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Abstract—In this paper, we propose an iterative descent
method to predict compressive cement strength estimated param-
eters for lime and cement as coating substances. We first propose
a formal description of the problem by using a mathematical
model that is based upon a series of equations. The aforemen-
tioned equations are related to both the ratio of quantity of water
to quantity of coating substance and the ratio of quantity of straw
to quantity of coating substance. Second, we propose to solve
the model by applying a gradient descent method. It is applied
for reaching results closest to the data gathered from a real
experimental studies conducted on the coating of flax straw before
incorporating them into a cement matrix. The experimental part
shows that the proposed model is capable to predict The the
estimation of the parameters necessary for such study.

Index Terms—Prediction; Optimization; Gradient descent.

I. INTRODUCTION

T
HE MOST important mechanical property of a concrete
is it’s compressive strength. Compressive strength test is

a commonly used experiment to measure the characteristics
of the cement properties. In this study the experiment is
conducted in the laboratory of IMAP on the coating of flax
straw before their incorporation into a cement matrix. During
the experiment, the ratio of quantity of water to quantity of
Coating Substance (noted CS) and the ratio of the quantity of
straw to quantity of CS varied.

Measured characteristics are density, water absorption ca-
pacity and decrease in water absorption capacity (comparison
with untreated straws) of straws and flexural strength, com-
pressive strength, density, dimensional variation on drying and
extreme dimensional variation of composites. The objective of
the experiment is to have high mechanical properties and low
dimensional variation on the formulated product.

Several studies proposed soft computing-based approaches
to predict the mechanical strength of concrete. Generally, these
approaches tend to design models based upon linear and / or
nonlinear regression equations (cf., Snell, et al. [1]).

During practical sessions, we noticed that this experiment
is time consuming and expensive as it needs to recruit peo-
ple to perform the experiments. In order to overcome these
difficulties, often encountered in these studies, we propose
a mathematical model for predicting results related to the
principal parameters of the study.

The rest of the paper is organized as follows. Section II
describes a brief overview of the related studies. In section III,
the parameters of the experiment is described, where a brief
representation of the data used is provided in section IV.
Section V shows how linear regression-based method can

be applied for the considered study. Finally, the proposed
equations are presented in section VI and the last section VII
concludes the paper by summarizing the contents of the study
and future studies.

II. AN OVERVIEW OF THE LITERATURE

Compressive Cement Strength Test (namely CCST) is the
most important test for quality control which conventionally
takes 28 days of experiments (for more details the reader can
be referred to de Siqueira Tango [2]).

Generally there are two ways to perform CCST: (i) the
first way can be achieved by considering the experimental
test, where Accelerated Atrength test methods (namely AST)
is applied and, (ii) the second way based on predicting the
variables-values using soft computing-based methods.

CCST by itself is time consuming and therefore expensive
for industries. Considering the importance of CCST, we de-
cided to simulate the experiment by proposing mathematical
formulations. Indeed, we mainly propose equations in this
study that are able to simulate the variables of CCST.

We note that there are several studies that focus on the soft
computing-based methods, including regressions and neural
networks. However regression methods seems popular and less
complicated to tackle when compared to the other studies (cf.,
de Siqueira Tango [2] and, Snell, et al. [1]).

Behavior of these materials by itself depends on several
chemical and physical parameters that affect each other in
nature. Therefore, detecting and optimizing these materials
is not the most efficient method. Thus, both statistical and
analytical models with the use of soft computing-based ap-
proaches, including regression analysis seems a promising
way to the Compressive Cement Strength Prediction Problem
(noted CCSPP).

The optimization of concrete (and generally composites)
concerns selecting values for the constituent parameters.
Baykasoglu et al. [4] proposed a two-step approach for multi
objective optimization of high-strength concretes (namely
HSCs). In their study, they applied a regression analysis, a
neural networks and a gen expression programming to predict
HSCs parameters in the first step. The first step established
equations that represent concrete characteristic in terms of its
components. According to these equations, a multiobjective
optimization model has been proposed that is solved by using
a genetic algorithm; that is the second step of their approach.

In Baykasoglu et al. [3] another way to tackle the CCSPP
has been proposed. Indeed, the authors proposed a gene
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expression programming, neural networks and stepwise
regression analysis as soft computing techniques.

Herein, we aim to simulate CCST by mathematical equa-
tions. The equations will return the parameters that needs to be
varied in a real experiment. Results of the equations obtained
in this study can be replaced with carried experiment.

III. COMPRESSIVE CEMENT STRENGTH TEST PARAMETERS

In this study we considered two different experiments:

1) The first experiment. The objective is to predict the ratio
of quantity of water to quantity of CS and the ratio of
quantity of straw to quantity of CS for lime by having
the density, water absorption capacity and decrease in
water absorption capacity (comparison with untreated
straws) of straws and flexural strength, compressive
strength, density, dimensional variation on drying and
extreme dimensional variation of composites. This ex-
periment will results two equation where each of this
equations is used to predict a ratio.

2) The second experiment. In addition to the first experi-
ment, the second experiment will calculate the two ratios
related to the cement.

Table I reports the parameters used in this study. These
parameters are considered in both experiments for Lime and
Cement.

TABLE I: Design variables

Symbol Parameter
X1 Shive water absorbance diminution (%)
X2 Shive water absorbance (%)
X3 Shive bulk density (kg/m3)
X4 Composite Rf (Mpa)
X5 Composite Rc (MPa)
X6 Composite bulk density (kg/m3)
X7 Composite DS (mm/m)
X8 Composite EDV (mm/m)
Y1 Shive/Coating substance (S/CS)
Y2 Water/Coating Substance (W/CS)

Therefore, using symbols introduced in Table I, on the one
hand, for the first experiment the parameters are represented by
the set {X1, X2, X3, X4, X5, X6, X7, X8} and Y1 denotes
the variable to predict for Lime. On the other hand, for the
second equation the parameters are characterized with the set
{X1, X2, X3, X4, X5, X6, X7, X8} and Y2 is the predicted
variable. In the second experiment the similar parameters are
selected using data of Cement.

IV. DATA COLLECTION

Practical experiments are conducted in IMAP Laboratory,
where 123 experiments were conducted on the coating sub-
stances including: (i) 60 experiments on Lime, (ii) 3 on the
non treated material and, (iii) 60 experiments on Cement.

In the experiment, for each CS, the ratio of quantity of water
to quantity of CS is varied in the interval {0.33, 0.5, 0.75 ,
1} while the ratio of the quantity of straw to quantity of CS
is varied in interval {0.5 , 0.75 1, 2}.

For each CS the measured parameters are shive water
absorbance (%) , shive bulk density (kg/m3) , composite Rf
(Mpa), composite Rc (MPa), composite bulk density (kg/m3),
composite DS (mm/m), composite EDV (mm/m). Finally,
the amount of shive water absorbance diminution (%) is
mathematically calculated using the provided data from the
experiments.

We note that the goal of the experiment is to preserve high
mechanical properties and low dimensional variation on the
formulated coating substances. Average of the data for each
experiment is summarized in Table III

V. REGRESSION ANALYSIS

There are several studies in the literature that implement
various algorithms to optimize gradient descent as one of the
most popular optimization methods.(e.g. Bengio [6]).

The gradient descent my be distinguished with its three
variants: (i) batch gradient descent, (ii) stochastic gradient
descent and, (iii) mini-batch gradient descent. The difference
between these varaints lies in the amount of the data.

Herein, as mentioned in below, data is expensive and
collecting the data is time consuming. Therefore, the amount
of available data are limited.

Batch gradient descent calculates the gradient for the whole
data set. Therefore, dealing with large dataset, batch gradient
descent performs very slowly. Because the number of data are
limited in this study, we can safely use the batch gradient
descent (for more details, the reader can refer to Ruder [5].

A. Gradient descent

One of the most applied methods in the literature, to perform
optimization and prediction, we can cite the gradient descent;
that is due to its simplicity and applicability for several
applications and problems to solve.

In what follows, the aim is to establish linear equations to
predict CCST parameters. Indeed, the proposed linear model
may be formulated as follows:

P (θ) = θ0 +Xθ (1)

In equation (1), θ0 refers to a constant value, X deotes
the parameters of the model and θ is the coefficient of the
parameters. The objective function is defined as the average
summation of the square prediction errors for the linear
regression. Differently stated, the objective function is also
referred as the following cost function:

C(θ) =
1

2m

m
∑

i=1

(

P (θ)i − Yi

)2

, (2)

where C(θ) represents the cost function for each θ, m denotes
the number of the training examples and Y is the actual value
of the variable; that is predicted using the cost function.

The gradient descent tries to minimize the objective function
using an iterative procedure, where the coefficients of the
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parameters of the model are updated by using the following
equation:

θj := θj −
λ

m

m
∑

i=1

(P (θ)i − Yi)Xi (3)

At each iteration of the gradient descent, θ will be updated to
the opposite direction of the gradient of the objective function.
The parameter λ determines the learning rate. It determines
step sizes to reach a local minimum. In other words, at each
step we move to the direction of the slope of the objective
function towards the bottom of a slope, until a local minimum
is reached.

B. Principal analysis

Data described and explained in section IV are analyzed by
using the following procedure:

1) Shuffling data.

As described in section IV, data are organized during
experimental test. Thus, we shuffled the data to avoid
miscalculations and computational errors. The shuffling
is performed in a way that only the order of the data
will be permuted randomly not the parameters of the
experiments.

2) Separate dataset into training set and test set:

Data is separated into two groups: the training set and
the test set. Shuffling the data in the previous step is
necessary so that there will be no difference in the
quality of the data in training and test set.
Statistical analysis will be performed in the training set
and the quality of the method will be examined in the
test set. Note that the size of the test set is setting
equal to 30% of the data and the rest (i.e, 70% of data)
represents the size of the test set.

3) Mean normalizing the features (average and standard

deviations):

Measured data from CCST has various ranges and thus
there is a great difference by order of the magnitude in
these features. Table II represents both minimum and
maximum values for each parameter. As in Table II, the
range of the values are diversified (i.e, one parameter
can be 100 times bigger than the other). In this case,
scaling the features by mean normalization will drive the
gradient descent-based algorithm to converge. Therefore,
in order to perform gradient descent on the data, it is
advised to mean normalize the data as follows:

X − µ

σ
, (4)

where X denotes the value of the parameter to be
normalized, µ and σ represent the average and the
standard deviations, respectively. Note that µ and σ are
calculated once on the training set and then they applied
to normalize the test set.

4) Randomly initializing θ:

The parameter θ is the coefficient of the parameters that
described in section V-A. Before applying the gradient

descent, θ should be initialized. Herein, is is randomly
initialized in the interval [0, 1].

5) Optimizing θ with the gradient descent algorithm:

By defining the two parameters (number of iterations
and learning rate), the gradient descent algorithm can be
applied on the data. One way to verify if the gradient
descent algorithm works correctly, it suffies to calculate
the cost function and to verify if the value related to
the average square of the prediction error as the cost
function is decreasing at each iteration.

6) Prediction equation:

After normalizing test set data, using the average and
standard deviations of the training set, predicting the
variables may be computed as follows:

Y = Xθ, (5)

where X denotes the normalized data from the test set
and Y is that corresponding to the predicted value.

Of course, for more comprehensive documentary and intro-
ductory, the reader can refer to Ng [7].

VI. COMPUTATIONAL RESULTS

The data are analysed using GNU Octave, version 5.2.0
on a mac OS Catalina with 2.3 GHz Intel Core i5 processor.
Parameters tuning of the gradient descent procedure are con-
sidered as follows: (i) learning rate Λ is set to 0.01 and (ii)
the number of iterations is set to 50000. Note that there are
60 data for each experiments. Thus, the computational time is
negligible (less than a minute).

The prediction equations for the two experiments on Lime

are provided as follows (cf., Equation 6 and Equation 7):

Y1 = 0.86 - 0.05 X1 + 0.05 X2 -0.20 X3 + 0.01 X4 -0.26 X5 + 0.23 X6 -0.01 X7+ 0.29 X8 (6)

and

Y2 = 1.01 - 0.05 X1 +0.05 X2 -0.21 X3 + -0.07 X4 -0.87 X5 + 0.90 X6 -0.01 X7-0.27 X8 (7)

The same procedure is applied for Cement, where the
followings equations (Equation 8 and Equation 9) are used:

Y1 = 0.92 -0.13 X1 + 0.06 X2 -0.22 X3 + -0.07 X4 +0.12 X5 + -0.19 X6 +0.13 X7+ -0.08 X8 (8)

and

Y2 = 1.11 - 0.05 X1 0.02 X2 -0.32 X3 + 0.05 X4 +0.52 X5 + -0.24 X6 +0.04 X7 -0.41 X8 (9)

The performance of prediction via gradient descent algo-
rithm to predict variables of CCST is depicted in Figure 1,
Figure 2, Figure 3 and Figure 4. From the figures, one can
observe what follows:

• First, the gradient descent can provide interesting predic-
tions for the experiments

• Second, the errors of the proposed analysis may be due
to the possible human errors in the data set and / or
interactions between parameters of the study. We hope
that the latter can be faced by applying neural network
or logistics regressions instead of gradient descent.
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Fig. 1: Prediction of ratio of shive to coating substance Y 1 versus ratio of shive to coating substance for the test data for Lime

Fig. 2: Prediction of ratio of water to coating substance (Y2) VS ratio of water to coating substance for the test data for Lime

• Third, the average errors reaching the predictions related
to the ratio of shive to coating substance and water to
coating substance are equal to -0.02 and 0.17 for Lime

and, equal to 0.00 and 0.10 for Cement accordingly.
• Fourth and last, the learning rate is set to 0.01 and the

number of iterations is set to 60000. As the number of
training set is less than 100, the runtime is not significant
(less than a minute). Finally, the established equations are
parameterized using descriptions in Table I.

VII. CONCLUSION

In this study we proposed mathematical equations to simu-
late the Compressive Cement Strength Test referred as CCST.
Such a problem is the most important test in quality control
for the industries. In practice, CCST takes 28 days and it is
expensive to provide the final results. Therefore, this paper
proposed an approach that is able to predict the parameters
of the experiment. In order to establish efficient values for
the parameters, a gradient descent-based algorithm has been
proposed, where linear equations were considered. For future
research, several directions of research can be considered.
Indeed, first, neural networks can be adapted to predict some

parameters and so, in some cases they can be applied for
providing tight estimations. Second, the hybridization between
neuronal networks and operational research technics can be
envisaged for achieving better predictions of the parameters.
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TABLE II: Range of parameters

Coating substance (CS) Range X1 (%) X2 (%) X3 (kg/m3) X4 (Mpa) X5 (MPa) X6 (kg/m3) X7 (mm/m) X8 (mm/m)

Lime Min 36.43 47.93 129.70 0.14 0.63 583.63 2.40 1.31
Lime Max 77.66 136.40 298.50 2.57 9.56 1047.93 8.17 8.65
Cement min 38.23 46.81 130.60 0.16 0.31 556.09 0.00 3.14
Cement max 78.18 132.54 340.75 3.28 7.41 1099.49 7.66 6.76

Fig. 3: Prediction of ratio of water to coating substance (Y2) VS ratio of water to coating substance for the test data for
Cement

Fig. 4: Prediction of ratio of water to coating substance (Y1) VS ratio of water to coating substance for the test data for
Cement
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TABLE III: Average data for each experiment

Coating substance (CS) Y1 (S/CS) Y2 (W/CS) X1 (%) X2 (%) X3 (kg/m3) X4 (Mpa) X5 (MPa) X6 (kg/m3) X7 (mm/m) X8 (mm/m)

Lime 0.33 0.50 66.47 256.75 71.95 1.06 6.30 819.60 4.57 2.70
Lime 0.33 0.75 60.76 261.10 84.20 1.86 8.89 1025.34 3.15 2.24
Lime 0.33 1.00 67.97 295.13 68.72 1.79 4.88 911.35 4.81 1.95
Lime 0.33 2.00 66.39 290.80 72.12 0.28 0.67 705.04 4.50 1.49
Lime 0.50 0.50 64.46 217.43 76.25 0.55 1.77 643.55 4.57 2.99
Lime 0.50 0.75 65.80 220.68 73.38 0.83 2.79 685.20 4.06 3.02
Lime 0.50 1.00 65.59 218.68 73.84 1.53 6.39 914.18 3.25 2.85
Lime 0.50 2.00 65.98 218.68 72.99 0.83 2.05 734.88 6.11 2.51
Lime 0.67 0.50 61.14 211.98 83.38 1.01 2.23 696.17 5.64 3.35
Lime 0.67 0.75 55.93 194.02 94.56 1.01 3.04 702.38 4.65 2.76
Lime 0.67 1.00 66.40 208.57 72.08 1.72 3.64 779.18 3.89 2.71
Lime 0.67 2.00 61.57 196.97 82.46 2.41 5.00 836.20 3.17 2.28
Lime 1.00 0.50 55.57 184.07 95.32 0.59 1.46 651.26 6.29 4.68
Lime 1.00 0.75 58.73 160.58 88.55 0.55 1.76 676.64 5.29 4.09
Lime 1.00 1.00 57.80 170.38 90.54 0.79 2.33 686.95 5.03 3.65
Lime 1.00 2.00 58.27 173.57 89.54 0.87 2.60 779.21 4.57 2.80
Lime 2.00 0.50 46.76 140.00 114.22 0.19 0.83 602.45 6.68 8.22
Lime 2.00 0.75 49.55 134.87 108.25 0.20 0.85 625.43 6.32 6.90
Lime 2.00 1.00 48.82 130.93 109.81 0.22 0.95 591.77 6.28 7.53
Lime 2.00 2.00 43.83 132.43 120.53 0.28 1.06 693.85 5.85 6.22
Cement 0.33 0.50 71.48 318.27 61.19 0.55 1.29 810.66 6.09 3.76
Cement 0.33 0.75 70.43 322.43 63.44 0.90 1.97 907.19 5.01 3.55
Cement 0.33 1.00 71.34 328.15 61.48 1.10 2.98 933.54 5.01 3.26
Cement 0.33 2.00 66.44 300.75 72.01 1.58 6.34 978.46 4.58 3.32
Cement 0.50 0.50 64.47 233.48 76.22 0.67 1.59 761.58 5.04 3.86
Cement 0.50 0.75 69.20 240.23 66.08 0.67 1.74 822.90 4.72 3.59
Cement 0.50 1.00 65.88 234.35 73.21 1.33 2.21 840.21 5.21 3.43
Cement 0.50 2.00 61.89 255.72 81.77 2.34 6.47 1076.02 2.72 3.51
Cement 0.67 0.50 60.09 201.40 85.63 0.73 1.50 737.36 5.70 5.87
Cement 0.67 0.75 57.43 197.65 91.33 1.10 2.75 748.96 5.42 5.19
Cement 0.67 1.00 62.59 203.33 80.26 1.20 2.97 732.15 4.17 4.25
Cement 0.67 2.00 61.54 198.97 82.52 2.45 6.53 916.17 3.87 4.12
Cement 1.00 0.50 54.69 164.27 97.22 0.37 0.85 635.59 6.57 6.05
Cement 1.00 0.75 58.84 165.83 88.31 0.49 1.20 614.77 6.41 6.00
Cement 1.00 1.00 57.44 163.78 91.32 0.54 1.33 685.74 5.47 4.83
Cement 1.00 2.00 57.62 158.47 90.93 1.22 2.55 748.84 5.08 3.98
Cement 2.00 0.50 45.54 140.27 116.85 0.20 0.40 605.68 7.45 6.14
Cement 2.00 0.75 40.35 136.27 127.99 0.26 0.50 596.42 6.95 6.21
Cement 2.00 1.00 42.39 132.63 123.60 0.25 0.52 591.47 6.09 4.77
Cement 2.00 2.00 46.68 133.28 114.40 0.37 0.83 576.58 5.65 4.26
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