

Abstract—The fourth industrial revolution introduces

changes in traditional manufacturing systems and creates basis

for a lot-size-one production. The complexity of production

processes is significantly increased, alongside the need to enable

efficient process simulation, execution, monitoring, real-time

decision making and control. The main goal of our research is

to define a methodological approach and a software solution in

which the Model-Driven Software Development (MDSD)

principles and Domain-Specific Modeling Languages (DSMLs)

are used to create a framework for the formal description and

automatic execution of production processes. In that way

production process models are used as central artefacts to

manage the production. In this paper, we propose a DSML

which can be used to create production process models that are

suitable for automatic generation of executable code. The

generated code is used for automatic execution of production

processes within a simulation or a shop floor.

I. INTRODUCTION

DVANCED technologies in the form of smart

resources and smart products are the basis for the fourth

industrial revolution as they enable changes in factories and

production. Industry 4.0 introduces primarily IT-driven

changes in existing production systems in order to enable

production of individualized products while preserving all

beneficial economic characteristics of mass production [1].

 Producing highly individualized products in traditional

production facilities requires multiple production lines or, in

case of a single production line, stopping the production to

allow reconfiguration of machines which causes additional

costs. To enable a flexible, individualized, lot-size-one

production that is economically viable, the production needs

to be carried out without stopping a production line for

machine reconfiguration [2]. Therefore, it is necessary to

solve the problem of tedious machine adaptation to frequent

production changes that are common in the context of

Industry 4.0. Additionally, there is a problem of frequent

location changes of human workers in a factory [3]. Due to

decreasing number of workers and increasing level of

 This paper is supported by KEBA AG Linz and by the Ministry of

Education, Science and Technological Development through the project no.

451-03-68/2020-14/200156: “Innovative scientific and artistic research
from the FTS domain”.

automation in factories, the workers are performing different

tasks within a factory. Frequently changing worker’s tasks

increases production dynamics and requires fine

coordination of workers in a factory so their work can be

optimized, and production downtime avoided. As worker’s
tasks are often changed, a fast knowledge transfer is required

so they do not lose time when changing workplaces.

 To enable production of individualized products at the

lower cost, a solution for production orchestration at a

higher abstraction level can be utilized [4]. This solution

would require a formal method to specify production

processes and create process models that are suitable for

automatic generation of instructions that are executed on

smart resources. A smart resource represents a machine or a

human worker that receives generated instructions and

execute them on materials and products.

In this context, it is possible to apply a Model-Driven

Software Development (MDSD) approach in which a

centralized representation of knowledge would exist in a

form of production process models. Therefore, in our

previous work [5], we proposed a novel MDSD approach for

production process modeling and automatic production

process execution. The MDSD approach aims to reduce the

gap between individual customer needs and the ability to

produce required products. The main goals of the proposed

MDSD approach are to: (i) enable easier adaptation of

machines to dynamic changes of production processes, (ii)

improve coordination of human workers and machines in

factories and (iii) enable automatic execution of production

processes. A formal specification of a production process is

the crucial part of the proposed approach. Existing process

modeling languages are not tailored to model production

processes [6]. Currently, production processes are specified

using different models like Bill of Materials (BOM), Flow

Process Chart (FPC) and Failure Mode and Effects Analysis

(FMEA) sheets. These models have different syntaxes and

semantics. Therefore, it is hard to combine and reason

production details from them in order to enable automatic

execution of production processes.

 To the best of our knowledge, there is no unified formal

language aimed at modeling all production process aspects

required for an automatic execution. Therefore, we decided

to create a new Domain-Specific Modeling Language

(DSML) aimed at production process modeling. Our MDSD

A

The Syntax of a Multi-Level Production Process Modeling Language

Marko Vještica, Vladimir Dimitrieski, Slavica
Kordić, Sonja Ristić, Ivan Luković

University of Novi Sad, Faculty of Technical Sciences,

Trg Dositeja Obradovića 6, 21102 Novi Sad, Serbia

Email: {marko.vjestica, dimitrieski, slavica, sdristic,

ivan}@uns.ac.rs

Milan Pisarić
KEBA AG Linz, Gewerbepark Urfahr Reindlstraße 51,

4041 Linz, Austria

Email: pisa@keba.com

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 751–760

DOI: 10.15439/2020F176

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 751

approach, overviewed in Section 2, would enable flexible

manufacturing with a help of Orchestrator software that

manages production processes using a knowledge base and

models created with the DSML. Orchestrator is a software

running on a cluster of industrial computers that enables

orchestration, detection and configuration of new and

existing smart resources [7].

In this paper, we present abstract and concrete syntaxes of

the DSML based on our previous research [5]. The Multi-

Level Abstraction Approach (MLAA) is employed to

develop the DSML. MLAA refers to representing objects at

multiple levels of abstraction hierarchies. Due to the

application of MLAA, we denote the language as Multi-level

Production process modeling Language (MultiProLan). The

higher level of abstraction enables easier production process

modeling by specifying only production process steps, and

the lower level of abstraction enables modeling of all the

execution details dependent on a production system.

MultiProLan allows process and quality engineers to

collaborate on the specification of a production process by

using a common language. In this paper, we denote process

and quality engineers together as process designers. A

process designer is a person in charge of transforming a

valuable idea or experiment into an industrial process in a

way to fulfil not only originality, efficiency, quality and

sustainability criteria, but to consider a large number of

often contradictory constraints.

MultiProLan enables modeling of production processes

suitable for automatic execution. It can be used in a flexible

and orchestrated production to facilitate the lot-size-one

production. Supported with MultiProLan, our MDSD

approach should increase the degree of factory automation

by enabling easier adaptation of machines to dynamic

production changes and by increasing coordination of

resources in factories. Models expressed by the concepts of

MultiProLan are simple enough for a human comprehension

and can be also used as means of knowledge transfer to new

workers or to workers that change their workplace

frequently. Modeling production processes is important so

human workers and supervisors could understand the

processes better, eliminate potential modeling errors and

optimize the processes.

Besides Introduction, this paper is structured as follows.

An overview of the MDSD approach for modeling and

automatic execution of production processes and the

MultiProLan basic concepts are presented in Section 2. The

related work that includes different modeling languages and

approaches is summarized in Section 3. Abstract and

concrete syntaxes of MultiProLan are described in Section 4.

Conclusions and the future work are presented in Section 5.

II. AN OVERVIEW OF THE MDSD APPROACH FOR MODELING

AND AUTOMATIC EXECUTION OF PRODUCTION PROCESSES

In the Model-Driven (MD) paradigm, models represent a

central artefact at all stages of system development. A

system developed by following the MD paradigm includes

models that are connected and organized at different

abstraction levels. An MDSD approach is a part of the MD

paradigm and some of its goals are to: (i) increase software

system developing speed through automatization and

centralized representation of knowledge, (ii) increase

software quality through formalization, (iii) increase

reusability of models and (iv) lower system complexity

through abstraction levels [8]. In MDSD approaches,

DSMLs can be used and their purpose is to bring modeling

concepts closer to users familiar with an application domain,

so they can specify their solution with less time in

comparison to General-Purpose Modeling Languages

(GPMLs) [9]. Therefore, our opinion is that an MDSD

approach and DSMLs will have significant role in enabling

flexible, orchestrated and highly automated production. This

is why we proposed a novel MDSD approach for modeling

and automatic execution of production processes [5].

In Fig. 1, a system for automatic production orchestration

and process execution is presented. The components that

support the main steps of the MDSD approach are

numerated and grouped within dashed rectangles. The

proposed MDSD approach comprises the following steps: (i)

specification of technological process models performed by

process designers, (ii) automatic enrichment of technological

process models with details needed for the execution,

performed by Orchestrator on the basis of semantics

gathered from Knowledge Base, (iii) generating the

executable code performed by Code Generator and (iv)

execution of generated instructions performed by Executor

that forwards instruction to Digital Twin, and to the smart

factory shop floor indirectly. A digital twin represents virtual

model of a physical object. It can simulate the object

behavior and the object can respond to changes made in the

simulation [10]. The main part of the proposed system is

MultiProLan created for the domain of hardware production.

By using MultiProLan it is possible to create models that are

suitable for automatic code generation and execution. The

generated code represents human-readable or machine-

Fig. 1 The system for automatic production orchestration and process execution

752 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

readable instructions that are to be executed by smart

resources. More detailed description of this approach is

given in the rest of the section.

Specification of technological processes. The first step of

the MDSD approach represents specification of production

process models by using MultiProLan. These models include

process steps without details required for automatic

production, such as: smart resources required to execute

process steps; production logistic activities; specific storages

in which products and parts are stored; and machine

configuration activities. A graphical modeling tool is

implemented to allow the modeling of production processes

using MultiProLan. Modeling Tool is used by process

designers to model production processes at the higher level

of abstraction. Such models are called Master-Level (ML)

models. These models represent technological description of

production processes and they include: (i) process steps, (ii)

required capabilities, i.e. skills required to execute a process

step, with their parameters and constraints (iii) input and

output products, i.e. transformed resources like raw

materials, components or finished goods, with constraints,

(iv) workflows, i.e. sequence, parallelism, selection and

iteration patterns, and (v) collaboration between process

steps. A collaboration between smart resources, both humans

and machines, is crucial in the context of Industry 4.0 [11]

and it needs to be modeled. ML models do not depend on a

specific technological platform, i.e. on a factory in which

modeled production processes will be executed. Therefore,

ML models can be considered as Platform-Independent

Models (PIMs).

 Enrichment of ML production process models with

details needed for the execution. A production process will

be executed within a given production system, e.g. some

factory. To use an ML model for automatic code generation

and execution, it is necessary to place additional information

in it. This information refers to elements of a given

production system. The information include: (i) specific

resources like robots, machines and humans, that are to

perform process steps, (ii) production logistic activities,

which represent transportation of products and resources,

and (iii) configuration of machines and robots like software

setup, changing grippers, and plugging into a charger or a

workstation. ML models enriched with aforementioned

information are called Detail-Level (DL) models. DL

models can be considered as Platform-Specific Models

(PSMs) as they are enriched with details that are specific to a

production system in which the models will be executed.

The notions of ML and DL are introduced in this paper to

better facilitate description of different modeling levels, and

we did not come across them in surveyed literature.

DL models can be created manually or automatically.

Manual DL creation is conducted by a process designer. A

process designer can make additional changes to the existing

ML/DL model or create a DL model from scratch using

Modeling Tool. However, in our vision of the Industry 4.0

production process modeling, a production system and the

production process models should be separated to enable a

high level of a product customization. Thus, automatic

creation of DL models is supported in our MDSD approach.

The automatic DL creation from the existing ML model is

conducted by the means of Orchestrator software. In the

following text, automatic DL creation process is explained.

Knowledge Base needs to provide all the necessary

information about a given production system for

Orchestrator to be able to automatically generate DL models

from ML models. Every process step specified in an ML

model contains a capability, i.e. a skill that is required so

that a process step can be executed. It is necessary to add the

information about a resource that is to execute the process

step within the given production system. This cannot be just

any resource, but the resource that has the required

capability in its set of offered capabilities. By using

Knowledge Base, Orchestrator can match a capability that is

required in a process step with a capability that a specific

resource offers and, in that way, matches the process step

with the resource. A capability of one process step could be

matched with a capability of multiple resources.

Orchestrator needs to use optimization techniques and

scheduling mechanisms to choose one resource for every

process step and to optimize work of resources in a factory.

A process step that is ready to be executed is composed of:

(i) input products, (ii) a capability needed to execute the

process step, (iii) a smart resource that is to perform the

capability on input products, and (iv) output products.

Orchestrator also needs to take care of production logistics.

Orchestrator needs to add storages in which required

products are stored and to add process steps that facilitate

transportation of products and movement of resources

between storages and workstations. Production logistic

activities have a big impact on production processes as they

require a lot of time [12], so it is very important to organize

these activities well. Orchestrator also takes care of machine

configurations. Based on knowledge gathered from

Knowledge Base, Orchestrator can infer whether the

machine configuration step needs to be added to the process

to enable further activities.

For Orchestrator to be able to reach the aforementioned

conclusions, Knowledge Base needs to contain knowledge

of production system elements, such as: (i) smart resources

with their set of capabilities, (ii) smart products with their

attributes like dimensions and weight (iii) process steps with

required products and capabilities, (iv) production logistics

and (v) configuration process steps that are required by some

resources prior or after execution of another process step. In

this paper, we look at Orchestrator as a black box. It is

presented just to provide context in which MultiProLan is

used. An internal structure of Orchestrator that is used in the

MDSD approach can be found in our previous work [7].

An ML model exists independently from a production

system that will be the execution platform for the modeled

production process. At this high abstraction level, a process

designer does not need to take care for the specific details of

a given production system. These details must be specified

within Knowledge Base before the specification of a DL

model begins. DL models can contain only those capability,

product, resource, storage, constraint and parameter details

that are already specified in Knowledge Base. In that

context, a DL model is specified whenever an execution-

MARKO VJEŠTICA ET AL.: THE SYNTAX OF A MULTI-LEVEL PRODUCTION PROCESS MODELING LANGUAGE 753

ready production process model is needed, and it is

dependent on a production system.

Generating the executable code. The third step of the

MDSD approach represents code generation from DL

models. It is possible to send DL models into Code

Generator so it could automatically generate instructions that

can be executed by human workers or machines. More

details on Code Generator can be found in [7].

Execution of generated code instructions. Executor

forwards generated instructions to Digital Twin, which

represents both simulation and command proxies to the shop

floor. In our case, the Digital Twin component could be used

for the simulation only or it could also forward instruction to

shop floor smart resources through embedded proxies and

mobile devices [7]. Using a digital twin in the simulation-

only mode could decrease production failures, provide

insight into badly modeled process steps and enable

optimization of resources and processes [13]. By running

simulations it is possible to predict an influence of process

steps to a final product [14].

III. RELATED WORK

Production processes should be digitally supported in

Industry 4.0 [15] so they can be integrated within a smart

factory. Modeling production processes is very important in

industrial informatics [16], but it is not enough to document

processes and store them in a factory database. Production

processes should be modeled to lead the production. Process

models should be ready for automatic production, but also

not too complex for a human comprehension. In this section,

different production process modeling approaches and

languages are presented, as well as their capabilities to fulfill

the aforementioned needs.

Companies mostly use manufacturing process charts and

BOMs to specify production processes, but none of these

specifications provide enough data to facilitate automatic

execution. BOM specifications are not enough to understand

a production flow [17]. On the other hand, Bill of Materials

and Operations (BOMO) [18] specifications cover the

production flow, but are insufficient to specify selection and

iteration patterns or smart resources. There is also Korean

manufacturing process chart standard KS A 3002 [19], but a

tooling support and a possibility to automatically execute

models are missing [17]. Unified Modeling Language

(UML) activity diagrams are used to describe production

processes, but models are not suitable for the automatic

execution, they are not intuitive for process designers and

they could be complex [20].

By using conceptual process modeling languages like

UML activity diagram, Business Process Modeling and

Notation (BPMN) and Petri nets, it is difficult to model

production processes primarily as they are not created for

that purpose. These difficulties are even more noticeable

whenever the languages need to cover all production process

concepts required for the automatic execution [6]. To solve

this problem researches usually extend existing languages to

add missing semantics. However, these extensions are not

enough to solve the problem due to the wide application

domain of a language. Therefore, researches often try to

create new domain-specific languages instead of extending

existing general-purpose languages [21].

Zor et al. proposed BPMN extensions to model

production processes [22], however it is difficult to model a

material flow [23] and the whole context of production

domain is not covered due to the absence of uniformity [17].

BPMN extensions are also proposed by Ahn and Chang for

production process similarity measurements [17], however it

is not possible to model selection and iteration patterns or to

specify smart resources. According to Lütjen and Rippel

[23], some languages like DELMIA Process Engineer,

Systems Modeling Language (SysML) and Petri nets lack in

possibility to specify the material flow. To overcome the

usual lack of the material flow modeling concept, the same

authors proposed a novel material flow-oriented process

modeling language – GRAMOSA, but the material flow-

oriented approach was complex [23].

Meyer et al. [24] proposed BPMN extensions to model

Internet of Things (IoT) devices and create IoT-aware

process models. Besides humans that participate in business

process executions, IoT-aware processes also include IoT

devices that can do some of tasks in a smart factory.

Likewise, Petrasch and Hentschke [25] proposed IoT-Aware

Process Modeling Method (IAPMM) using UML use cases

and BPMN extensions in order to model IoT-aware

processes. The goal of this method is to enable modeling of

software systems and software applications like sensing and

actuation. The same authors extended IAPMM and created

Industry 4.0 Process Modeling Language (I4PML) [26] by

adding extensions like Cloud Computing applications. Using

this language, it is not possible to model all the technological

details, as its purpose is to model production processes in a

requirements specification and analysis phase. According to

Schönig et al. [27], none of the aforementioned languages

and approaches provides details on how to execute models.

This is the reason why they proposed an approach for

integration of IoT objects with business process models

ready for an execution. They extended BPMN to enable

integration of IoT objects with process models, but also to

preserve a possibility to execute the models in existing

Business Process Management (BPM) execution systems.

However, it would be difficult to specify the material flow,

smart resources, products, capabilities and constraints, and

thus the full automatization, in which both humans and

machines participate, would be hard to achieve. Because of

these insufficiencies, Orchestrator would not be able to

manage the production based on the models.

Witsch and Vogel-Heuser [20] presented Manufacturing

Execution System Modeling Language (MES-ML) whose

purpose is to specify MES through different views so that

model complexity could be reduced. MES-ML is based on

BPMN and covers the modeling of a technical system,

production processes and MES/IT functions. By using links,

it is possible to connect process steps with production

system elements, i.e. smart resources, that will execute the

steps. This way a dependency between production process

models and a production system is created. Due to this

dependency, a process designer needs to take care how to

connect process steps with production system elements

754 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

during the production process modeling. This makes the

production process modeling significantly more difficult and

could lead to higher number of created errors during the

modeling and higher model complexity.

According to Weissenberger et al. [28], MES-ML does

not support creation of generic production processes as the

semantics of process tasks are insufficiently specified and

process models are not suitable for code generation. To

enable the modeling of machine-usable MES specifications

suitable for code generation, the same authors implemented

a DSML by extending MES-ML. The goal of this language

is to enable higher independency of production process

models from a production system during process modeling.

Instead of the link that is used to connect a process step with

a resource of a production system, the authors proposed a list

of links to be used. At the runtime, resources that execute

process steps will be determined. However, the dependency

between process steps and production system resources still

exists and it is ambiguous which resources will execute

process steps until the runtime.

Similar to the previous work, Fallah et al. [4] presented a

framework to model a modular MES using SysML.

However, the framework is not implemented. Neither a code

generator for model transformation into executable code nor

an interpreter for direct model execution are implemented.

Because of the dependency between production process

models and a production system, we decided to create the

language with two levels of abstraction. In this way, process

designers do not need to take care of production system

elements during the production process modeling and they

can be entirely focused on modeling process steps.

Production process models become more generic by

separating a production system from them. It is possible to

automatically connect process steps with smart resources in

the runtime without additional load to process designer by

using Orchestrator. As we could not find any formal

language that allows creation of generic production process

models suitable for automatic execution, we decided to

create a novel DSML. This DSML unifies all production

process aspects, as mentioned in Section 1, and thus enables

the specification of DL models that are used for automatic

code generation and production process execution. ML

models are separated from a production system so that

process designers could model them in more generic way.

IV. ABSTRACT AND CONCRETE SYNTAXES OF

MULTIPROLAN

In this section we present abstract and concrete syntaxes

of MultiProLan for modeling production processes suitable

for automatic code generation and execution. We use an

Ecore meta-meta-model, which is a part of Eclipse Modeling

Framework (EMF) [29], to create the abstract syntax of

MultiProLan. Also, we use the Eclipse Sirius framework

[30] to create the graphical concrete syntax and to enable

simple implementation of a prototype tool.

A. The Abstract Syntax of MultiProLan

Two levels of abstraction are needed to ease the modeling

performed by process designers, but also to fully prepare

models for an execution phase. A higher abstraction level –

ML separates production process models from a production

system, while a lower abstraction level – DL enables

creation of production process models that are executable

within a given production system. Based on these levels of

abstraction, we divided the meta-model into two parts. This

was also done because the meta-model is more concise and

easier to understand.

The ML part of the MultiProLan meta-model is depicted

in Fig. 2 and it represents production process modeling

concepts needed at the higher level of abstraction. These

concepts are used by process designers to create ML models.

A production process is modeled by the Process class which

represents the root model element. A process version must

be specified as models are stored in a knowledge base and

can be changed or reused at any time. A process is

composed of process elements (ProcessElement), which can

Fig. 2 The first part of the meta-model used for ML model creation

MARKO VJEŠTICA ET AL.: THE SYNTAX OF A MULTI-LEVEL PRODUCTION PROCESS MODELING LANGUAGE 755

be process steps (ProcessStep) or gates (Gate), and

relationships (Relationship) between them. The start process

step must be referenced from a process (startStep) as

knowledge of the execution starting point is needed. There

are two types of relationships (ERelationshipType): (i) flow

– representing a workflow between process elements, and

(ii) collaboration – representing a message flow between

process steps. Relationships have the message attribute

specified whenever a message needs to be sent between

collaboration process steps. Also, relationships have the

logical condition specified whenever they are used in

selection or iteration patterns.

A process step is composed of a capability (Capability)

and products (Product) on which the capability is to be

performed. Input products (inProducts) represent products

on which a capability is performed, i.e. raw materials, and

output products (outProducts) represent products that are the

result of the capability usage, i.e. finished goods. Process

steps can be of different types (EProcessStepType): (i) start

– the first process step, (ii) end – the last process step or (iii)

regular – other process steps that contain capabilities that

must be performed on products. Start and end process steps

do not have any capability or product, and only one start

process step and only one end process step have to exist per

each production process model. A process step has a

notation (EProcessStepNotation) which has one of the

following values: (i) none – for start and end process steps,

(ii) operation – an activity that changes input products and

creates output products and (iii) inspection – an activity to

check quality of products.

A material flow should be specified for every product. An

input product can be equivalent (equivalent) to an output

product of the previous process step, or it can be brought

from a storage. An output product can be used in following

process steps or it can be stored in a storage. Every product

and capability have constraints (Constraint) such are

dimensions, color and weight that will be considered by

Orchestrator when it decides which smart resource is able to

perform a process step. Some capabilities require parameters

(Parameter) to be specified, e.g. to drill a hole, the drilling

position must be specified.

Besides process steps, there are also gates that are used as

process elements. Gates are elements that are needed in

order to create: (i) selection and iteration patterns – flow

control in processes, (ii) parallelism – two or more process

steps need to be executed in parallel and (iii) collaboration –

two or more process steps need to be executed in parallel,

but one process step must not start or finish its activity

before gets a message that another process step finished its

activity. Finally, most of the presented classes inherit the

IDNamedElement class comprising id and name attributes.

The DL part of the MultiProLan meta-model is depicted in

Fig. 3 and it represents production process modeling

concepts needed at the lower level of abstraction. This part

of the meta-model is an extension of the ML part and

together they are used to create DL models. Process step

notations are extended by (i) transportation – production

logistic activities, (ii) configuration – activities to configure

resources and (iii) delay – necessary waiting activities. A

process step is extended with a resource that will execute it

by using a required capability. A resource (Resource) can be

an actuator – an active resource, i.e. one that performs

different activities during the production, or a storage – a

passive resource, i.e. one that stores products. A resource

can be both an actuator and a storage, e.g. there are robots

that can execute different tasks, but also have a place to

temporarily store products. A resource can be a human

worker or a machine (EResourceType) and it can also

represent an actuator or a storage. Depending on the

resource type, human-readable or machine-readable

instructions will be generated for every process step. Also, a

resource could be of type NONE which means that it is

neither a human nor a machine, e.g. a regular storage shelf,

with no smart devices or sensors attached. Products are

extended with a specific storage that must be defined for

every input product brought from the storage and for every

output product placed in the storage. When extended with

active and passive resources, production logistics and

configuration activities, process steps are ready for the

automatic code generation and execution.

B. The Concrete Syntax of MultiProLan

There are two types of concrete syntaxes – textual and

graphical, but there is no general answer which one is more

suitable [31]. We decided to create the graphical syntax for

MultiProLan to make the modeling easier for production

Fig. 3 The second part of the meta-model used for DL model creation

756 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

process designers as they are already familiar with other

graphical languages, such as FPC. The decision was also

made to enable visualized process monitoring, as well as to

enable visualization of detected errors during the production.

As BPMN [32] is commonly used to model different kind of

processes and as it is easy to interpret its models [33], some

BPMN concepts, such as activities and gates, are used in the

graphical syntax of MultiProLan. The graphical syntax is

also inspired by American Society of Mechanical Engineers

(ASME) FPCs [34] as process designers are used to these

charts. Some of FPC elements are used in process step

notations, such as: operation, transportation, inspection, and

delay. Also, the storage element is used within a product,

indicating that a product should be gathered from a storage

or placed in a storage. The symbols used for the

MultiProLan concrete syntax are presented in Fig. 4.

The concrete syntax is described within production process

model examples presented in Fig. 5 and Fig. 6. These two

examples represent a process of a wooden box production at

ML and DL of abstraction, respectively. The box is

composed of four wooden planks that represent different

sides of the box, and of a thin wooden back side. The four

wooden planks can be assembled into a frame using wooden

pins, and the wooden back side needs to be hammered into

the frame, creating the box. The production of the wooden

box is installed in a smart factory composed of: (i) the smart

shelf – storage in which wooden planks are stored, (ii) the

first assembly table – storage that is used to assemble four

wooden sides, (iii) the second assembly table – storage that

is used to hammer the back side into the frame, (iv) the

recycle bin – storage for impaired boxes, (v) the finishing

area – storage for finished boxes and (vi) human workers

and industrial mobile robots – smart resources that are able

to perform required activities.

The ML model of the wooden box production is presented

in Fig. 5. The presented ML model is composed of six parts:

(i) the start process step, (ii) parallel process steps of

assembling left-bottom and right-upper sides, after which

these two assembled sides should also be assembled into the

frame, (iii) collaboration process steps of holding the frame

and hammering the back side into the frame, (iv) inspection

of the box, (v) decision whether the box needs to be stored

or discarded, depending on results of the inspection process

step and (vi) the end process step. The process step of

assembling the left-bottom side represents an operation as it

is depicted with a circle icon at the left side of the process

step name. It has two input products, left and bottom sides of

the frame, both gathered from a storage. The inverted

triangle icon at the left side of a product name represents that

an input product should be gathered from a storage, or that

an output product should be placed in a storage. Two input

products have two constraints, width and height, that will be

considered by Orchestrator when it assigns a smart resource

that is able to pick the plank of these dimensions. The same

process step has the assemble capability with parameters that

represent two wooden pins with the space between them of

0.07m. The output product of this process step is the

assembled left-bottom side, which will not be stored, but

will be used by the next process step. Assembling the right-

upper side is an equivalent process step to assembling the

left-bottom side process step. Both process steps need to be

executed in parallel, as they are modeled between two

parallelism gates (PAR). The next process step requires to

assemble the frame and it has two input products, which are

left-bottom and right-upper sides from the previous two

process steps. These input products are not gathered from a

storage but are equivalent to the previous process steps

output products, as it is depicted by directed dashed lines in

the process diagram. This process step has the assemble

capability and the frame as the output product. The same

frame is held in the next process step. This process step is a

part of the collaboration activities, represented between two

Fig. 5 The ML model of the wooden box production example

Fig. 4 Symbols of the MultiProLan concrete syntax

MARKO VJEŠTICA ET AL.: THE SYNTAX OF A MULTI-LEVEL PRODUCTION PROCESS MODELING LANGUAGE 757

collaboration gates (COL). It does not have an output

product as it is the same as the input product. Another

process step of the collaboration activities is to hammer the

back side into the frame that is held. Hammering the back

side should not start before the message arrives that the

frame is being held. The frame should be held until the

message arrives that the hammering is finished. This is

presented in the process diagram with dotted-line

relationships between those two process steps. The input

product of the hammering process step is the back side that

should be gathered from a storage and the output product is

the box. The hammer capability has predefined number of

nails that should be hammered, e.g. eight, and after the

hammering is finished, the message is sent to the hold

process step. After the collaboration process steps are

finished, the box is inspected for any deformation. The

inspection process step and process steps between decision

gates also have input and output products and a capability,

but they are hidden from the diagram using the +/- button at

the top left corner of process steps. The decision of storing

or discarding the box should be made depending on whether

the box passes all checks. These process steps are modeled

between two decision gates (DEC). The process is finished

after it reaches the end process step.

Based on the presented ML model and knowledge from

Knowledge Base, Orchestrator generates the DL model of

the wooden box production, which is presented in Fig. 6.

Due to the paper length limitations, products and capabilities

are depicted just for process steps in the left parallelism

branch, while for other process steps they are modeled, but

not presented on the diagram. Like the presented ML model,

the generated DL model is composed of the same six parts,

but the model is extended with additional details and new

process steps, like production logistic activities and mobile

robot configurations. These new process steps are needed to

automatically produce the box. In the rest of this subsection,

we describe some of the process steps, while others are

extended in the similar way. The assemble left-bottom side

and the assemble right-upper side process steps are assigned

in parallel to a human worker and an industrial mobile robot,

respectively. In both parallel branches transportation process

steps have been added, which are depicted with the arrow

icon at the left side of the process step name. To assemble

the left-bottom side, the human worker needs to move to the

smart shelf, pick left and bottom sides, move to the first

assembly table and assemble these two sides. Transportation

process steps only have the move capability with the location

parameter, as products for these steps do not exist. The pick

process steps have a capability and an input product, but an

output product does not exist. Unlike the ML model in

which input products have general storages as an indicator

that they need to be gathered, the DL model input products

have the specific storages, e.g. smart shelf, from which the

products need to be gathered. These specific storages are

depicted by inverse triangle objects set on input products. By

selecting a storage, it is possible to specify values of the

storage attributes, but this is not presented in the diagram

due to the paper length limitations. Similar could be done with

resources set on process steps. As for the assemble process

step input products, they are equivalent to previously picked

products, which is denoted with the directed dashed lines

between equivalent products. The capability and the output

product of this process step are the same as in the ML model.

Another parallel branch represents assembling of the right-

upper side by the industrial mobile robot. Process steps in

this branch are similar to process steps of the previously

described branch, except of the configuration process steps.

As the industrial mobile robot assigned to these process

steps is not equipped with the machine vision modules,

therefore it must be calibrated after each movement to

Fig. 6 The DL model of the wooden box production example

758 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

determine its position. Configuration process steps can be

differentiated from other process steps by the gear icon at

the left side of the process step name. After the left-bottom

and right-upper sides are assembled, the same human worker

needs to assemble the frame. This activity does not require

any transportation process steps as the human worker and

the required input products are already at the first assembly

table. The assembled frame is used in the collaboration

process steps that are extended with transportation and

configuration process steps in the similar way. The frame

should be transported to the second assembly table and the

back side should be gathered from the smart shelf and

transported to the same table. Hammering the back side into

the frame should not start before the frame is transported and

placed on the second assembly table and is being held. Also,

holding the frame should not end until the hammering is

finished, and the box is produced. The human worker then

visually inspects the box for any deformations. Via a mobile

device the human worker gets detailed instructions generated

from the description attribute and checks whether the box

passes the inspection. The decision must be made whether the

box should be transported and discarded into the recycle bin

or should be transported and stored into the finishing area.

Any of these two cases will be done by the human worker.

 The presented DL model is suitable for automatic

execution. Code Generator will generate instructions from

the DL model and Executor will send the instructions to

smart resources and wait for their response. After the

response arrives, Executor will send subsequent instructions

until the production is finished. Code Generator generates

generic instructions that are passed to Digital Twin in an

appropriate protocol. Digital Twin receives and transforms

messages into human-readable or machine-specific commands

and passes them for execution. Digital Twin also updates the

digital footprint of all resources it contains.

V. CONCLUSION AND FUTURE WORK

In this paper we presented the DSML for modeling

hardware production processes suitable for automatic

execution. The goal of the language is to support the

modeling of all production details required for automatic

execution, but not to be too complex for a human to

comprehend. To achieve this goal, two levels of abstraction

are implemented so that production processes could be

modeled in a generic way. By creating two levels of

abstraction, production process models become independent

from the production system details and thus efforts needed

during the production process modeling are reduced.

According to our experience from the industry, a process

designer still needs to have the knowledge about the

production system. Consequently, it is hard to make strict

separation between production process models at PIM and

PSM levels. However, we aim to achieve this separation by

creating ML models and automatically generating DL

models from them by using Orchestrator and the domain

knowledge represented in a machine-readable way. Thus, the

presented research leads one step closer to this goal. The

language also allows process and quality engineers to

collaborate on the creation of production process models.

Created models could be used as a central artefact in a smart

factory and thus lead the production automatically. Such

language is implemented in a formal way and thus should

increase consistency during modeling and decrease the

amount of time needed for modeling. Integrating the

language within the proposed MDSD approach should

increase the production flexibility and contribute to the

faster lot-size-one production.

One of the key future steps of our research will be to

conduct the evaluation of the presented language. Using

Modeling Tool, the language is tested by industrial process

designers within an industrial use case [35], but we plan to

systematically conduct the language evaluation that will

include researchers and students from the academic

community and process designers from the industry. During

the initial MultiProLan validation, process designers were

able to easily model the entire production process they

needed and send the models to Orchestrator for execution.

The evaluation should verify whether the language with

multiple abstraction levels could make the modeling of

production processes suitable for automatic execution easier

comparing with other languages and approaches. Also, the

evaluation should verify whether the language contributes to

increasing the factory automation degree.

We will expand the language with concepts of quality

assurance and error handling, as an occurrence of any failure

requires error handling that needs to be carefully carried out

and modeled [2]. Modeling production errors will cover all

the basic attributes of FMEA documentation as the FMEA

sheets will be automatically generated from process models.

Also, an automatic generation of user manuals is needed.

These documents contain a textual description of every

process step and images on how to execute these steps.

Currently, our Code Generator only generates human-

readable or machine-readable instructions for the automatic

process execution and should be extended with a feature to

generate FMEA sheets, user manuals, BOMs and FPCs.

In addition to the error modeling, we plan to extend the

language with: (i) subprocesses – to lower complexity of

graphical process models, (ii) unordered process steps – as

some activities could be executed in any order, e.g. in Fig. 6,

the pick left side and the pick bottom side process steps

should be unordered process steps and (iii) process

variations – when the same result could be done by

executing different process steps.

As the language is currently designed to model a

hardware production, it could be extended to support the

modeling of: (i) process production, e.g. breweries, sugar

factories, pharma factories, (ii) software production and (iii)

provision of service processes, e.g. banks, health care,

education. Also, currently there is only the graphical syntax

of the language. A textual syntax should also be

implemented as some process designers could find it easier

to use than the graphical syntax, or they could use the

combination of these two syntaxes.

As a part of the future work, we also plan to further

investigate the usability of MultiProLan. The emphasis will be

on the collaboration between various participants and artefacts

during the specification of a production process model.

MARKO VJEŠTICA ET AL.: THE SYNTAX OF A MULTI-LEVEL PRODUCTION PROCESS MODELING LANGUAGE 759

REFERENCES

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann,

“Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, Aug.

2014, doi: https://doi.org/10.1007/s12599-014-0334-4.

[2] K. Dorofeev, S. Profanter, J. Cabral, P. Ferreira, and A. Zoitl, “Agile
Operational Behavior for the Control-Level Devices in Plug&Produce

Production Environments,” in Proceedings of 24th IEEE

International Conference on Emerging Technologies and Factory
Automation (ETFA), Zaragoza, Spain, 2019, pp. 49–56, doi:

https://doi.org/10.1109/ETFA.2019.8869208.

[3] D. Gorecky, M. Schmitt, M. Loskyll, and D. Zuhlke, “Human-
machine-interaction in the industry 4.0 era,” in Proceedings of 2014

12th IEEE International Conference on Industrial Informatics

(INDIN), Porto Alegre RS, Brazil, Jul. 2014, pp. 289–294, doi:
https://doi.org/10.1109/INDIN.2014.6945523.

[4] S. M. Fallah, S. Wolny, and M. Wimmer, “Towards model-integrated

service-oriented manufacturing execution system,” in 2016 1st
International Workshop on Cyber-Physical Production Systems

(CPPS), Vienna, Austria, Apr. 2016, pp. 1–5, doi:

https://doi.org/10.1109/CPPS.2016.7483917.
[5] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, and I.

Luković, “Towards a formal description and automatic execution of
production processes,” in Proceedings of 2019 IEEE 15th
International Scientific Conference on Informatics, Poprad, Slovakia,

Nov. 2019, pp. 463–468, doi:

https://doi.org/10.1109/Informatics47936.2019.9119314.
[6] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, and I.

Luković, “Towards a Formal Specification of Production Processes
Suitable for Automatic Execution,” Open Comput. Sci., p. 20, May
2020, to be published.

[7] M. Pisarić, V. Dimitrieski, M. Vještica, and G. Krajoski, “Towards a
Non-Disruptive System for Dynamic Orchestration of the Shop
Floor,” in IFIP Advances in Information and Communication

Technology (AICT), Novi Sad, Serbia, 2020, vol. 592, pp. 1–8, doi:

https://doi.org/10.1007/978-3-030-57997-5_54.
[8] V. Dimitrieski, “Model-Driven Technical Space Integration Based on

a Mapping Approach,” Ph.D. Thesis, University of Novi Sad, Faculty
of Technical Sciences, Serbia, 2017.

[9] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp.

316–344, Dec. 2005, doi: https://doi.org/10.1145/1118890.1118892.
[10] Q. Qi and F. Tao, “Digital Twin and Big Data Towards Smart

Manufacturing and Industry 4.0: 360 Degree Comparison,” IEEE

Access, vol. 6, pp. 3585–3593, 2018, doi:
https://doi.org/10.1109/ACCESS.2018.2793265.

[11] C. Leyh, S. Martin, and T. Schäffer, “Industry 4.0 and Lean
Production – A Matching Relationship? An analysis of selected
Industry 4.0 models,” in Proceedings of 2017 Federated Conference

on Computer Science and Information Systems (FedCSIS), Sep. 2017,

vol. 11, pp. 989–993, doi: https://doi.org/10.15439/2017F365.
[12] T. Qu, S. P. Lei, Z. Z. Wang, D. X. Nie, X. Chen, and G. Q. Huang,

“IoT-based real-time production logistics synchronization system
under smart cloud manufacturing,” Int. J. Adv. Manuf. Technol., vol.

84, no. 1–4, pp. 147–164, Apr. 2016, doi:

https://doi.org/10.1007/s00170-015-7220-1.
[13] S. Vaidya, P. Ambad, and S. Bhosle, “Industry 4.0 – A Glimpse,” in

Procedia Manufacturing, Maharashtra, India, 2018, vol. 20, pp. 233–
238, doi: https://doi.org/10.1016/j.promfg.2018.02.034.

[14] J. Wan, H. Cai, and K. Zhou, “Industrie 4.0: Enabling Technologies,”
in Proceedings of 2015 International Conference on Intelligent

Computing and Internet of Things, Harbin, 2015, pp. 135–140, doi:
https://doi.org/10.1109/ICAIOT.2015.7111555.

[15] L. D. Xu, E. L. Xu, and L. Li, “Industry 4.0: state of the art and future

trends,” Int. J. Prod. Res., vol. 56, no. 8, pp. 2941–2962, Apr. 2018,
doi: https://doi.org/10.1080/00207543.2018.1444806.

[16] L. D. Xu, “Enterprise Systems: State-of-the-Art and Future Trends,”
IEEE Trans. Ind. Inform., vol. 7, no. 4, pp. 630–640, Nov. 2011, doi:
https://doi.org/10.1109/TII.2011.2167156.

[17] H. Ahn and T.-W. Chang, “Measuring Similarity for Manufacturing
Process Models,” in IFIP Advances in Information and
Communication Technology (AICT), Cham, Aug. 2018, vol. 536, pp.

223–231, doi: https://doi.org/10.1007/978-3-319-99707-0_28.

[18] J. Jiao, M. M. Tseng, Q. Ma, and Y. Zou, “Generic Bill-of-Materials-
and-Operations for High-Variety Production Management,” Concurr.

Eng., vol. 8, no. 4, pp. 297–321, Dec. 2000, doi:

https://doi.org/10.1177/1063293X0000800404.
[19] Korean Standards Service Network (KSSN), “KS A 3002 Standard.”

https://www.kssn.net/en/ (accessed Apr. 05, 2020).

[20] M. Witsch and B. Vogel-Heuser, “Towards a Formal Specification
Framework for Manufacturing Execution Systems,” IEEE Trans. Ind.

Inform., vol. 8, no. 2, pp. 311–320, May 2012, doi:

https://doi.org/10.1109/TII.2012.2186585.
[21] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer,

“Modeling Languages in Industry 4.0: An Extended Systematic
Mapping Study,” Softw. Syst. Model., vol. 19, pp. 67–94, Jan. 2020,
doi: https://doi.org/10.1007/s10270-019-00757-6.

[22] S. Zor, D. Schumm, and F. Leymann, “A Proposal of BPMN
Extensions for the Manufacturing Domain,” in Proceedings of the
44th CIRP International Conference on Manufacturing Systems,

Madison, Wisconsin, USA, 2011, pp. 1–7.

[23] M. Lütjen and D. Rippel, “GRAMOSA framework for graphical
modelling and simulation-based analysis of complex production

processes,” Int. J. Adv. Manuf. Technol., vol. 81, no. 1–4, pp. 171–
181, May 2015, doi: https://doi.org/10.1007/s00170-015-7037-y.

[24] S. Meyer, A. Ruppen, and L. Hilty, “The Things of the Internet of
Things in BPMN,” in Advanced Information Systems Engineering

Workshops. CAiSE 2015. Lecture Notes in Business Information
Processing, Stockholm, Sweden, 2015, vol. 215, pp. 285–297, doi:

https://doi.org/10.1007/978-3-319-19243-7_27.
[25] R. Petrasch and R. Hentschke, “Towards an Internet-of-Things-aware

Process Modeling Method - An Example for a House Suveillance

System Process Model,” in Proceedings of 2nd Management and
Innovation Technology International Conference (MITiCON2015),

Bangkok, Thailand, 2015, pp. 168–172.

[26] R. Petrasch and R. Hentschke, “Process modeling for industry 4.0
applications: Towards an industry 4.0 process modeling language and

method,” in Proceedings of 2016 13th International Joint Conference

on Computer Science and Software Engineering (JCSSE), Khon
Kaen, Thailand, Jul. 2016, pp. 1–5, doi:

https://doi.org/10.1109/JCSSE.2016.7748885.

[27] S. Schönig, L. Ackermann, S. Jablonski, and A. Ermer, “IoT meets
BPM: a bidirectional communication architecture for IoT-aware

process execution,” Softw. Syst. Model., Mar. 2020, doi:

https://doi.org/10.1007/s10270-020-00785-7.
[28] B. Weissenberger, S. Flad, X. Chen, S. Rosch, T. Voigt, and B.

Vogel-Heuser, “Model driven engineering of manufacturing
execution systems using a formal specification,” in Proceedings of
2015 IEEE 20th Conference on Emerging Technologies & Factory

Automation (ETFA), Luxembourg, Sep. 2015, pp. 1–8, doi:

https://doi.org/10.1109/ETFA.2015.7301430.
[29] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:

Eclipse Modeling Framework, 2nd ed. Upper Saddle River, NJ, USA:

Addison-Wesley Professional, 2008.
[30] “Eclipse Sirius Documentation.” https://www.eclipse.org/sirius/doc/

(accessed Mar. 19, 2020).

[31] I. Dejanovic, M. Tumbas, G. Milosavljevic, and B. Perisic,
“Comparison of Textual and Visual Notations of DOMMLite
Domain-Specific Language,” in Local Proceedings of the Fourteenth

East-European Conference on Advances in Databases and
Information Systems, Novi Sad, Serbia, Sep. 2010, pp. 131–136.

[32] Object Management Group, “Business Process Model and Notation,
Version 2.0.2,” Technical Report, 2014.

[33] M. Kocbek, G. Jost, M. Hericko, and G. Polancic, “Business process
model and notation: The current state of affairs,” Comput. Sci. Inf.

Syst., vol. 12, no. 2, pp. 509–539, 2015, doi:
https://doi.org/10.2298/CSIS140610006K.

[34] American Society of Mechanical Engineers. Special committee on

standardization of therbligs, process charts, and their symbols,
A.S.M.E. standard operation and flow process charts. New York,

N.Y., The American society of mechanical engineers, 1947.

[35] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, and I.
Luković, “An Application of a DSML in Industry 4.0 Production
Processes,” in IFIP Advances in Information and Communication

Technology (AICT), Novi Sad, Serbia, 2020, vol. 591, pp. 1–8, doi:
https://doi.org/10.1007/978-3-030-57993-7_50.

760 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

