

Abstract—This paper proposes a model-based testing ap-

proach by offering to use the data quality model (DQ-model)

instead of the program’s control flow graph as a testing model.

The DQ-model contains definitions and conditions for data ob-

jects to consider the data object as correct. The study proposes

to automatically generate a complete test set (CTS) using a DQ-

model that allows all data quality conditions to be tested, re-

sulting in a full coverage of DQ-model. In addition, the possibil-

ity to check the conformity of the data to be entered and al-

ready stored in the database is ensured. The proposed alterna-

tive approach changes the testing process: (1) CTS can be gen-

erated prior to software development; (2) CTS contains not

only input data, but also database content required for com-

plete testing of the system; (3) CTS generation from DQ-model

provides values against which the system can be further tested.

If the test results correspond to the values obtained during CTS

generation, the system under test shall be considered to have

been tested according to DQ-model. Otherwise, the user can

verify the cause of the differences that may occur due incorrect

software, as well as an inaccurate specification.

Index Terms—complete test set, data quality model, infor-

mation system, model-based testing, symbolic execution.

I. INTRODUCTION

OFTWARE testing attracts the attention of researchers

and practitioners since software development starts.

Their main aim is to develop reliable software that can be

used in the real-life circumstances. Unfortunately, this chal-

lenge has not yet been resolved and is far from being re-

solved. The proposed testing strategies and techniques are

not able to ensure the reliability of software. Errors and bugs

still cause system failures, despite millennial resources de-

voted to testing. According to Utting [1], software testing is a

vital part of software development that requires between 30

and 60 percent of spent resources.

S

Model-based testing (MBT) is one of widely used solu-

tions to improve the quality of the software. In scope of

MBT, a model of information system (IS) is created accord-

ing to which the system is tested. If IS works correctly on

tests that cover all elements of the model, it is assumed that

 The research leading to these results has received funding from the

research project "Competence Centre of Information and Communication

Technologies" of EU Structural funds, contract No. 1.2.1.1/18/A/003 signed

between IT Competence Centre and Central Finance and Contracting

Agency, Research No. 1.7 “The use of business process models for full

functional testing of information systems"

full/ complete system testing has been performed according

to the selected model. For instance, if a program control

graph is used as a test model, full/ complete testing is con-

sidered to have been performed if all the paths of the graph

are executed. The advantages of MBT are also reflected in

model-based testing user survey [2], according to which, re-

spondents report on the average a 59% reduction in escaped

bugs, 17% reduction in testing costs, and 25% reduction in

testing duration.

The aim of this study is to propose an alternative model-

based testing approach that uses a data quality model as a

test model. As a result, a data quality (DQ) model-based

testing approach called DQMBT is proposed. The DQ-

model contains data objects and data quality conditions con-

cepts where a data object describes real-world objects on

which the information system accumulates data, while data

quality conditions are aimed to describe the requirements

that must meet the values of the attributes of data objects to

be recognised as qualitative.

This paper is a continuation of [3], which addressed the

basic concepts and introduced the overall structure of the

proposed solution. According to [3], the main idea of the so-

lution is as follows: as one of the main and primary tasks of

the information systems is to collect and process data ob-

jects, the data to be entered must be tested first by verifying

their correctness described by the conditions of the values of

the data objects. The correct data objects can be stored in the

database, while the information about the incorrect data ob-

jects must be provided to the data owner, allowing them to

be edited and re-entered to the system. The verification of

data objects must be carried out at two levels – syntactic and

semantic/ contextual (in line with [4]). While syntactic con-

trol checks the relevance of the values of data objects at-

tributes to the value syntax, semantic control checks the rel-

evance of attribute values to the values of other data objects

that have been already entered and stored in the database.

The first use of the proposed solution is to compare the

relevance of the data objects to be entered to the data objects

already stored in the database, i.e. whether the data entered

are correctly retained in the database. These checks must

be described in the DQ-model and are not

Data Quality Model-based Testing of Information Systems

Janis Bicevskis
Faculty of Computing

University of Latvia, Latvia

Email: Janis.Bicevskis@lu.lv

ORCID: 0000-0001- 5298-

9859

Zane Bicevska
DIVI Grupa Ltd, Latvia

Email:

Zane.Bicevska@di.lv

ORCID: 0000-0002-

5252-7336

Anastasija Nikiforova
Faculty of Computing

University of Latvia, Latvia

Email:

Anastasija.Nikiforova@lu.lv

ORCID: 0000-0002- 0532-

3488

Ivo Oditis
DIVI Grupa Ltd, Latvia

Email: Ivo.Oditis@di.lv

ORCID: 0000-0003-

2354-3780

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 595–602

DOI: 10.15439/2020F25

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 595

related to implementation in the particular environment.

Obviously, information systems are intended not only for

collecting data but also for processing them, including, for

calculating derived values, transformations etc. However,

the primary task is to collect data, followed by many

different tasks, so, this solution covers only one but

nevertheless one of the main tasks of the information

systems (in line with [5]). The second use of the proposed

solution is to provide the complete testing capability of

software that accumulates and stores data in the database.

The values conditions for the attributes of data objects are

proposed to be used to prepare test cases that will process all

correct and incorrect cases. Using the DQ-model as a test

model allows to prepare test cases constructively for the

verification of all conditions. Testing software with these

test cases, will check the accuracy of entering and storing

data in both syntactic and contextual terms. The study

therefore proposes a new complete testing criterion -

verifying the correctness of all input data and its allocation

in the database with tests that check all possible input values

conditions.

This paper proposes not only the next set comprehensive

set of concepts that are used to achieve the objective of the

study being launched, but also provides an example

demonstrating this idea, which has been promised in [3]. To

sum up, the DQ-model based testing (DQMBT) approach for

IS testing is proposed.

The paper deals with following issues: basic concepts and

ideas addressed through related works (Section 2), the

proposed solution (Section 3), analysis of the proposed

solution (Section 4), conclusions (Section 5).

II. RELATED WORKS

This section briefly deals with the key concepts

underpinning the proposed solution that are addressed

through related works.

A. Testing basics

In software engineering, a test case is a specification of

the inputs, execution conditions, testing procedure, and

expected results that define a single test to be executed to

achieve a particular software testing objective, such as to

exercise a particular program path or to verify compliance

with a specific requirement [6].

The modern definitions of testing underline that testing is

a process aimed at verifying software compliance to

requirements. An example of this is the definition provided

by [7] in 2018, according to which, “software testing is a

way to assess the quality of the software and to reduce the

risk of software failure in operation. Software that does not

work correctly can lead to many problems, including loss of

money, time, or business reputation, and even injury or

death”.

Many authors propose different and sometimes conflicting

definitions of the concept of testing, in which, in some cases,

the meaning of finding error and bug is exaggerated. As part

of this study, the term “testing” should be understood in

accordance with [8]: “software testing is an investigation

conducted to provide stakeholders with information about

the quality of the software product or service under test”.

The viewpoint that testing aims to find bugs, errors and

defects in software is outdated and no longer considered

comprehensive and completely correct (in line with [7]).

Methods that can find software bugs cannot be used to

demonstrate that the software is working properly. In

addition, despite numerous resources spent on testing,

software almost always has bugs and errors.

To sum up, testing is a complex process, since tests are

developed and accumulated throughout the whole software

development process, starting with the development of a test

for each individual function, ending with integration tests

aimed at verifying the compatibility and integration of all

components of the system.

B. Complete Test Set

Model-based testing opens up new horizons for software

testing as it allows the creation of a test set for the selected

and previously developed testing model that checks all the

requirements for this model. Thus, the test model supports

producing tests that fully cover aspects of the selected

model. For instance, if a program control graph is used as a

model, tests that execute all the graph arcs, are prepared.

Such test set is called the complete test set (CTS). If the

programme on this test set is working correctly, it shall be

assumed that it has been sufficiently tested. Unfortunately,

such a test criterion does not ensure the correct operation of

the programme in all cases, but it is widely used as it allows

for significant improvements in the overall quality of the

software.

It is not a secret that theoretical studies on the possibility

of automatically generating a complete test set according to

a certain program code were carried out even in the 70s,

when the first results on automatic generation of CTS were

published in a cycle of articles on testing theory, including

[9], followed by practical implementation [10]. During these

studies, it was found that in cases where programming

features are limited to processing a series of files, there is an

algorithm capable of creating a complete test system for

each such program. Thus, it can be assumed that for simple

programmes that do not use complex language structures

should also be possible to generate CTS.

This could complement unit testing with the possibility of

testing with automatically generated test sets. Further studies

demonstrate that if the program allows two two-way

counters, the problem of constructing CTS is algorithmically

unsolvable. This means that, depending on the programming

languages, the impossibility of automatic generation of CTS

soon occurs. In addition, despite the impressive age of this

topic, it is still popular and widely used, as demonstrated by

literature analysis [11]-[15]. In this study, the CTS

corresponding to program control graph will be replaced by

a DQ-complete test set system corresponding to the DQ-

model addressed in the next Section.

596 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

C. Test Set Generation

According to the above section, if a program control graph

coverage is used as a test model, testing according to this

model means checking all possible control flow branching

testing. As an example, this solution is provided by the

Visual Studio 2015 Enterprise IntelliTest tool.

IntelliTest allows generation of unit test set for a

particular class method or for all class methods

simultaneously. For each condition, a test will be generated

in the program code that will meet the specific condition

when the method is operated. This tool analyses each

condition branch in the C# code. The if branching

conditions, statements and all operations that may constitute

exceptions are analysed. As a result of the analysis,

IntelliTest is designed to achieve the highest code coverage.

In the generated test set, tests which have been performed,

entry data and error message can be seen. The user may save

them for further regression testing. The tool works with

programs written in C# programming language. IntelliTest is

based on a symbolic execution of a program that operates

with symbolic notion of variable values instead of traditional

command execution. This allows to establish the realizable

conditions for paths, which, when resolved, result in input

data for the execution of the corresponding path.

The concept of symbolic execution was introduced by

Goodenough and Gerhart in 1975 [16], however, despite

this, symbolic execution of programmes and specifications

remain popular and become even more popular in recent

years (see [17] – [21]). This study is not an exception, and

symbolic execution is at the core of the proposed idea.

D. Data Quality Model

The study uses the previously proposed data object-driven

data quality model (DQ-model) [4], consisting of 3 key

components: (1) a data object defining the data to be

analysed, (2) a specification of data quality, which defines

the conditions to be met for the recognition of data as

qualitative, and (3) a quality assessment process that

determines the procedure that must be followed to assess the

quality of data.

Each DQ-model component is represented by flowchart-

like diagrams defined in a graphical domain specific

language (DSL).

As in [22] the proposed solution will be demonstrated by

some concrete almost classic example of university, more

precisely, student and his achievements. Fig. 1 demonstrates

the definition of the data object. Three data objects are

defined: (1) Students, (2) its sub object Course, and (3)

inputMessage, which contain data on specific courses

passed, including course code, assessment, and date to be

entered in the corresponding student list of grades (sub

object Course) and stored in the database (data objects

Students and Courses). Dashed lines represent contextual

dependencies between the inputMessage attribute studName

and Students instances.

Fig.1 Data objects definition

Similarly, there is a contextual dependency between

inputMessage attributes and Courses stored values. These

dependencies are precisely defined in the quality conditions

shown in Fig. 2, containing 4 checks:

• the Students data object has an instance, where

Students.Name=inputMessage.studentName;

• a new instance has been added to the Students sub-

object Courses, where Courses.courseCode =

inputMessage.courseCode;

• a new instance with the corresponding course

assessment has been added to the Students sub-object

Courses data item, where Courses.Assessment =

inputMessage.Assessment;

• a new instance with the corresponding exam date has

been added to the Students data object Courses sub-

object, where Courses.Date = inputMessage.Date.

Thus, a DQ-model used to generate tests is obtained from

Fig. 1 and 2.

As stated in [4] and [23], the data object is defined

according to the data to be analysed, so that parameters that

are not relevant to specific users and use-cases are ignored

(further denoted with “---” symbols). Data objects of the

same structure form data object class. Similarly, the data

quality specification shall also be determined by the user/

tester, depending on the use-case. The data quality

specification can be defined informally or formally, but at

the last stage all requirements are replaced by executable

artefacts, such as SQL statements or program code, that

further are executed.

Fig.2 Requirements definition

ANASTASIJA NIKIFOROVA ET AL.: DATA QUALITY MODEL-BASED TESTING OF INFORMATION SYSTEMS 597

The DQ-model is therefore executable. As proposed in

[22] the DQ-model uses following methods to identify

context of data objects:

• reviewing all class instances by changing the address

<dataObjectName(instID).attributeName>, calculated

first by selecting the first instance using the instID =

getFirst(dataObjectName) method, followed by the

transition to the next instance using the method

<instID = getNext(dataObjectName)>. This option

shall be used if the quality of the data is to be analysed

for all instances of a particular data object;

• using a dynamically calculated address <instID =

seekInst(dataObject, expression)>, where an

expression is a logical expression where operands are

attribute names. If an instance of a data object is found

as a result of an execution, (1) a reference to the data

object is inserted into the variable instID, (2) the value

TRUE is returned to the environment; otherwise, a

NULL value is inserted in the variable that returns

FALSE. This option is used if the quality is to be

analysed for only one instance of a data object.

The effectiveness of the proposed approach has already

been demonstrated by applying it to real data sets and

presenting result in the series of articles.

III. THE PROPOSED SOLUTION

This Section demonstrates how the proposed DQ-model

can be used as a test model.

A. Data Quality Model as Testing Model

According to MBT principles, the test model is first

selected. It serves to generate a set of tests that will test the

correctness of the tested program or the system under test

(SUT). The test set can be created either manually, partially

or fully automatically. If the SUT on this test set works

according to the specification, the SUT is considered to have

been tested according to the selected model. As for criterion

when SUT can be considered to tested sufficiently, a DQ-

model coverage of all data quality requirements is selected.

Although the proposed solution complies with the principles

of the MBT, some important differences have to be

mentioned: the proposed solution carries out a verification of

the syntactical and contextual/ semantical control of input

data and their correct allocation in data objects of the

database. As it was mentioned in [3], it covers one of the

most important tasks of the information systems, which is

followed by other tasks such as calculations, reporting etc.

The proposed DQ-model-based test scheme or general

architecture of DQMBT is shown in Fig. 3. The main actions

are carried out by a “Test generator” using DQ-model to

generate test input data, data object content (database) and

two protocols – “Input data test protocol (expected)” and

“Database content (expected)”. The SUT is executed with

generated test input data after the database content generated

by the “Test generator” has been entered in the database.

Fig. 3 Software verification procedure

The results of the SUT execution are recorded in the

“Input data test protocol (real)” and the content of the data

objects (database) are read after testing the SUT with

generated test input data. The “Input data test protocol

(real)” must coincide with the “Input data test protocol

(expected)” generated by the “Test generator”, although

there are possible differences in formatting and texts. If

these two protocols in general coincide with each other, it is

assumed that the SUT is operating in accordance with the

DQ-model, otherwise both protocols are sent to IS

developers for further investigation of reasons of

differences. Differences in protocols may indicate errors in

the SUT or differences in the DQ-model from programmers’
programs.

The proposed testing ensures complete testing according

to the DQ-model, since all quality conditions are tested with

generated test inputs and data object content, reaching their

full coverage in both fulfilling and rejecting the conditions.

In other words, complete/ full testing is performed according

to the DQ-model. In addition, a specific test criterion is

proposed, more precisely whether data to be entered is

correctly allocated in data objects (database) without

contradicting the data previously stored. It is clear, the

proposed criterion does not guarantee the detection of all

errors in the operation of SUT. For instance, SUT operation

that record data in non-compliant locations in the database

are not controlled, moreover, database integrity may be

broken down. These types of errors cannot be detected even

in the case of well-developed testing support tools.

The proposed approach is consistent with “black box”

testing model because information on the internal design or

implementation of the system is not used. Only the DQ-

model is used to generate tests. However, it should be

acknowledged, that the SUT may contain activities that are

not covered by the DQ-model and the tests generated

therefore cover the operation of SUT only partially (this is a

common challenge for MBT).

This means that either traditional testing methods should

be used, or the testing model should be enriched with new

features.

The next section addresses the test generation algorithm.

598 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

B. Algorithm of Test Generation

In the proposed algorithm, the first phase requires the

deployment of a requirements/ condition model (Fig.2) into

a tree-like chart given in Fig. 4. The last branch vertices

contain numbers, which in the scope of the provided

example range from 1 to 6. The tree contains only one node

with a number 1 that represents correct data processing from

syntactic and semantic/ context checks to correct data

allocation and storage in the database. The branch with

number 2 represents a violation of the input data context

since database does not have data for the specific student.

Branches with numbers from 3 to 6 indicate incorrect data

allocation in database.

In the second phase of the algorithm, the conditions for

the realisation of the corresponding branches are established

using the symbolic execution of the DQ-model conditions.

For instance, the conditions for the first branch under this

example are:

• exist Students(instStudent) where

inputMessage.studName=Students(instStudent).name

• exist Course(instCourse) where

inputMessage.courseCode=Course(instCourse).name

• valid Assessment where inputMessage.Assessment

= Course(instCourse).Assessment

• valid Date where inputMessage.Date =

Course(instCourse).Date.

When resolving the conditions for the branch realisation

in all 6 cases, the test input data is obtained shown in Table I

and the content of the data objects (database) in Table II and

III. Each instance of a data objects serves as test input data

to complete one of the 6 branches. The 6 rows of the Table I

correspond to 6 branches that when executed fulfil all the

data quality conditions transitions/ paths of the DQ-model.

In other words, the generated test set is a full/ complete

DQ-test set. Execution of the SUT with all 6 tests will

achieve the complete testing of the SUT according to the

DQ-model criterion.

Fig.4 Requirements tree

TABLE I.

DATA OBJECT INPUTMESSAGE

studName courseCode Assessment Date

stud-1 course-1 assess-1 date-1

stud-2 --- --- ---

stud-3 course-3 --- ---

stud-4 course-4 assess-4 date-4

stud-5 course-5 assess-5 date-5

stud-6 course-6 assess-6 date-6

TABLE III.

DATA OBJECT STUDENTS

Name Address
stud-1 ---
stud-3 ---
stud-4 ---
stud-5 ---
stud-6 ---

TABLE IIIII.

DATA OBJECT COURSES

courseName Assessment Date
course-1 assess-1 date-1
course-4 assess-4 date-4
course-5 assess-5 date-5
course-6 assess-6 date-6

The test theory generally understands the concept of “test”

as the analysis of the value of the data to be entered and the

expected results of the SUT execution obtained by the SUT

with the entered data. It is known that the result of execution

depends not only on the data to be entered but also on the

content of the related data objects (database). Thus, the

proposed approach generates not only the data to be entered

but also the database content that ensures the execution/

completion of the chosen path. This can be achieved by

symbolically executing the contextual conditions/

requirements between the interrelated data object of the DQ-

model (as shown in Fig. 2).

The next stage of the algorithm supposes the execution of

the conditions with the DQ-complete test set (input entered

and the generated content of the data objects) that results in

obtaining the expected test results, so called benchmark.

When testing the SUT with the previously generated DQ-

complete test set, the results of execution must [by its

nature] coincide with the results of execution of the DQ-

model or benchmarks. Thus, it can be argued that the test

objective has been achieved since the tested programme is

tested with input data that ensures verification of all data

quality conditions, as well as checking the compliance of

input data with their retention on the database.

C. Testing Process

At the next stage, the SUT is tested with automatically

generated tests. The values of generated data objects are sent

to the database that is done by separate procedure (individual

for a particular system). This is followed by SUT testing

with the DQ tests given in Table I – “inputMessage”.

ANASTASIJA NIKIFOROVA ET AL.: DATA QUALITY MODEL-BASED TESTING OF INFORMATION SYSTEMS 599

TABLE IV.

PROTOCOL

branch message# text

1 1 Message-1: input successful:

<stud-1, course-1, assess-1, date-1>

2 2 Message-2: input error: invalid StudName

<stud-2, course-2, assess-2, date-2>

3 3 Message-3: database error:

invalid courseCode <stud-3, course-3, assess-
3, date-3>

4 4, 5 Message-4: database error:

invalid Assessment <stud-5, course-5, assess-
5, date-5>

Message-5: database error: invalid Date

<stud-5, course-5, assess -5, date-5>

5 4 Message-4: database error:

invalid Assessment <stud-5, course-5, assess-

5, date-5>

6 5 Message-5: database error: invalid Date

<stud-5, course-5, assess-5, date-5>

The results of the SUT execution must be consistent with

the previously obtained protocols. In the case of differences,

the inconsistencies between the operation of the SUT and the

DQ-model are identified (Table IV).

This can be caused by both errors in the SUT or errors in

the specification – the DQ-model. To automate the testing

process, most test support tools support the SUT execution

with a user-selected set of tests [24] – [27]. These tests

usually are accumulated gradually using the same test

support tools. As a result, in most cases the tests records

formats are internal formats of these tools which are not

related to the tested programs. In the proposed case, the

situation is more complicated because all generated tests

must be able to be performed automatically in one session.

This can be achieved by preparing test drivers that establish

database content, calls the cyclic execution of the SUT with

all generated tests, and read the database content after

completion of the tests (see Fig. 5).

Fig.5. Testing process

IV. ANALYSIS OF THE PROPOSED SOLUTION

The traditional and common approach to software testing

is to define and plan test cases prior to their execution and

then compare their results with documented expected results

[28]. The proposed approach differs from such test process

when the tester prepares test cases based on an informal

specification, his own experience or intuition without an

exact and precise specification of the operation of the SUT.

The proposed approach uses a formal and at the same time

executable specification, generates the DQ-complete test set

and the expected results of its execution or benchmarks.

After automated testing of the SUT, the tester should only

compare the results obtained with the expected benchmarks.

The tester does not have to prepare the test by himself and

perform the execution of the SUT with them. The quality of

testing therefore does not depend on the qualification of the

tester, but on the quality of the DQ-model in the way of its

accuracy and completeness, i.e. whether the testing model

meets the requirements of the system.

From the beginning of testing, it is well known that

systematic testing reveals most errors, and after each

iteration, the number of errors at the users’ end is lower.

Even at the end of the 20th century, it was already known

that, when tests are selected intuitively, the end user receive

8-10 times more errors compared to when tests are selected

based on the formalized model [29].

This time, systematic testing is understood as testing

according to the MBT principles. The main advantages of

using a complete test set (CTS) in the testing process are:

• a complete test set (CTS) can be generated prior to

the development of the programme, thus, it can

serve as an additional interpretative example of the

specification;

• SUT testing may be initiated immediately after the

development of the programme;

• the CTS shall completely verify the syntactic and

semantic/ context requirements specified in the

specification;

• the tester shall be released from the development of

tests and their execution.

However, together with the advantages, some of the

challenges and limitations of the proposed solution should

also be mentioned:

• the proposed solution supposes the development of a

DQ-model that requires resources and specific

expertise and knowledge in the development of

DQ-models although their development is not too

complicated, especially for people with IT

background;

• additional tools such as test generator, database

content input, output of results, CTS execution

driver, ensuring cyclic execution of all CTS tests

without the involvement of the tester, are required

to support testing;

• the SUT must be prepared for its automated testing

with CTS.

600 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

V. CONCLUSION

The solutions proposed by the test theory are only partly

capable of meeting the practice needs, since the proposed

testing strategies and techniques do not guarantee the

development of qualitative programmes. The previous

testing paradigm as a search for errors and bugs is now

switching to the new one, according to which, testing is

tasked with achieving reliable software. This can be

achieved through systematic testing, for instance, using

model-based testing.

The study therefore proposes an alternative, model-based

testing approach called DQMBT, based on a data quality

model proposed in previous studies. It defines the data

objects and conditions that must meet the parameter values

of the data objects to consider the data object to be correct

and qualitative. The proposed test algorithm provides such

two main features as:

• the generation of a DQ-complete test set to check

the correctness of the operation of the programs

to be tested, covering all possible quality

conditions for the input data;

• the comparison of the relevance of the data objects

to be entered and stored in the database to one

another, verifying whether the data entered is

correctly stored in the database.

The program testing with an automatically generated

complete test set (CTS) changes the testing process

significantly as the preparation and execution of individual

test cases is replaced by complete testing that systematically

checks all conditions in a single session.

Using a data quality model as a test model does not solve

all program testing problems. The proposed approach covers

only a part, however, a very important part of the functional

testing of the information systems, more precisely complete

testing of the input data and testing of the relevance of data

stored in the database with input data. This would lead to a

significant improvement in the overall quality of information

systems, which today is one of the most important

challenges we need to solve [30].

In addition to an in-depth study on the concepts, which

are not thoroughly covered in this paper mentioned in

Section 4, further studies on the topic include the application

of the proposed approach to the real system we are dealing

with. This will not only allow a test of the proposed

approach, but also lead to a quantitative and qualitative

results that could be compared with other strategies currently

in use. Then, the question on how to handle system events,

when one event takes place more quickly than others, but

affects the result of previous events, will be addressed.

REFERENCES

[1] M. Utting, B. Legeard. Practical model-based testing: a tools
approach. Elsevier, 2010.

[2] R.V. Binder. 2011 Model-based Testing User Survey: Results and

Analysis. System Verification Associates. System Verification
Associates, 2012.

[3] A. Nikiforova, J. Bicevskis. Towards a Business Process Model-based
Testing of Information Systems Functionality. In Proceedings of the

22nd International Conference on Enterprise Information Systems -

Volume 2: ICEIS, ISBN 978-989-758-423-7, pp. 322-329, 2020. DOI:

10.5220/0009459703220329.

[4] A. Nikiforova, J. Bicevskis, Z. Bicevska, I. Oditis. User-Oriented

Approach to Data Quality Evaluation. Journal of Universal Computer
Science, 26(1), pp.107-126, 2020.

[5] R. Perez-Castillo, A.G. Carretero, M. Rodriguez, I. Caballero, M.

Piattini, A. Mate et al. Data quality best practices in IoT
environments. In 2018 11th International Conference on the Quality

of Information and Communications Technology (QUATIC), pp. 272-

275. IEEE, 2018, DOI: 10.1109/QUATIC.2018.00048.
[6] 24765-2010 - ISO/IEC/IEEE International Standard - Systems and

software engineering – Vocabulary,

doi:10.1109/IEEESTD.2010.5733835. ISBN 978-0-7381-6205-8.
[7] K. Olsen, T. Parveen, R. Black, D. Friedenberg, E. Zakaria, M.

Hamburg, J. McKay, M. Walsh, M. Posthuma, M. Smith, R. Smilgin,

S. Ulrich, S. Toms. Certified tester foundation level syllabus. Journal
of International Software Testing Qualifications Board, 2018.

[8] P. Saini. Revisiting Mutation Testing in Cloud Environment

(Prospects and Problems), A Journal of Composition Theory, Volume
12, Issue 9, pp. 2007-2011, 2019,

DOI:19.18001.AJCT.2019.V12I9.19.10519.

[9] J. Bārzdiņš, J. Bičevskis, A. Kalniņš. Automatic construction of
complete sample systems for correctness testing. Math. Found. of

Computer Science. Springer Verlag, Berlin, 1975.
[10] J. Bičevskis, J. Borzovs, U. Straujums, A. Zariņš, E.F.jr. Miller.

SMOTL - A System to Construct Samples for Data Processing

Program Debugging. IEEE Transactions on Software Engineering,
Vol. SE-5, No.1, pp. 60-66, 1979.

[11] Y. Y. Lin, N. Tzevelekos. Symbolic Execution Game Semantics.

arXiv preprint arXiv:2002.09115, 2020.
[12] G. P. Farina, S. Chong, M. Gaboardi, M. Relational symbolic

execution. In Proceedings of the 21st International Symposium on

Principles and Practice of Programming Languages 2019, pp. 1-14,
ACM, https://doi.org/10.1145/3354166.3354175.

[13] M. Aggarwal, S. Sabharwal. Combinatorial Test Set Prioritization

Using Data Flow Techniques. Arabian Journal for Science and
Engineering, 43(2), pp. 483-497, 2018,

https://doi.org/10.1007/s13369-017-2631-y.

[14] M. Handique, J. K. Deka, S. Biswas, K. Dutta. Minimal test set
generation for input stuck-at and bridging faults in reversible circuits.

In TENCON 2017 IEEE Region 10 Conference, pp. 234-239, DOI:

10.1109/TENCON.2017.8227868.

[15] G. Eleftherakis, P. Kefalas, E. Kehris. A methodology for developing

component-based agent systems focusing on component quality. In

2011 Federated Conference on Computer Science and Information
Systems (FedCSIS), pp. 561-568. IEEE, 2011.

[16] J. Goodenough, S. Gerhart, S. Toward a Theory of Test Data

Selection. IEEE Transactions on Software Engineering, Vol. 1 (2), pp.
156-173, 1975.

[17] A. Ibing. Efficient data-race detection with dynamic symbolic

execution. In 2016 Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 1719-1726. IEEE, 2016, DOI:

10.15439/2016F117.

[18] J. Bicevskis, G. Karnitis. Testing of Execution of Concurrent
Processes. Proceedings of DB&IS’2020 (to be published).

[19] R. Baldoni, E. Coppa, D. D’elia, C. Demetrescu, I. Finocchi. A survey

of symbolic execution techniques. ACM Computing Surveys (CSUR),
51(3), pp. 1-39, 2018, https://doi.org/10.1145/3182657.

[20] D. Trabish, A. Mattavelli, N. Rinetzky, C. Cadar. Chopped symbolic

execution. In Proceedings of the 40th International Conference on
Software Engineering, pp. 350-360, 2018,

https://doi.org/10.1145/3180155.3180251.

[21] R. Stoenescu, M. Popovici, L. Negreanu, C. Raiciu. Symnet: Scalable

symbolic execution for modern networks. In Proceedings of the 2016

ACM SIGCOMM Conference, pp. 314-327, 2016,

https://doi.org/10.1145/2934872.2934881.
[22] J. Bicevskis, A. Nikiforova, Z. Bicevska, I. Oditis, G. Karnitis. A Step

Towards a Data Quality Theory. In 2019 Sixth International

Conference on Social Networks Analysis, Management and Security
(SNAMS), pp. 303-308. IEEE, 2019, 10.1109/SNAMS.2019.8931867.

ANASTASIJA NIKIFOROVA ET AL.: DATA QUALITY MODEL-BASED TESTING OF INFORMATION SYSTEMS 601

[23] J. Bicevskis, Z. Bicevska, A. Nikiforova, I. Oditis. Towards Data

Quality Runtime Verification. In 2019 Federated Conference on

Computer Science and Information Systems (FedCSIS), pp. 639-643.

IEEE, 2019, DOI: 10.15439/2019F168.

[24] V. Garousi, F. Elberzhager. Test automation: not just for test

execution. IEEE Software, 34(2), pp. 90-96, 2017,

DOI:10.1109/MS.2017.34.

[25] D. M. Rafi, K. R. K. Moses, K. Petersen, M. V. Mäntylä. Benefits and

limitations of automated software testing: Systematic literature review

and practitioner survey. In 2012 7th International Workshop on

Automation of Software Test (AST), pp. 36-42. IEEE, 2012.

[26] P. Loyola, M. Staats, I.Y. Ko, G. Rothermel. Dodona: automated

oracle data set selection. In Proceedings of the 2014 International

Symposium on Software Testing and Analysis, pp. 193-203, 2014,

http://dx.doi.org/10.1145/2610384.2610408.

[27] H. Kaur, G. Gupta. Comparative study of automated testing tools:

selenium, quick test professional and testcomplete. Int. Journal of

Engineering Research and Applications, 3(5), pp. 1739-1743, 2013.

[28] W. Afzal, A. N. Ghazi, J. Itkonen, R. Torkar, A. Andrews, K. Bhatti,

K. An experiment on the effectiveness and efficiency of exploratory

testing. Empirical Software Engineering, 20(3), pp. 844-878, 2015,

https://doi.org/10.1007/s10664-014-9301-4.

[29] J. Bicevskis. The Effectiveness of Testing Models. In Proc. of 3 rd

Intern. Baltic Workshop “Databases and Information Systems”, 1998.

[30] E. Ziemba, T. Papaj, D. Descours, Assessing the quality of

e-government portals-the Polish experience. In 2014 Federated

Conference on Computer Science and Information Systems, IEEE,

2014, pp. 1259-1267, http://dx.doi.org/10.15439/2014F121.

602 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

