second-order quadrature. Consider a Voltera integral

equation of the second kind which has the following form

y(x) +

∫ x

0

K(x− t)y(t)dt = F (x). (3)

The Nyström method (see [6]) for computing the numerical

solution of equation (3) uses the approximations of the values

of the definite integral in equation (3) with quadrature formula

(*) on all intervals [0, xn],

yn +
h

2

n
∑

i=0

wiKiyn−i = Fn +O
(

h2
)

.

The numerical solution {un}Nn=0 of integral equation (3),

where un is an approximation of the value of the solution

yn, is computed recursively with

un =
1

2 + w0K0h

(

2Fn − h
n
∑

i=1

wiKiyn−i

)

(NS1(*))

and has an initial condition u0 = y0 = F (0). The computation

of numerical solution NS(*) involves O
(

N2
)

operations.

Denote by (3.1) and (3.2) the equations obtained from equation

(3) with a kernel function K(s) = 3+ 2s and right hand side

F1(x) = x3(10(4x2 + 30x+ 40) lnx− 18x2 − 75x)/400 and

F2(x) = arctanx− x+ (3/2 + x) ln(1 + x2)

+ (1 + 3x+ x2) arccotx

respectively. Equations (3.1) and (3.2) have the solutions

y(x) = x3 lnx and y(x) = arccotx. In table I we give

the experimental results for the error and the order of the

numerical solution NS(2), which uses the trapezoidal rule (2),

of equations (3.1)-left and (3.2)-right on the interval [0, 1].
The rest of the paper is organized as follows. In section

two we construct the numerical solution of first order ODEs

by transforming them to integral equations in the form (3)

and we also construct the numerical solutions which use the

corresponding shifted quadrature formulas. In section three

of the paper we apply the method for numerical solution

of second order ordinary differential equations (ODEs) by

converting them to Voltera integral equations

TABLE I

h Error Order Error Order

0.005 4.545× 10
−6

2.000 2.802× 10
−6

2.000

0.0025 1.136× 10
−6

2.000 7.006× 10
−7

2.000

0.00125 2.841× 10
−7

2.000 1.751× 10
−7

2.000

II. NUMERICAL SOLUTION OF FIRST ORDER ODES

In this section we construct the numerical solution of first

order ODEs by first transforming them to integral equations

which are solved with Nyström method. In [2] we obtain the

second order approximations

h

2

N
∑

k=0

EkyN−k =

∫ b

a

y(x)dx+O
(

h2
)

, (4)

h

2

N
∑

k=0

BkyN−k =

∫ b

a

y(x)dx+O
(

h2
)

, (5)

where E0 = (π − 1)/2, B0 = (π2 − 6)/4 and the rest of the

weights are defined with (1). The two approximations (4) and

(5) require that the integrand function satisfies y(a) = 0. We

use the method (see [3], [7]) for extending the approximations

to the class of all differentiable functions by changing the

values of the last weights. By applying approximation (4) to

the function y(x)− y(a) we obtain

h

2

N−1
∑

k=0

Ek(yN−k − y0) =

∫ b

a

(y(x)− y(a))dx+O
(

h2
)

,

h

2

(

N−1
∑

k=0

EkyN−k+ 2Ny0− y0

N−1
∑

k=0

Ek

)

=

∫ b

a

y(x)dx+O
(

h2
)

.

Define EN = 2N −∑N−1

k=0
Ek. Therefore approximation (4)

has a second-order accuracy for all differentiable functions.

Similarly, when BN = 2N −∑N−1

k=0
Bk approximation (5)

holds for all differentiable functions in [a, b]. Now we apply

approximations (4) and (5) for numerical solution of ODEs.

Consider the first order linear ODE

y′ + ay = f(x), y(0) = y0. (6)

By applying integration on both sides of equation (6) we get
∫ x

0

y′(t)dt+ a

∫ x

0

y(t)dt =

∫ x

0

f(t)dt,

y(x) + a

∫ x

0

y(t)dt = F (x), (7)

where F (x) = y0 +
∫ x

0
y(t)dt. Equation (7) is equivalent to

(6) and it is a Voltera integral equation of the second kind

with a kernel K(s) = a. Denote by (7.1) the equation which

corresponds to (7) when a = 2 and F1(x) = x3(4(2 +
x) lnx−x)/8. Equation (7.1) has the solution y(x) = x3 lnx
and it is equivalent to equation (6) with a right hand side

f1(x) = x2(1 + (3 + 2x) lnx). Denote by (7.2) the integral

equation which corresponds to equation (7) with a = 3,
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F2(x) = (1+3x) arccotx+3 ln(1+x2)/2 and initial condition

y(0) = y0 = F0(0) = π/2. Equation (7.2) has the solution

y(x) = arccosx and it is equivalent to equation (6) with a

right hand side f2(x) = 3 arccotx − 1/(1 + x2). Equations

(7.1) and (7.2) are integral equations in the form (3) and

can be solved numerically with methods NS(4) and NS(5),

which use quadrature formulas (4) and (5). In table II we

give the experimental results for the error and the order of the

numerical solution NS(4) of equations (7.2) and (7.3).

TABLE II

h Error Order Error Order

0.005 7.202× 10
−6

1.995 2.918× 10
−6

1.969

0.0025 1.804× 10
−6

1.997 7.412× 10
−7

1.977

0.00125 4.513× 10
−7

1.999 1.870× 10
−7

1.987

The results for the error and order of the numerical solution

NS(5) of equations (7.2) and (7.3) are given in table III.

TABLE III

h Error Order Error Order

0.005 3.823× 10
−6

2.004 1.351× 10
−6

1.996

0.0025 9.544× 10
−7

2.002 3.385× 10
−7

1.997

0.00125 2.384× 10
−7

2.001 8.476× 10
−8

1.998

Now we construct the shifted quadratures which correspond

to formulas (4) and (5). From [2]

h

2

N
∑

k=0

EkyN−k =

∫ b

a

y(x)dx+
1

4
f(b)h+O

(

h2
)

, (8)

h

2

N
∑

k=0

BkyN−k =

∫ b

a

y(x)dx+
3

4
f(b)h+O

(

h2
)

, (9)

where the weights Ek and Bk are defined with (1) for all

indices k = 0, 1, · · · , n. From the mean value theorem we

have the second order approximation

∫ b+ch

a

y(x)dx =

∫ b

a

y(x)dx+ cf(b)h+O
(

h2
)

. (10)

From (8) and (10)

h

2

N
∑

k=0

EkyN−k =

∫ b+h/4

a

y(x)dx+O
(

h2
)

. (11)

Shifted quadature (11) has a requirement that the integrand

function satisfies the condition y(a) = 0. By applying (11) to

the function y(x)− y(a) we find

h

2

N−1
∑

k=0

Ek (yN−k − y0) =

∫ b+h/4

a

(y(x)−y(a))dx+O
(

h2
)

,

Shifted quadrature (11) has a second order accuracy for all

differentiable functions when the weight EN is defined as

EN =
2

h

(

b− a+
h

4

)

−
N−1
∑

k=0

Ek = 2N +
1

2
−

N−1
∑

k=0

Ek

Similarly from (9) and (10) we obtain

h

2

N
∑

k=0

BkyN−k =

∫ b+3h/4

a

y(x)dx+O
(

h2
)

. (12)

Shifted quadrature (12) has a second-order accuracy when

BN = 2N +
3

2
−

N−1
∑

k=0

Bk

and the weights B0, B1, · · · , BN−1 are defined with (1). The

first weights E0 = π/2 and B0 = π2/4. Now we construct the

numerical solution of integral equation (7) which uses shifted

quadrature (11). By approximating the definite integral in (7)

at the point xn+1/4 with (11) we obtain

yn+1/4 +
1

2
ah

n−1
∑

k=0

Ekyn−k = Fn+1/4 +O
(

h2
)

.

Let {un}Nn=0 be the numerical solution of (7). From the second

order approximation

yn+1/4 =
5yn − yn−1

4
+O

(

h2
)

we obtain the recursive formula for the numerical solution

un =
1

5 + πah

(

4Fn+1/4 + un−1 − 2ah
n−1
∑

k=1

Ekyn−k

)

,

(NS1)

with an initial condition u0 = F0. In table IV we give

the experimental results for the error and the order of the

numerical solution NS1 of equations (7.2)-left and (7.3)-right.

TABLE IV

h Error Order Error Order

0.005 5.638× 10
−6

2.000 1.323× 10
−6

1.996

0.0025 1.409× 10
−6

2.000 3.314× 10
−7

1.998

0.00125 3.522× 10
−7

2.000 8.291× 10
−8

1.989

The numerical solution of integral equation (7) which uses

shifted quadrature (12) is obtained from the approximation of

the definite integral in (7) at the point xn+3/4 with (12).

yn+3/4 +
1

2
ah

n−1
∑

k=0

Bkyn−k = Fn+3/4 +O
(

h2
)

.

From

yn+3/4 =
7yn − 3yn−1

4
+O

(

h2
)

we obtain the recursive formula of the numerical solution

un =
2

14 + aπ2h

(

4Fn+3/4 + 3un−1 − 2ah

n−1
∑

k=1

Ekyn−k

)

.

(NS2)

The experimental results for the error and the order of the

numerical solution NS2 of equations (7.2) and (7.3) are given

in table V.
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TABLE V

h Error Order Error Order

0.005 6.249× 10
−5

1.990 1.352× 10
−5

1.900

0.0025 1.567× 10
−5

1.995 3.532× 10
−6

1.936

0.00125 3.924× 10
−6

1.997 9.054× 10
−7

1.964

III. NUMERICAL SOLUTION OF SECOND ORDER ODES

We apply the method from section 2 for computing the

numerical solution of the second order ODE

y′′ + 3y′ + 2y = f(x), y(0) = y0, y
′(0) = y′0. (13)

Equation (13) is transformed to an integral equation in the

form (3) by applying successive integration to both sides
∫ x

0

y′′(u)du+ 3

∫ x

0

y′(u)du+ 2

∫ x

0

y(u)du =

∫ x

0

f(u)du,

y′(x) + 3y(x) + 2

∫ x

0

y(u)du = 3y0 + y′0 +

∫ x

0

f(u)du.

Integrate again both sides

y(x) + 3

∫ x

0

y(t)dt+ 2

∫ x

0

∫ t

0

f(u)dudt = F (x), (14)

where F (x) = y0+(3y0+y′0)x+
∫ x

0

∫ t

0
f(u)dudt. By changing

the order of integration of the double integral we get
∫ x

0

∫ t

0

f(u)dudt =

∫ x

0

∫ x

u

f(u)dtdu =

∫ x

0

(x− u)f(u)dtdu.

Equation (14) is transformed to

y(x) +

∫ x

0

(3 + 2x− 2t)y(t)dt = F (x). (15)

Equation (15) is a Volterra integral equation of the second kind

with a kernel K(s) = 3+2s. In section 1 we compute the nu-

merical solution NS(2) of equations (3.1) and (3.2), which are

also integral equations in the form (15). In table VI we give the

results for the maximal error and order of numerical solution

NS(4), which uses quadrature formula (4), of equations (3.1)-

left and (3.2)-right and step sizes h = 0.005, 0.0025, 0.00125.

TABLE VI

h Error Order Error Order

0.005 6.730× 10
−6

1.997 5.885× 10
−6

1.947

0.0025 1.684× 10
−6

1.998 1.499× 10
−7

1.972

0.00125 4.213× 10
−7

1.999 3.805× 10
−7

1.978

The results for the error and the order of the numerical solution

NS(5) of equations (3.1) and (3.2) are given in table VII.

TABLE VII

h Error Order Error Order

0.005 3.563× 10
−6

2.002 2.795× 10
−6

2.008

0.0025 8.901× 10
−7

2.001 6.969× 10
−7

2.004

0.00125 2.224× 10
−7

2.000 1.740× 10
−7

2.001

IV. CONCLUSION

In the paper we construct second-order numerical solu-

tions of ordinary differential equations by converting them

to integral equations and applying the quadrature formulas

from [2] . Numerical solutions NS(4) and NS(5) involve

additional multiplications compared to the standard method

NS(2) and have a longer computational time. One advantage

of the methods discussed in the paper is that the linear

ODEs are equivalent to Volterra integral equations in the form

(3) and they can be solved numerically with NS(*) which

uses an appropriate quadrature. All methods discussed in the

paper involve O
(

N2
)

computations and have comparable

performance. From the experiments presented in the paper

and the results of additional experiments we can conclude

that the numerical solutions discussed in the paper have a

stable and efficient performance. In future work we will prove

the convergence of the numerical solutions constructed in the

paper and we will apply the methods for numerical solution

of other classes of ordinary differential equations.
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