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Abstract—Comparison of two time-event survival curves rep-
resenting two groups of individuals’ evolution in time is relatively
usual in applied biostatistics. Although the log-rank test is the
suggested tool how to face the above-mentioned problem, there is
a rich statistical toolbox used to overcome some of the properties
of the log-rank test. However, all of these methods are limited
by relatively rigorous statistical assumptions.

In this study, we introduce a new robust method for comparing
two time-event survival curves. We briefly discuss selected issues
of the robustness of the log-rank test and analyse a bit more
some of the properties and mostly asymptotic time complexity
of the proposed method. The new method models individual
time-event survival curves in a discrete combinatorial way as
orthogonal monotonic paths, which enables direct estimation of
the p-value as it was originally defined. We also gently investigate
how the surface of an area, bounded by two survival curves
plotted onto a plane chart, is related to the test’s p-value. Finally,
using simulated time-event data, we check the robustness of the
introduced method in comparison with the log-rank test.

Based on the theoretical analysis and simulations, the intro-
duced method seems to be a promising and valid alternative to
the log-rank test, particularly in case on how to compare two
time-event curves regardless of any statistical assumptions.

I. INTRODUCTION

I
N SURVIVAL analysis, the response variable is usually
two-dimensional, since it takes into account both the time

of the event of our interest and whether the event (or the
censoring) even occurred. More than intuitively, such a target
variable suggests being plotted in a two-dimensional plot. As
usual, while a number of subjects who do not evinced the

event of interest to all subjects is plotted on a vertical axis at
a given time point, the time points where the event occurred are
aligned with the horizontal axis, see also Fig. 1 That is the way
how Kaplan-Meier estimators are commonly illustrated [1].
Therefore, the survival curve as a response variable could be
represented as a monotonic orthogonal path, i. e., a polygonal
path of a finite number of horizontal and vertical segments,
in the Cartesian two-dimensional chart. Since such a variable
deals both with the events of interest and their times, it is
ordinarily called the time-event (survival) curve.
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Fig. 1. Two time-event survival curves in a survival plot.
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Whenever two or more time-event survival curves, de-
scribing evolution of events in time within two groups of
individuals, are to be compared, several well-established meth-
ods could be used. A classical log-rank test could solve the
problem, when there are only two groups supposed to be
compared [2]. Assuming some special settings, particularly
when the time-event survival curves are constructed using data
that are not censored, i. e. the data fully describe all events of
interest occurred in the groups, then a simple Wilcoxon rank-
sum test might be applied. If more than two groups are to be
compared, the problem could be battled using either a score-
rank test, or even a Cox proportional hazards model [3]. All
the approaches mentioned above may be performed in various
software, including R language and environment [4], such that
a pure R package stats or a package survival [5] could
be employed to do the job. Nevertheless, each one of the
described methods has its limitations, and its application is de-
termined by meeting relatively rigorous statistical assumptions.

Application of the log-rank test that compares two non-
crossing time-event survival curves (similar as plotted in
Fig. 1) is limited mostly by assuming the fact that censoring
(i) should not induce anyhow the observed events and (ii) is
equally likely to occur in both the groups. What is more,
the counts of events of interest should be large enough to
satisfy asymptotic properties of χ2 distribution and fulfill the
central limit theorem to let the log-rank test statistic follow an
asymptotically normal distribution. That means an incidence
of the events of interest in each group across all the time points
should be neither too small nor too large.

To overcome the limitations of the classical log-rank test,
several diverse modifications of the log-rank test were pub-
lished to either increase efficiency of the test, or its ro-
bustness against violation of the statistical assumptions, or
both. Whereas Kong (1997) in [6] adjusted the log-rank test
efficiency by improving the hazard functions, i. e. functions of
rates of events based on fixed proportions of the events in the
past, Song et al. (2008) dived deeper into covariate matrix
decomposition, by which they derived formulas estimating
minimal sample sizes that enables a valid usage of the log-
rank test [7]. Several authors such as Peto and Peto (1972) [8],
Yang and Prentice (2010) [9], and Li (2018) [10], suggested
the usage of weights of individual observations, usually lower
weights for later events when there the numbers of observa-
tions tend to be not so high; by this they improve the validity
of the log-rank test outputs.

There are also articles handling with exact discrete calcula-
tions when compare two survival curves which is more similar
to our proposed approach. Thomas (1975) simplified the
computations by fixing total numbers in the compared groups
[11]. The algorithm was improved a bit computationally by
Mehta et al. (1985) [12]. Finally, Heinze et al. (2003), simi-
larly asymptotic approaches above, incorporated a weighting
scheme into the calculations to increase significance of earlier
observations [13].

Studies that go deeper into asymptotic complexities of the
statistical inference test, particularly the exact ones that ex-

haustively compute over a polynomial universe, are generally
missing. Some significant pieces of related knowledge focused
on complexity of classic but robust and computationally-hard
inference tests are discussed by Mosler (2002) [14], Smolinski
et al. in (2008) [15], and Kulikov et al. (2014) [16].

Vast majority of the papers listed above work with a hazard
function, which is event of interest rate in a given time point
conditional on overall survival rate until the time point or they
assume constant total numbers of subjects in all the compared
groups. Unlike them, in this proceeding, besides a brief dis-
cussion on limitations of the log-rank test, we model the time-
event survival curves using a discrete combinatorial approach,
considering the survival curves to be orthogonal monotonic
paths on a plane of two-dimensional plot (as shown in Fig. 1
and Fig. 2), and taking into account their mutual "Manhattan"
grid distances. That indicates how easily the p-value of this
modified log-rank test could be calculated using its original
statistical definition as a conditional probability of observing
data of given properties. Then we analyse asymptotic time
complexity of algorithmic approaches behind the proposed
method. We also briefly discuss the possible relationship
between the two-dimensional surface bounded by two non-
crossing survival curves in the plot and the test’s p-value.
Finally, using simulations of artificial survival curves, the first
type errors as rates of detection the cases, when similar curves
are supposed to be different, are estimated for both the log-
rank test and our proposed alternative, mutually compared and
discussed within the frame of the robustness of the methods.

II. PRINCIPLES, ASSUMPTIONS AND LIMITATIONS OF THE

LOG-RANK TEST

Firstly, we gently introduce principles of the log-rank test,
by which we can better understand its assumptions and limi-
tations.

A. Principles of the log-rank test

Let’s assume two groups of individuals (marked by indices
1, and 2, respectively) and k ∈ N distinct event times. At
each event time, we can construct a 2 × 2 contingency table
and compare the event rates between the two groups. Let the
(t1, t2, . . . , tk)

T be an ordered tuple of the event time points,
then for the j-th event time tj , such that j ∈ {1, 2, 3, . . . , k},
we can construct the (contingency) table Tab. I. At j-th event
time, there are d1,j and d2,j individuals who experienced the
events in the group 1 and 2, respectively, and r1,j and r2,j
subjects at risk (who have not yet had the event or been
censored) in the groups 1 and 2, respectively, see Tab. I.

TABLE I
NUMBERS OF THE EVENTS OF INTEREST IN BOTH GROUPS AT TIME tj .

event of interest at the event time tj
group yes no total

1 d1,j r1,j − d1,j r1,j
2 d2,j r2,j − d2,j r2,j

total dj rj − dj rj
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The log-rank test checks the null hypothesis H0 that both
groups have identical hazard functions, i. e. that rates of the
events of interest in time conditional on fixed rates in the
past are the same. Under the null hypothesis H0, the observed
numbers of the events could be considered as random variables
D1,j and D2,j following a hypergeometric distribution with
parameters (rj , ri,j , dj) for both i ∈ {1, 2}. Thus, the expected
value of the variable Di,j is E(Di,j) = ri,j

dj

rj
and variance

is var(Di,j) =
r1,jr2,jdj

r2
j

(

rj−dj

rj−1

)

for both i ∈ {1, 2}. For all

j ∈ {1, 2, 3, . . . , k} we can compare the observed numbers
of events of interest, di,j , to their expected values E(Di,j) =

ri,j
dj

rj
, under H0. So, the test statistic for both i ∈ {1, 2} is

finally

χ2
log-rank =

(

∑k

j=1 di,j − E(Di,j)
)2

∑k

j=1 var(Di,j)
=

=

(

∑k

j=1 di,j − ri,j
dj

rj

)2

∑k

j=1
r1,jr2,jdj

r2
j

(

rj−dj

rj−1

) , (1)

which follows under H0 a χ2 distribution with 1 degree of
freedom, χ2

log-rank ∼ χ2(1). For feasible large rj , at least
rj ≥ 30, a square root of χ2

log-rank follows a standard normal

distribution,
√

χ2
log-rank ∼ N (0, 12).

B. Some of the assumptions and limitations of the log-rank

test

Firstly, censoring is assumed not to affect anyhow the
occurrence of event of interest, and the proportion of censored
data are supposed being of nearly equal size in both the
groups, as well. Otherwise, the test statistic χ2

log-rank calculated
using (1) either for i = 1, or for i = 2, respectively, could be
biased and therefore mutually different. That may affect the
interpretability, i. e. the robustness of the log-rank test applied
on such data.

Then, since the test statistic χ2
log-rank follows a χ2 distribu-

tion, the initial total number of individuals r0 and the number
of all event times k should be large enough. Analogously but
inversely, whenever the numbers of individuals dj experienc-
ing the event of interest are generally large (relatively to rj),
than both the numerator and denominator of the fraction in
the formula (1) is relatively small, too, and, consequently, one
could expect that the χ2

log-rank statistic (or the derived
√

χ2
log-rank

statistic) does not fulfil its assumed asymptotic properties, and
its estimate could be thus biased. That might influence both
the robustness and the power of the log-rank test when applied
to data of such limitations.

By researching the denominator of the equation (1) a bit
deeper, we can realize the test statistic χ2

log-rank is the highest

when the denominator
∑k

j=1 var(Di,j) is as low as possi-
ble given the values di,j and ri,j for all i ∈ {1, 2} and
j ∈ {1, 2, 3, . . . , k}. It is worth mentioning this holds just
when the proportions r1,j

rj
=

r1,j
r1,j+r2,j

and r2,j
rj

=
r2,j

r1,j+r2,j
are

both constant (and mutually different enough) across all the
time points (t1, t2, . . . , tk)

T , and then the log-rank test is the
most powerful; i. e. in other words, its ability to reject the null
hypothesis H0, claiming the survival curves are equivalent,
when they are in fact different, is maximal possible. That
used to be the most usual issue that may decrease the power
of the log-rank test. The mentioned proportions are typically
not constant when the time event curves change a lot their
mutual distance across the time points or when they even cross
themselves one or more times. Consequently, the power of the
log-rank test may be decreased by any deviations from the
constant values of the proportions r1,j

rj
, and r2,j

rj
, respectively.

III. INTRODUCTION OF AN ASSUMPTION-FREE

ALTERNATIVE TO THE LOG-RANK TEST

Within this section, we introduce an assumption-free al-
ternative to the log-rank test. The alternative algorithm for
two time-event curves comparison is based on a discrete
combinatorial calculation of possible states (i. e. all possible
time-event curves) that would be theoretically obtained and
that are at least as extreme as the original two survival
curves. This approach corresponds to an original definition
of a p-value as a probability of obtaining data at least as
extreme as the data currently observed, assuming that the null
hypothesis is true (i. e. the observed survival curves are not
statistically different).

All the possible states could be considered as monotonic
orthogonal paths in the two-dimensional chart of two original
survival curves, excluding (for simplicity) the crossing curves.
By calculating (or estimating) the numbers of all the paths at
least at extreme as the plotted two curves, i. e. all the paths
such that one is above the first observed one and the other
is below the second observed one, we get a point estimate of
the p-value as a proportion of all pairs of orthogonal paths
contradicting the same way or even more to the observed
survival curves. Or in other words, as a proportion of all pairs
of orthogonal paths that are at least as distant one from the
other than the original two time-event curves.

A. Principle of the proposed assumption-free alternative to the

log-rank test

Again, let two groups of individuals (marked by indices
1, and 2, respectively) to be compared and k ∈ N distinct
event times when events of interest could occur. Let the
(t1, t2, . . . , tk)

T be an ordered tuple of the event times. At
each event time, we can compute the number of individuals
who experienced the event at the j-th event time tj for both
groups, similarly to the construction of contingency tables, as
shown in table Tab. I. By repeating this approach k times,
consequently, once we get the proportions of subjects at risk,
r1,j
rj

, and r2,j
rj

, respectively, for each event time tj , we could
plot the time-event survival curves based on the proportions
of individual in risk r1,j

rj
, and r2,j

rj
similarly to Fig. 1.
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For simplicity, the survival curves are assumed not to cross
themselves. More technically spoken, it for each j-th event
time tj holds

r1,j
rj

≥
r2,j
rj

, (2)

as illustrated in Fig. 1. By adding a grid into the Fig. 1, we
get Fig. 2, which is a bit closer to an idea of calculating (or
estimating) a number of monotonic orthogonal paths starting
at the proportion of subjects at risk ri,0

r0
= 1 and ending —

after k event times — at the proportion of subjects at risk
≥

ri,k
rk

(one of such possible paths is the blue line for i = 1

in Fig. 2) ≤ ri,k
rk

(similarly to the red line for i = 2 in Fig. 2).
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Fig. 2. Two original time-event survival curves in a survival plot (black
lines) and an example of a pair of monotonic orthogonal paths such that one
is above (blue solid line, i = 1) the upper original survival curve and the
second one is below (red dashed line, i = 2) the lower original survival
curve.

Let N(1,k,u,v) stands for the number of all orthogonal paths
(respecting the grid, i. e. all segments of such a path are
parallel to horizontal or vertical lines of the grid and its
edges are aligned to grid points) starting at the proportion
1 (left upper corner of the Fig. 2) and ending after k event
times at the proportion of subjects at risk u

v
(a point with

coordinates [k, u
v
] in Fig. 2). Eventually, let N+

(1,k,u,v) be
a number of all orthogonal paths starting at the proportion 1,
going above the 1–st survival curve or tangentially meeting it
(without crossing it) and ending at the proportion of subjects
at risk ≥ u

v
. Analogously, let N−

(1,k,u,v) be a number of all
orthogonal paths starting at the proportion 1, going below
the 2–nd survival curve or tangentially meeting it (without
crossing it) and ending at the proportion of subjects at risk
≤ u

v
after k event times. The numbers N+

(1,k,u,v) and N−

(1,k,u,v)
could be computed perhaps exhaustively in a combinatorial
way (this is an open problem) or could definitely be estimated
by numerical simulations.

Let us define a null hypothesis H0 that claims the original
(observed) survival curves are not significantly different. On
of the tricky part on the proposed method is that, since we do
not need any more initial assumptions for this testing, we also
do not require modelling a null distribution. The p-value, as
mentioned above, is the probability of obtaining data (expected

survival curves described as monotonic orthogonal paths in
the survival plot) at least as extreme as the data currently
observed (the two original survival curves), assuming that the
null hypothesis H0 is correct. Following the definition of the
p-value and marking it as p, we get

p = p-value

p = P (getting data at least as extreme as the observed|H0)

p = P







N+
1,k,r1,k,rk

·N−

2,k,r2,k,rk
(

∑rk
j=0 Nk,j,rk

)2

−Ncc,






(3)

where Ncc is a number of pairs of survival curves crossing each
other. Again, the number Ncc can be calculated probably either
using a a discrete combinatorial analysis, or be numerically
simulated (which is far easier).

In comparison with the term in the denominator of the equa-
tion (3), the number of pairs of survival curves depicted by
the numerator can not include any crossing curves. Since we
assume all curves ending in the proportion r1,k

rk
or greater, and

all curves ending in the proportion r2,k
rk

or lower, considering
that r1,j

rj
≥ r2,j

rj
for each j ∈ {1, 2, 3, . . . , k} as stated in (2),

thus, since r1,k
rk

≥ r2,j
rj

for all time points, there are no pairs
of crossing curves taken into account in the numerator of (3).
The curves could tangentially meet themselves (in case of =)
or run one above the other (in case of >), but could not cross
each other.

B. A brief analysis of surface bounded by two non-crossing

survival curves and the test’s p-value

Surfaces above the first, upper survival curve (let us mark
it as S+

1 ) and below the second, bottom curve (let us mark it
as S−

2 ) in Fig. 2 suggest investigating on how are the surfaces
related to the p-value of the test.

By following the first impression, when S stands for a sur-
face of the whole canvas of the chart in Fig. 2, it seems that

p-value is proportional to the term S
+

1
+S

−

2

S
. However, the rela-

tionship between the p-value and the surfaces is more complex
and not so straightforward. The numbers of all orthogonal
paths in some dedicated surface, let us assume e. g. N+

(1,k,u,v),
is not proportional to the size of the surface. As a sketch of
a proof by contradiction, let us suppose we are to calculate
the number of N−

(1,k,0,v) curves below a horizontal curve
crossing the point [k, v]. Then, simply using combinatorial
rules, we realize that N−

(1,k,0,v) =
(

k+v
k

)

. However, if we
now want to calculate the number of N−

(1,k,0,2v) curves below
a horizontal curve crossing the point [k, 2v], we get that
N−

(1,k,0,2v) =
(

k+2v
k

)

. Whereas the proportion of the surfaces
below the two lines crossing the points [k, 2v] and [k, v] is
equal to 2, the proportion of the numbers of the paths is in

general much greater than 2, since generally
(k+2v

k )
(k+v

k )
≫ 2.

Thus,
N

+

1,k,r1,k,rk

N
−

2,k,r2,k,rk

6=
S

+

1

S
−

2

in general and the p-value is not

(!) proportional to the term S
+

1
+S

−

2

S
.
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C. Approaches on calculation the p-value of the proposed

alternative to the log-rank test

The terms such as N+
1,k,r1,k,rk

, N−

2,k,r2,k,rk
,
∑rk

j=0 Nk,j,rk ,
and Ncc, respectively, in equation (3) could by estimated either
numerically by re-sampling, or calculated exhaustively. A fully
analytical approach is under current research.

Numerical estimation. All the terms such as N+
1,k,r1,k,rk

,
N−

2,k,r2,k,rk
,
∑rk

j=0 Nk,j,rk , and Ncc, respectively, in equa-
tion (3) could be numerically estimated by re-sampling ap-
proach. Let us assume we got two non-crossing survival curves
similarly to the plot in Fig. 1, so that we know the values
k, r1,j , r2,j , d1,j , and d2,j for all j ∈ {1, 2, 3, . . . , k}. Let
us suppose we generate n pairs of survival curves. Then, let
N(∀+, ∀−)(n) be the number of all pairs such that one of
the curves is completely above the first original curve and
the other is completely below the second original curve (and,
thus, they do not cross each other), in all n generated pairs. Let
N(non-crossing)(n) be the number of all pairs such that the
curves of the pair do not cross each other, in all n generated
pairs. Then we can simply derive that

N+
1,k,r1,k,rk

·N−

2,k,r2,k,rk
= lim

n→∞
N(∀+, ∀−)(n)





rk
∑

j=0

Nk,j,rk





2

−Ncc = N(non-crossing)(n),

and, consequently, by replacing in equation (3)

p̂ = lim
n→∞

N(∀+, ∀−)(n)

N(non-crossing)(n)
.

By this re-sampling approach, we can obtain for reasonably
large n ∈ N an unbiased estimate of p-value in equation (3)
of the proposed alternative to the log-rank test. The algorithm
is also described in Algorithm 1

Exhaustive approach. Let us again assume we got two non-
crossing survival curves similarly to the plot in Fig. 1, so
that we know the values k, r1,j , r2,j , d1,j , and d2,j for all
j ∈ {1, 2, 3, . . . , k}. The exhaustive, greedy approach is based
on grid search for all possible pairs of survival curves such
that one of the curves is completely above the first original
curve and the other is completely below the second original
curve (and, thus, they do not cross each other). In case the
exhaustive approach is finished successfully, one could obtain
more confident estimate of p-value in equation (3) of the
proposed alternative to the log-rank test than in case of the
numerical re-sampling.

Since the exhaustive approach is greedy, so that one could
expect a large asymptotic time complexity, we enumerated
worst-case scenarios estimates of all terms such as N+

1,k,r1,k,rk
,

N−

2,k,r2,k,rk
,
∑rk

j=0 Nk,j,rk , and Ncc, respectively, in equa-
tion (3).

Since N+
(1,k,r1,k,rk)

(or N−

(2,k,r2,k,rk)
) is a number of all

orthogonal paths starting at the proportion 1, going above (or
below) the 1–st (or the 2-nd) survival curve or tangentially
meeting it (without crossing it) and ending at the proportion
of subjects at risk ≥ u

v
, number of such paths could not be

Algorithm 1: Re-sampling approach on how to obtain
for reasonably large n ∈ N an unbiased estimate of
p-value in equation (3) of the proposed alternative to
the log-rank test.

Data: two non-crossing survival curves
Result: an unbiased estimate of p-value in equation (3)

of the proposed alternative to the log-rank test

1 k, r1,j , r2,j , d1,j , d2,j // parameters of

the original two survival curves ;
2 n // number of

repetitions;
3 N(∀+, ∀−)(0) = 0 // number of all

pairs such that one of the curves is

completely above the first original

curve and the other is completely

below the second original curve;
4 N(non-crossing)(0) = 0 // number of all

pairs such that the curves of the

pair do not cross each other;

5 for j = 1 : n do

6 generate a pair of two survival curves;
7 if the curves of the pair do not cross each other

then

8 N(non-crossing)(j) = N(non-crossing)(j) + 1;
9 if one of the curves is completely above the

first original curve and the other is completely

below the second original curve then

10 N(∀+, ∀−)(j) = N(∀+, ∀−)(j) + 1;
11 end

12 calculate an estimate of p-value as
p̂ = N(∀+,∀−)(n)

N(non-crossing)(n) ;

larger than a number of all monotonic orthogonal paths in
a rectangle of size k × d1,k (or k × d2,k). Then,

N+
1,k,r1,k,rk

≤

d1,k
∑

j=0

(

k + j

k

)

=

(

d1,k + k + 1

k + 1

)

N−

2,k,r2,k,rk
≤

r2,k
∑

j=0

(

k + j

k

)

−

d2,k
∑

j=0

(

k + j

k

)

=

=

(

r2,k + k + 1

k + 1

)

−

(

d2,k + k + 1

k + 1

)

.

Number of all monotonic orthogonal paths in the grid,
∑rk

j=0 Nk,j,rk , is by assuming (for simplicity) r1,k = r2,k
similarly

rk
∑

j=0

Nk,j,rk ≤

r2,k
∑

j=0

(

k + j

k

)

=

(

r2,k + k + 1

k + 1

)

.

Since parts of crossing curves in a pair could be rear-
ranged such that the crossing segments could be "re-coloured"
eventually, i. e. switched so that the curves only tangentially
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meet each other keeping them monotonic, we can assume that
Ncc ≪

∑rk
j=0 Nk,j,rk .

Putting all the derivations together, we can estimate an upper
estimate Θ(•) of all the monotonic orthogonal paths’ grid
searching by the formula

Θ(•) = Θ
(

N+
1,k,r1,k,rk

)

+Θ
(

N−

2,k,r2,k,rk

)

+

+Θ





rk
∑

j=0

Nk,j,rk



+Θ(Ncc) =

= Θ

((

d1,k + k + 1

k + 1

))

+

+Θ

((

r2,k + k + 1

k + 1

)

−

(

d2,k + k + 1

k + 1

))

+

+Θ

((

r2,k + k + 1

k + 1

))

+

+Θ(0) =

= Θ
(

(k + d1,k/2)
d1,k

)

+

+Θ
(

(k + r2,k/2)
r2,k − (k + d2,k/2)

d2,k
)

+

+Θ((k + r2,k/2)
r2,k) .

Since we assume rk = r1,k = r2,k, then there is
r1,k ≥ d1,k and the final worst-case scenario’s asymptotic
time complexity of p-value exhaustive calculation using the
proposed method alternative to the log-rank test is equal to
Θ(•) = Θ ((k + rk/2)

rk).
In comparison to the novel method’s time complexity, the

log-rank test’s χ2
log-rank statistic based on equation (1) is sig-

nificantly simpler, considering its asymptotic time complexity.
Both by inspecting the numerator and denominator of the
fraction in (1), we can see the calculation is based only on two
summations of k terms, so the asymptotic time complexity of
the log-rank test’s χ2

log-rank statistic as about Θ(k), where k is
number of time points where the event of interest may occur.

Analytical approach. At the current moment, a fully an-
alytical approach on how to calculate the term N+

1,k,r1,k,rk
,

N−

2,k,r2,k,rk
,
∑rk

j=0 Nk,j,rk , and Ncc, respectively, in equa-
tion (3) is an open problem and requires authors’ ongoing
research.

IV. SIMULATION STUDY

We compared the log-rank test and the assumption-free
method proposed above by simulating many pairs of random
non-crossing curves, assuming the curves in the pairs are not
significantly different. Then, we calculated the first type errors
rates, i. e. rates of the situations, when the inference test
(either the log-rank test, or the new method) claims that two
statistically similar survival curves are (falsely) detected as
different. Finally, we assume that more robust the method is,
the lower value of the first type error it should return.

The simulation study was performed using R programming
language and environment [4]. There is more on numerical
applications of R programming language to various fields
in [17]–[21].

When generating the pairs of survival curves, we applied
the following negatively exponential survival function,

s(t) = σ
(

e−
10+ε
10000

t
)

where ε is a random noise term that follows a standard
normal distribution, i. e. ε ∼ N (0, 12), and σ(•) is a function
rounding its argument to the nearest integer, e. g. σ(4.3) = 4,
σ(4.5) = 5 or σ(5.8) = 6.

There were n = 1000 pairs of significantly non-different
survival curves generated in total and within each pair, the
curves were compared using both the log rank test, and the
above-proposed method. By summing up numbers of cases
where p-value was lower than or equal to 0.05 regardless of
the method, we got the point estimates of the first type error
frequencies as illustrated in Tab. II.

TABLE II
POINT ESTIMATES OF THE FIRST TYPE ERROR RATES FOR THE LOG-RANK

TEST AND THE PROPOSED METHOD, BASED ON THE SIMULATION

DESCRIBED ABOVE.

method
the log-rank test the proposed method

# of simulated cases in total 1000 1000
# of cases p-value ≤ 0.05 54 15
first type error rate estimate 0.054 0.015

Whereas the log-rank test output a point estimate of the
first type error rate about 0.054, the method introduced above
returned a point estimate of the first type error rate about 0.015,
therefore lower than the one for the log-rank test. Thus, the
proposed method seems to be more robust than the log-rank
test, based on the simulation described above. The first type
error settings follows the common value of the alpha level
equal to 0.050, as usual in applied sciences.

V. CONCLUSION REMARKS

By calculation of monotonic orthogonal paths in the grid of
survival plot, we can get a ratio of the number of all pairs of the
paths that are more distant one to each other, which opposes
the null hypothesis, and the number of all non-crossing pairs
of possible paths. This is a suggested point estimate of the
p-value of the proposed alternative to the classical log-rank
test.

Based on the simulation, the introduced method proved
to be of higher robustness than the log-rank test. So, the
assumption-free version of the log-rank test seems to be a valid
alternative for the comparison of two time-event curves. How-
ever, while the numerical estimation of the p-value seems to
be relatively simple-to-follow, exhaustive (greedy) calculation
of exact values is of a high asymptotic time complexity and
analytical derivations of the p-value formula requires following
research.

Besides, the method and the computational aspects could
also be a topic for a new R package development.
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