

Abstract— SAWUML is a general-purpose software

modeling language that extends UML by unifying

component and sequence diagrams for the specifications

of software architectures. While component diagram is

used for modeling the system structures, sequence

diagram is extended with the Design-by-Contract

approach for the modeling of system behaviors. In this

paper, we aim at enhancing the language usability by

providing alternative modeling choices for practitioners.

To this end, we extended SAWUML’s notation set with

UML’s activity diagram for the behavior modeling. So,

practitioners may now use either sequence or activity

diagrams, while the system structures are still modeled

with component diagrams. We also extended

SAWUML’s modeling editor for creating software

architecture models together with component and

activity diagrams and the code generators for

automatically obtaining (i) formal models in SPIN’s
ProMeLa for formal verification and (ii) Java-based

implementation. We illustrate our language extension

with the gas station case-study.

I.INTRODUCTION

OFTWARE architecture is the structure of a system that

comprises components, their behavioral specifications,

and interactions with each other [1]-[3]. The software

architecture is concerned with which components a system

consists of and whether these components are integrated and

working together, as well as what kind of interfaces the

components will have, what will be the inter-component

communication and dependencies. For modelling software

architectures an Architecture Description Language (ADL)

plays an important role [4]-[6].

An ADL is a formal specification language for describing

the structures and behaviors of components and connectors

at an abstraction level for the software architecture of a

system. ADLs are designed for different domains (e.g.,

embedded, automotive, multi-agent, and distributed) and

purposes such as modeling software structures, modeling

software architectures from different viewpoints (e.g.,

structure, behavior, concurrency), non-functional property

specifications and analysis, formally verifying system

behaviors, and code generation.

 UML [7] is an ADL that is one of the most widely used

modeling languages in industry [8]-[9]. UML is a general-

purpose software modeling language that can be used to

visually specify the structural and behavioral aspects of any

software systems at various levels of abstractions. The

structural aspects of software systems can be specified using

UML’s class diagram, component diagram, or package

diagram. The behavioral aspects of software systems can be

specified using UML's state diagram, activity diagram, or

sequence diagram.

 We proposed SAWUML in our previous research [10],

which is a UML-based ADL and enables practitioners to use

UML’s component and sequence diagrams together for the

architectural modeling. SAWUML enables to specify the

structural aspects of software architectures in terms of

component diagrams. SAWUML also enables the behaviors

of components to be specified with an extended form of

sequence diagrams with Design-by-Contract [11].

SAWUML is supported with a toolset, which consists of a

visual modeling editor and a set of code generators. The

architectural models in SAWUML can be automatically

transformed in SPIN’s ProMeLa formal verification

language for formally verifying the architectural models

against pre-defined (i.e., deadlock and incompleteness) and

user-defined linear temporal logic (LTL) [12] properties.

Also, SAWUML models can be transformed in Java for

facilitating the implementation of software architectures.

In this paper, we aim to improve SAWUML’s notation set

so as to enhance the language usability. To this end, we

extend SAWUML with the activity diagram notation set and

intend to offer practitioners two alternative choices for the

behavioral modeling. Practitioners may now either use the

sequence diagram or the activity diagram depending on what

looks more usable and familiar to them. Indeed, while

activity diagram is inspired from flowchart and promotes the

behavioral modeling in terms of the component activities

and their transitions, sequence diagram focuses more on the

collaborations of components and promotes the

specifications of the order in which the components operate

their activities. It should also be noted that we extended with

S

Towards Extending UML's Activity Diagram for the Architectural

Modeling, Analysis, and Implementation

Mehmet Alp Kose,
Altinbas University, Institute of Graduate Studies,

Istanbul, Turkey

Email: alp.kose@ogr.altinbas.edu.tr

Mert Ozkaya,
Yeditepe University, Department of Computer

Engineering, Istanbul,Turkey

Email: mozkaya@cse.yeditepe.edu.tr

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 639–648

DOI: 10.15439/2020F199

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 639

the activity diagram as we believe that the activity diagram

is already familiar to many practitioners with different

profiles (including those with very limited technical

knowledge) [13]-[15]. We also extend SAWUML's existing

toolset. The modeling editor now also supports our new

behavior notation set that extends the UML activity diagram.

Also, we extended the existing code generators for ProMeLa

and Java properly. So, while practitioners who feel more

comfortable with the UML sequence diagram (i.e., its

notation and syntax) may use SAWUML’s sequence

diagram extension, those who feel comfortable with UML’s
activity diagram may use the activity diagram extension

introduced in this paper so as to model, analyze, and

implement their software architectures.

A. Paper Structure

In the rest of the paper, we firstly provide an overview of

SAWUML. Next, we discuss the structure and behavior

specifications of software architectures. Then, we introduce

the extended SAWUML with activity diagrams and their

specifications. After that, SAWUML’s generators for

translation in SPIN’s ProMeLa formal verification language

and Java code are introduced. We illustrated the extended

SAWUML and its toolset via the gas station system. Lastly,

we evaluated the extended toolset of SAWUML for the

formal verification and software implementation and then

conclude the paper.

II.OVERVIEW OF SAWUML

 SAWUML [10] supports both the structural and

behavior modeling of software architectures. While the

structural aspects of a system are specified with component

diagrams, the behavioral aspects are specified with sequence

diagrams.

A. Structural Modeling

There are two types of ports defined in SAWUML, which

are required and provided. Fig. 1 shows the types of ports.

Fig. 1 Components with a provided port and a required port
respectively

 Every required port is connected to a provided port.

Component’s required port sends method-call(s) to the

provided port of the connected component. The method(s)

can take some parameter(s), which may be assigned with

arguments upon method-call requests. The required and

provided ports are specified in terms of methods that the

ports request (if required) or receive the request of (if

provided). Note that the required and provided ports of any

two components that are connected must be specified with

the same set of methods. Indeed, as described in the next

section, the required port exhibits the behaviors for sending

those method-calls and the provided port exhibits the

behaviors for receiving those method-calls.

Fig. 2 A component with its specifications

B. Behavioral Modeling

Fig. 2 shows a component with its specifications in

SAWUML. When a component box is clicked, a dialog box

opens for specifying the component details i.e., component

type name, component parameters, and component data list.

The type name is unique for every component in a software

architecture specifications. Practitioners can pass

information to a component through the parameter

specification of the component. A component data list

represents the state data of the component, which are

manipulated by the method-call behaviors operated by the

component ports.

For behavioral modeling, a sequence diagram is used.

When the relevant port is right clicked, the sequence

diagram in a subgraph editor is opened. As seen in Fig. 3

and Fig. 4, there are two life-line objects, the one on the left

represents the component with the required port and, the one

on the right represents the component with the provided

port.

For the sequence diagram of the required port, two arrows

are used as depicted in Fig. 3. The solid arrow represents

making the method-call to the provided port. The solid

arrow herein is supplemented with a contract that consists of

pre-condition and promise assignment. The promise herein

is used for assigning parameter argument data for the

method-call. The dashed arrow represents the method-call

response received from the provided port of the connected

component. The dashed arrows are supplemented with the

pre- and post- condition notations. The pre-condition herein

describes the condition on the result data received from the

provided port. If pre-condition is satisfied, the post-condition

is evaluated, which ensures certain values for the component

state data.

640 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

 Fig. 3 Required port behavior
There are also two arrows used for the sequence diagram

of the provided port as depicted in Fig. 4. The solid arrow

represents the receiving method-call from the required port

and is supplemented with a contract of pre- and post-

conditions. After receiving the method-call from the

required port, the pre-condition of the component is checked

and if it is satisfied, the data assignments are made in

accordance with the post-condition. The dashed arrow

indicates a method-call response to the required port back

with a return value that is specified via the ‘\return’ notation

of the post-condition (post).

Fig. 4 Provided port behavior

III.EXTENDING SAWUML WITH ACTIVITY DIAGRAMS

In this study, we extend SAWUML's behavior modeling

with the activity diagram that has been inspired from UML's

activity diagram. In this way, practitioners may have the

option of selecting either the sequence or activity diagram

notation set for the behavioral modeling. It should be noted

that the sequence diagram discussed above and the activity

diagram extension to be discussed now are both semantically

the same but vary in terms of the modeling notations used.

Whenever practitioners double-click on the required port

interface icon, a new sub-editor appears as shown in Fig. 5.

Using the sub-editor, practitioners can create the activity

diagram model to specify the behaviors of the interacting

components.

Fig. 5 Accessing to an activity diagram from a

component’s required port

Fig. 6 shows the notation set for the activity diagram.

Although, the activity diagram notation set here is similar to

the UML activity diagram, the SAWUML activity diagram

has subtle differences, which we discuss in the rest of this

section.

Fig. 6 Design elements of the activity diagram in SAWUML
Practitioners need firstly to use the ‘component lanes’

notation to separate the activities of the interacting

component ports. Note that any activities and pre-post-

MEHMET ALP KOSE, MERT OZKAYA: TOWARDS EXTENDING UML’S ACTIVITY DIAGRAM FOR THE ARCHITECTURAL MODELING 641

conditions of each component port that represent their

method-call behaviors need to be placed in the

corresponding lane. While the activities of the required

component port are placed in the left lane with the name of

the component that is written on the top of the left lane, the

activities of the provided component port are placed in the

right lane with the name of the component that is written on

the top of the right lane (Fig. 7). Start and stop nodes are

used for starting and stopping the component behaviors

respectively.

Fig. 7 Component lanes notation with its specifications
Practitioners may use the pre/post condition notation to

specify the pre-post conditions of the method-call behaviors

that are operated via the component ports. So, the pre/post

condition notation needs to precede/follow the activity

notations that represent the method-calls and are explained

in the next paragraphs. Fig. 8 shows that whenever the

pre/post condition notation is clicked, a new dialog box

appears for specifying the type of condition (i.e., pre or post)

and the condition statement.

Fig. 8 A pre/post notation with specifications

An activity notation of a required component port for

sending a request is specified as given in Fig. 6. Whenever

the respective notation is clicked, a new dialog box opens as

given in Fig. 9. With this dialog box, one can specify the

parameter data assignments of the method-call (promise) and

the method-call name and parameter list. Note that the pre-

condition of the method-call request cannot be specified via

the dialog box given in Fig. 9. Practitioners need to use the

pre/post-condition notation shown in Fig. 8, which needs to

precede the activity notation. So, if the pre-condition is

satisfied, the activity specified can be operated.

Fig. 9 Specifications of an activity of a required component port for

sending a request
Whenever an activity of a required component port for

sending a request is operated, this may be followed by the

activity of a provided component port for receiving that

request. So, the activity for receiving a request is specified

as shown in Fig. 10. Note again that the activity for

receiving a request here may be preceded by the pre/post-

condition symbol to specify the pre-condition on the

provided port’s method-call receipt.

Fig. 10 Specifications of an activity of a provided component port for

receiving a request
Whenever an activity of a provided component port for

receiving a request is operated, practitioners may use the

pre/post-condition notation for the post-condition to ensure

that the data will be assigned (if any needed). This is

followed by the activity of a provided component port for

sending the method-call response. The activity for sending a

response is specified as shown in Fig. 11. The pre/post-

condition notation may be used after the activity for sending

the response so as to the post-condition on the return value

of the method-call.

Fig. 11 Specifications of an activity of a provided component port for

sending a response

642 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Whenever an activity of a provided component port for

sending a response is operated, the pre/post-condition

notation may need to be used to check if the pre-condition

on receiving a method-call response for the required port is

satisfied. If so, the activity of a required component port for

receiving that response can be operated. The activity for

receiving a response is specified as shown in Fig. 12. After

the activity for receiving a method-call response is operated,

the pre/post-condition notation may be used to specify the

post-condition that ensures the post-state of the component.

Fig. 12 Specifications of an activity of a required component port for

receiving a response

IV.METAEDIT+ BASED TOOL SUPPORT

We used the MetaEdit+ [16] meta-modeling tool to

develop the modeling editors and code generators for

SAWUML. We defined the language abstract and concrete

syntax with MetaEdit+’s GOPPRR meta-modeling

framework, which then gave us the supporting modeling

editor as depicted in Fig. 13.

In this study, the modeling editor, previously developed

with MetaEdit+ has been extended to support the activity

diagram notation introduced in the previous section.

We also used MetaEdit+ MERL1 code generation

definition language to extend the ProMeLa and Java code-

generators to support the activity diagram notation set.

Selecting the icons (Component, Required port, Provided

port) on the tool bar given in the modeling editor (as

depicted in Fig. 13) creates the respective of the design

element objects in the drawing area of the component

diagram editor. Later a component object and a

provided/required port object can be connected. When

double-clicked, the practitioner is offered two options, to

open an activity or a sequence diagram. By pressing the

generator icon (ProMeLa/java Translator), a dialog opens,

which allows practitioners to select one of the generators

(i.e., java generator with activity/sequence diagram or

ProMeLa generator with activity/sequence diagram) that are

available as in Fig. 14 to run. By pressing the LTL property

button, a dialog box opens on the drawing area of the

component modeling editor, and the user-defined linear

temporal logic (LTL) [12] properties can be entered as

shown Fig. 15.

1 MetaEdit+’s MERL language website:

 https://www.metacase.com/support/55/manuals/mwb/Mw-5_2_1.html

Fig. 13 The modeling editor of a component diagram

MEHMET ALP KOSE, MERT OZKAYA: TOWARDS EXTENDING UML’S ACTIVITY DIAGRAM FOR THE ARCHITECTURAL MODELING 643

Fig. 15 Example of an LTL property

After running the ProMeLa generator, LTL properties are

translated according to the LTL syntax in the ProMeLa

language and embedded in the ProMeLA model obtained

from the generated SAWUML model. So, using the SPIN

model checker [17], the generated ProMeLA model can be

formally verified for the LTL-based user-defined properties.

Besides the user-defined properties, SPIN also checks a

couple of pre-defined properties (i.e., deadlock,

incompleteness) that we introduced as part of the ProMeLa

translation algorithms. A deadlock error happens when the

component processes get stuck executing and none of them

will be able to reach their end states. Incompleteness

happens if the response behavior specifications for a

required port cannot handle all possible cases properly. The

code for checking the pre-defined properties have been

encoded as part of the ProMeLa code generator. Since there

is not enough space in the article, the java generator

algorithm2, ProMeLa generator algorithm3 and SAWUML

toolset4 can be accessible via the website.

2 SAWUML’s java generator algorithm website:

 https://sites.google.com/view/mkose/javaalgorithm
3 SAWUML’s ProMeLa generator algorithm website:

 https://sites.google.com/view/mkose/promelaalgortihm
4 SAWUML’s toolset website:
 https://sites.google.com/view/mkose/sawuml-toolset

V.GAS STATION CASE STUDY

The gas station system [18] is composed of three

components that interact with each other. These are the

customer, cashier and pump components. The customer

component gets gas from the pump component if the

customer component pays to the cashier component. Fig. 16

shows the component diagram specification of the gas

station system in SAWUML.

Each component’s data list specifications are shown in

Fig. 17, Fig. 18, Fig. 19. The activity diagrams for the gas

station system are shown in Fig. 20, Fig. 21, Fig. 22.

Fig. 16 Gas station in the SAWUML model

Fig. 17 The data list of the customer component

Fig. 14 The results of the ProMeLa generator and the java generator of a model

644 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Fig. 18 The data list of the cashier component

Fig. 19 The data list of the pump component

In the customer-cashier activity diagram in Fig. 20, before

making the pay method-call via the customer’s required port,

a pre-condition (!requestMade) is checked via the pre/post-

condition symbol. If it is satisfied, the activity for making

the pay method-call is operated. The activity for the pay

method-call includes a promise data assignment

(amount=chosenAmount). After the pay method-call is

received by the cashier’s provided port, firstly the pre-

condition is checked via the pre/post-condition symbol

(paymentAmount==0). If it is satisfied, the cashier’s activity

for receiving the pay method-call request is operated. Then,

the post-condition is ensured via the pre-/post symbol

(paymentAmount=amount). Then, the cashier’s send-

response activity for the pay method-call is operated to send

the response to the customer. The customer receives back

the pay method-call response via its receive-response

activity under no pre-condition. After the customer operates

the activity for the method-call response, the post-condition

is ensured via the pre/post-condition symbol

(requestMade=true).

In the cashier-pump activity diagram in Fig. 21, before

making the releasedPump method-call via the cashier’s
required port, a pre-condition (paymentAmount!=0) is

checked via the pre/post-condition symbol. If it is satisfied,

the cashier’s activity for making the releasedPump method-

call request activity is operated. The activity for the

releasedPump method-call includes a promise data

assignment (amount2=paymentAmount). After the

releasedPump method-call is received by the pump’s
provided port, the pre-condition is checked via the pre/post-

condition symbol (!pumpReleased). If satisfied, the activity

for receiving the releasedPump method-call is operated and

the post-condition is ensured via the pre/post-condition

symbol (pumpReleased=true, paymentAmout=amount2).

Then, the pump’s send-response activity for the

releasedPump method-call is operated to send the response

to the cashier. The cashier receives back the releasedPump

method-call response via its receive-response activity under

no pre-condition. A post-condition ensures that the data will

be assigned (paymentAmount=0) via the pre/post-condition

symbol.

Fig. 22 gives the activity diagram specification for the

customer and pump relationships. Before the customer

makes a pump method-call via its required port, a pre-

condition (requestMade==true) is checked via the pre/post-

condition symbol. If it is satisfied, the activity for making

the pump method-call is operated. Whenever the customer

sends the method-call request for the pump, firstly, the

pre/post-condition symbol of the pump

(pumpReleased==true) is checked and if it is satisfied, the

activity for receiving the pump request is operated. Then, the

pre/post-condition symbol for the post-condition of the

pump is ensured (pumpReleased= false). Afterward, the

pump component operates the activity for sending the pump

method-call response to the customer. The pump method-

call is sent back with a return value. The pre/post-condition

symbol is employed here to state the post-condition on the

return value (\result == paymentAmount). When the

customer receives the pump response, the pre-/post-

condition symbol is used to operate the pre-condition that

compares the return value (result) with the chosenAmount

variable. If both are equal (result==chosenAmount) then the

activity for the receiving the response for the pump method-

call can be operated and then the pre/post-condition symbol

for the post-condition is ensured (requestMade = false).

Fig. 20 The activity diagram of customer-cashier components

MEHMET ALP KOSE, MERT OZKAYA: TOWARDS EXTENDING UML’S ACTIVITY DIAGRAM FOR THE ARCHITECTURAL MODELING 645

Using the LTL property icon in the editor, the user-

defined LTL property has been specified as part of the gas

station specification as shown in Fig. 23. The LTL property

here states that a particular constraint must always be

satisfied. That is, when requestMade data of a customer is

true, then eventually the pump’s pumpReleased data

becomes true. This means that whenever the customer sends

a gas request to the cashier, the pump will eventually receive

a pump-release request from the cashier.

Fig. 23 Specifying an LTL property for the gas station model in

SAWUML

Fig. 21 The activity diagram of cashier-pump components

Fig. 22 The activity diagram of customer-pump components

646 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

VI.TOOL EVALUATION

After we specified the gas station model in SAWUML as

discussed in Section 5, we used SAWUML’s toolset for
automatically transforming the gas station model into a

formal ProMeLa model that can be accepted by the SPIN

model checker and Java code for obtaining the

implementation of the gas station model. We considered

three different configurations of the gas station model, which

vary depending on the number of customers involved (gas

station with 1, 3, and 5 customers).

A. Formal Verification

Table I5 shows the formal verification results that have

been produced by the SPIN model checker for each

configuration of the gas station model (namely their

ProMeLa translations). The SPIN formal verification results

are given with (i) the size of the states in the system’s state
space, (ii) the number of the stored state in the state space,

(iii) the number of the matched states that are revisited

during the state space search, (iv) the total actual memory

usage of the state space, and (v) the elapsed time for the

exhaustive analysis of the state space.

Whenever a deadlock occurs, an invalid end state error is

generated by the SPIN model checker, which indicates that

the running component processes cannot reach at the end of

their code. To illustrate a deadlock situation, we used the

gas station with one customer. We intentionally changed the

requestMade data of customer's pay port to true. So,

customer's both pay and oil port pre-conditions are now the

same. The end result is that the customer is waiting for

making a payment or a pump request, the cashier is waiting

for a payment from the customer, the pump is waiting for

receiving a release-gas request from the cashier. So, none of

the components reach the end of their states and that causes

deadlock.

To illustrate an incompleteness error, we again used the

gas station with one customer. The response behavior

specification for the customer's pump method consists of

5 Spin Version 6.4.5 is used with 2.4 GHz Intel Core i7-8750H, 16GB of
 RAM, and Windows 10 Home OS. We run the following the SPIN

 commands which are spin -a GasStation.pml, gcc -o pan pan.c, and pan

 (Note that for the gas station with 5 customers pan -m800000 command is
 used.)

two cases. The case when the result is equal to

chosenAmount, and the case when the result is not. So, we

did not get any incompleteness error. If however the

response behavior specification here failed to consider all

possible cases (e.g., suppose "the result is equal to the

chosenAmount" case is absent), then we would get an

assertion violation error via the SPIN model checker.

Lastly, the gas station model has been verified for the

user-defined LTL property specified in Fig. 23. The

translated ProMeLa model actually includes the LTL

translation in ProMeLa. So, whenever we run the ProMeLa

model with the SPIN model checker, we successfully

performed the formal verification for the LTL property. Note

that if the LTL property was violated, we would get an

assertion violation error in SPIN.

B. Java Implementation

After formally verifying the gas station model, we

automatically produced Java code using SAWUML’s

toolset. Java implementation was created according to the

Adapter Design Pattern to enhance the code modularity and

understandability. Basically, the adaptee (e.g., the customer)

component sends a request to the adapter via the component

interface and the adapter transmits this request to another

adaptee component (e.g., cashier in customer to cashier

relationship).

It should be noted that the produced code includes the

structural and behavioral architectural design decisions of

the model. Practitioners can develop their systems with other

necessary modules (i.e., network, GUI, database connection,

etc.) starting from this code.

Since there is not enough space in the article, the

generated java file (Configuration.java)6, and the ProMeLa

file (gasStation.pml)7 can be accessible via the web site.

6 The java file of the gas station system’s web site:

 https://sites.google.com/view/mkose/javafile
7 The ProMeLa file of the gas station system’s web site:
 https://sites.google.com/view/mkose/promelafile

TABLE I.

FORMAL VERIFICATION RESULTS IN SPIN

Case Studies Sector-vector

(bytes)

States Memory (Mb) Time (s)

Stored Matched

Gas station – 1 customer 144 101 59 64.539 0

Gas station – 3 customers 364 121988 148130 106.922 0.413

Gas station – 5 customers 584 3462574 7813281 2016.661 25.4

MEHMET ALP KOSE, MERT OZKAYA: TOWARDS EXTENDING UML’S ACTIVITY DIAGRAM FOR THE ARCHITECTURAL MODELING 647

VII.DISCUSSION & CONCLUSIONS

SAWUML is an ADL that uses UML’s component and

sequential diagrams for the specification of the structural

and behavioral design decisions. SAWUML extends the

sequential diagram using the Design-by Contract approach

to define behavioral specifications of components’ methods

to send /receive each other. SAWUML is supported with a

modeling editor to design architecture modeling and to

specify user-defined properties in the form of LTL. The

SAWUML models can be automatically transformed in

SPIN’s ProMeLa formal verification language for checking

pre-defined properties (deadlock, incompleteness) and user-

defined LTL properties.

In this study, we extended SAWUML by introducing the

notation set for the extended activity diagram for modeling

the behavioral design decisions. Practitioners may now have

the options of selecting either the activity diagrams or

sequence diagrams for the behavioral modeling. This is

actually intended for enhancing the language usability and

providing practitioners different types of notation sets

among which they can choose the one that best fit their

expertise. We also extended SAWUML’s code-generator

toolset to enable the architectural models with activity

diagrams to be formally verified via the SPIN model checker

and transformed into the Java-based implementation.

We evaluated our approach with the gas station system,

where we specified the structural and behavioral design

decisions with the component and activity diagrams

respectively. We then used SAWUML’s code generators to
transform the models in SPIN’s ProMeLa and used SPIN to

formally verify the behavioral design decisions. We further

automatically generated Java code from the gas station

models, which is based on the Adapter design pattern.

SAWUML may actually be considered by any

practitioners who use UML to model their software

architectures from the structural and behavioral viewpoints.

While UML and many tools that support UML do not allow

for formally analyzing UML models, SAWUML does so.

Moreover, SAWUML integrates the structural modeling

with behavioral modeling – i.e., practitioners actually click

on the component ports to specify their behaviors with

sequence/activity diagrams. Note that this is not possible

with UML and practitioners are forced to specify the

structural and behavioral models that are cleanly separated.

Moreover, in SAWUML we extend the UML sequence and

activity diagrams with Design-by-Contract so as to enable

practitioners to specify not only the interactions but also the

behaviors in terms of pre- and post-conditions on the

component state.

As a future work, aim at developing a tool that can reverse

engineer the Java model back to the SAWUML model. By

doing so, we aim at enabling the existing (i.e., already

implemented) projects to be modeled and analyzed

automatically and the developers to determine any

architecture erosions [19].

VIII.REFERENCES

[1] Len Bass, Paul Clements, and Rick Kazman, Software Architecture in
Practice, 2nd ed. Addison-Wesley Proffesional, 2003, pp. 19-26.

[2] N. Medvidovic and R. N. Taylor, "Software architecture: foundations,
theory, and practice," 2010 ACM/IEEE 32nd International Conference
on Software Engineering, Cape Town, 2010, pp. 471-472, doi:
10.1145/1810295.1810435.

[3] David Garlan and Mary Shaw, “An introduction to software
architecture”. Advances in Software Engineering and Knowledge
Engineering, 1993, pp. 1-39.

https://doi.org/10.1142/9789812798039_0001

[4] Ozkaya M. “The analysis of architectural languages for the needs of
practitioners”. Softw Pract Exper. 2018; 48: 985– 1018.

https://doi.org/10.1002/spe.2561

[5] N. Medvidovic and R. N. Taylor, "A classification and comparison
framework for software architecture description languages," in IEEE
Transactions on Software Engineering, vol. 26, no. 1, pp. 70-93, Jan.
2000, doi: 10.1109/32.825767.

[6] P. C. Clements, "A survey of architecture description
languages," Proceedings of the 8th International Workshop on
Software Specification and Design, Schloss Velen, Germany, 1996,
pp. 16-25, doi: 10.1109/IWSSD.1996.501143.

[7] Object Management Group. OMG unified modeling language
secification –version 2.5. http://www.omg.org/spec/UML/2.5/; 2015.
URL http://www.omg.org/spec/UML/2.5/.

[8] Ozkaya M. “Do the informal & formal software modeling notations
satisfy practitioners for software architecture modeling?” Inf Softw
Technol 2017; 95: 15–33. doi: 10.1016/j.infsof.2017.10.008.

[9] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione and A. Tang, "What
industry needs from architectural languages: a survey," in IEEE
Transactions on Software Engineering, vol. 39, no. 6, pp. 869-891,
June 2013, doi: 10.1109/TSE.2012.74.

[10] Ozkaya M. and Kose M. A. “SAwUML – UML-based, contractual
software architectures and their formal analysis using SPIN”. Journal
of Computer Languages, Systems and Structures, 2018; 54: 71- 94.
https://doi.org/10.1016/j.cl.2018.04.005

[11] B. Meyer, "Applying 'design by contract'," in Computer, vol. 25, no.
10, pp. 40-51, Oct. 1992, doi: 10.1109/2.161279.

[12] A. Pnueli, "The temporal logic of programs," 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), Providence, RI,
USA, 1977, pp. 46-57, doi: 10.1109/SFCS.1977.32

[13] Reggio, G., Leotta, M., Ricca, F., Clerissi, D. “What are the used
UML diagrams? a preliminary survey”. Proceedings of 3rd
International Workshop on Experiences and Empirical Studies in
Software Modeling (EESSMod 2013), vol. 1078, pp. 3–12. CEUR
Workshop Proceedings, 2013.

[14] Wrycza, Stanisław & Marcinkowski, Bartosz. “A light version of
UML2:survey and outcomes”. 2007, doi:10.13140/RG.2.1.3445.1046.

[15] G. Reggio, M. Leotta and F. Ricca, "“Precise is better than light” a
document analysis study about quality of business process
models," Workshop on Empirical Requirements Engineering (EmpiRE
2011), Trento, 2011, pp. 61-68, doi: 10.1109/EmpiRE.2011.6046257.

[16] Kelly S, Lyytinen K, Rossi M. “Metaedit+ a fully configurable multi-
user and multi-tool CASE and CAME environment”. In: Bubenko J,
Krogstie J, Pastor O, Pernici B, Rolland C, Sølvberg A, editors.
Seminal contributions to information systems engineering, 25 years of
CAiSE. Springer; 2013. p. 109–29. ISBN 978-3-642-36925-4. doi:
10.1007/978- 3- 642- 36926- 1 _ 9 .

[17] Holzmann GJ. “The SPIN Model Checker - primer and reference
manual”. Addison-Wesley Professional, 2003, ISBN 978-0-321-
22862-8.

[18] Naumovich G , Avrunin GS , Clarke LA , Osterweil LJ. “Applying
static analysis to software architectures”. In: Jazayeri M, Schauer H,
editors. Software engineering–ESEC/FSE’97. Lecture Notes in
Computer Science, 1301. Springer; 1997. pp. 77–93. ISBN 3-540-
63531-9.

[19] Dewayne E. Perry and Alexander L. Wolf. 1992. “Foundations for the
study of software architecture”. SIGSOFT Softw. Eng. Notes 17, 4
(Oct. 1992), pp. 40–52. DOI:https://doi.org/10.1145/141874.141884

648 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

