
Multiprocessor Scheduling Problem with Release

and Delivery Times

Natalia Grigoreva

St.Petersburg State University

Universitetskay nab. 7/9, St.Petersburg, Russia

Email: n.s.grig@gmail.com

Abstract—The multiprocessor scheduling problem is defined
as follows: set of jobs have to be executed on parallel identical
processors. For each job we know release time, processing time
and delivery time. At most one job can be performed on every
processor at a time, but all jobs may be simultaneously delivered.
Preemption on processors is not allowed. The goal is to minimize
the time, by which all tasks are delivered. Scheduling tasks among
parallel processors is a NP-hard problem in the strong sense.
The best known approximation algorithm is Jackson’s algorithm,
which generates the list schedule by selecting the ready job with
the largest delivery time. This algorithm generates no delay
schedules. We define an IIT (inserted idle time) schedule as a
feasible schedule in which a processor can be idle at a time when
it could begin performing a ready job. The paper proposes the
approximation inserted idle time algorithm for the multiprocessor
scheduling. We proved that deviation of this algorithm from
the optimum is smaller then twice the largest processing time.
To illustrate the efficiency of our approach we compared two
algorithms on randomly generated sets of jobs.

I. INTRODUCTION

W
E consider the problem of scheduling jobs with release

and delivery times on parallel identical processors.

We consider a set of jobs U = {u1, u2, . . . , un}. For

each job we know its processing time t(ui), its release time

r(ui) the time at which the job is ready for performing and

its delivery time q(ui). All data are integer. Set of jobs is

performed on m parallel identical processors. Any processor

can run any job and it can perform no more than one job at

a time. Preemption is not allowed. The schedule defines the

start time τ(ui) of each job ui ∈ U . The makespan of the

schedule S is the quantity

Cmax = max{τ(ui) + t(ui) + q(ui)|ui ∈ U}.

The goal is to minimize Cmax, the time by which all jobs

are delivered. Following the classification scheme proposed by

Graham et al. [12], this problem is denoted by P |ri, qi|Cmax.

The problem is equivalent to model P |ri|Lmax with due

dates d(ui), rather than delivery times q(ui). The equivalence

is shown by replacing each delivery time q(ui) by due date

d(ui) = qmax − q(ui), where qmax = max{q(ui) | ui ∈ U}.
In this problem the objective is to minimize the maximum

lateness of jobs Lmax = max{τ(ui)+ t(ui)− d(ui)|ui ∈ U}.

This problem relates to the scheduling problem [3], very

similar problems can arise in different application fields [23].

The problem plays the main role in some important appli-

cations, for example, in the Resource Constrained Project

Scheduling Problem [3], and it is NP -hard [27].

The single machine problem with release and delivery times

is denoted by 1|rj , qj |Cmax and it is NP -hard too [27].

The 1|rj |qj |Cmax is also a main component of several more

complex scheduling problems, such that flowshop and jobshop

scheduling [1], [8] and uses in real industrial application

[8]. The problem 1|rj , qj |Cmax has been studied by many

researches [5], [16], [22], [26].

The problem P |rj , qj |Cmax is a generalization of the single-

machine scheduling problem with release and delivery times

1|rj , qj |Cmax. The problem arises as a strong relaxation of the

multiprocessor flow shop problem [4]. The problem has been

the subject of numerous papers, some of these works focus on

problems with a precedence constrains [29].

Most of these studies have focused to obtain lower bounds

[6], [18], the development of exact solution of the problem

[7], [8] or a polynomial time approximation scheme (PTAS)

[17], [21].

However, despite its practical importance, only Jackson’s

algorithm is used as a simple list heuristic algorithm for the

P |rj , qj |Cmax.

The worst-case performance of Jackson’s algorithm has

been investigated by Gusfield [15] and Carlier [7]. Gusfield

[15] examined Jackson’s heuristic for the problem to minimize

the maximum lateness of jobs with release times and due

dates and proved that difference between the lateness given

by Jackson’s algorithm and the optimal lateness is bounded

by (2m− 1)tmax/m and this bound is tight.

Carlier [7] proved that Cmax − Copt ≤ 2tmax − 2, where

Cmax is the objective function of Jackson’s rule schedule, and

Copt is the optimal makespan.

Gharbi and Haouari [11] proposed improved Jackson’s algo-

rithm which uses an O(n log n)-time preprocessing procedure

in order to reduce the number of jobs to be scheduled and

investigated its worst-case performance.

The preprocessing procedure can be briefly described as

follows. Let j(k) is the job with the kth smallest release time.

A condition which allows to define the start time of a job

j0 ∈ {j1, j2, ..., jm} at r(j0) in an optimal schedule is r(j0)+
t(j0) = min{r(jk) + t(jk)|k ∈ 1..m} ≤ r(jm+1). Then a job

j0 can be deleted from the set of jobs. This deleting rule is

recursively applied to the new jobset U \ {j0}. Let Ur be

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 263–269

DOI: 10.15439/2020F33

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 263

the set of jobs deleted according to this rule. Then the above

deleting rule can be applied to the reversing problem (where

by reversing the roles of the release and delivery times). Let

Uq be the set of jobs deleted according to this second rule.

Therefore, the problem can be solved on a reduced job-

set, denoted by UJ . Let SUJ is a feasible schedule with

makespan equal to Cmax(SUJ). Then the improved Jackson’s

algorithm constructs a complete schedule with makespan equal

to Cmax = max{Cmax(SUJ),max(rj+tj+qj |j ∈ Ur∪Uq)}.

Most of research in scheduling is devoted to the develop-

ment of nondelay schedule. A nondelay schedule has been

defined by Baker[2] as a feasible schedule in which a processor

cannot be idle at a time when it could start performing a

ready job. Kanet and Sridharam [19] defined an inserted idle

time schedule (IIT)as a feasible schedule in which a processor

can idle, if there is the ready job and reviewed the literature

with problem setting where IIT scheduling may be required.

Most of papers considered problem with single processor.

It is known that an optimal schedule can be IIT schedule.

Therefore,it is important to develop algorithms that can build

IIT schedule.

In [13] we considered multiprocessor scheduling problem

with precedence constrained and proposed the branch and

bound algorithm, which use an inserted idle time algorithm

for m parallel identical processors.

In [14] we investigated the inserted idle time algorithm for

single machine scheduling with release times and due dates.

The goal of this paper is to propose an approximation IIT

algorithm for P |rj , qj |Cmax problem and investigate its worst-

case performance.

In order to confirm the effectiveness of our approach we

tested our algorithms on randomly generated examples.

First in section 2, we propose an approximation IIT algo-

rithm named MDT/IIT (maximum delivery time/ inserted idle

time). In section 3 we investigate the worst-case performance

of MDT/IIT algorithm. In section 4 we present the results of

testing the algorithm. Summary of this paper is in section 5.

II. APPROXIMATION ALGORITHM MDT/IIT

Algorithm MDT/IIT generates the schedule, in which a pro-

cessor can be idle at the time when it could begin performing

a job.

Let rmin = min{r(i) | i ∈ U} and qmin = min{q(i) | i ∈
U}.

First we calculate the lower bound LB of the optimal

makespan [7]:

LB = max{rmin +
∑n

i=1
t(i)/m + qmin,max{r(i) + t(i) +

q(i) | i ∈ U}}.
Let tmax = max{t(i) | i ∈ U}.

Let a partial schedule Sk have been constructed, where

k is the number of scheduling jobs. Let Cmax(Sk)) be the

makespan of Sk.

Let timek[i] be the time of the termination of the processor

i after completion all its jobs.

Procedure SET (i, j, k, Cmax(Sk)) sets a job j on processor

i at step k and include the job j in Sk.

SET (i, j, k, Cmax(Sk)).

1) τ(j) := max{timek[i], r(j)}.
2) k := k + 1.

3) timek[i] := τ(j) + t(j).
4) Cmax(Sk) := max{Cmax(Sk−1), τ(j) + t(j) = q(j).

The approximation schedule S is constructed by MDT/IIT

algorithm as follows:

1) Determine the processor l0 such that

tmin(l0) = min{timek[i]|i ∈ 1..m}.

2) If there is no job ui, such that r(ui) ≤ tmin(l0) then

tmin(l0) := min{r(ui) |ui /∈ Sk}.
3) Select a job u with the largest delivery time

q(u) = max{q(ui) | r(ui) ≤ tmin(l0)}.
4) If tmin(l0) > tmax then SET (l0, u, k, Cmax(Sk)); go to

11.

5) Select a job u∗ such that

q(u∗) = max{q(ui) | tmin(l0) < r(ui) < tmin(l0) +
t(u)}.

6) If there is no such job u∗ or one of inequality is hold

q(u) ≥ q(u∗) or q(u∗) ≤ LB/3, or r(u∗) ≥ tmax then

SET (l0, u, k, Cmax(Sk)). Go to 11.

7) Calculate the idle time of the processor l0 before the

start of job u∗

idproc(l0) = r(u∗)− tmin(l0).
If q(u∗) − q(u) < idproc(l0), then

SET (l0, u, k, Cmax(Sk)). Go to 11.

8) Select a job u1 which can be executed during the time

interval [tmin(l0), r(u
∗)], namely such that

q(u1) = max{q(ui) | tmin(l0) ≥ r(ui) & t(ui) ≤
idle(u∗)}.
If job u1 exists, then SET (l0, u1, k, Cmax(Sk)). Go to

11.

9) Select the ready job u2 such that

q(u2) = max{q(ui) | tmin(l0) < r(ui) & r(ui) +
t(ui) ≤ r(u∗)}.
If we find u2, then SET (l0, u2, k, Cmax(Sk)). Go to 11.

10) SET (l0, u
∗, k, Cmax(Sk)).

11) If k < n, then go to 1.

12) If k = n, we construct the approximation schedule

S = Sn and we have the objective function Cmax(S) =
Cmax(Sn).

The algorithm sets on the processor l0 the job u∗ with the

largest delivery time q(u∗). If job u∗ is not ready, then the

processor l0 does not work in the interval [t1, t2], where t1 =
tmin(l0), t2 = r(u∗).

In order to avoid too much idle of the processor the

inequality q(u∗)− q(u) ≥ idproc(l0) is verified on step 7 and

if it is hold, we select job u∗. In order to use the idle time of

the processor l0 we look for job u1 or u2 to perform in this

interval (see steps 8 and 9). Job u∗ starts at τ(u∗) = r(u∗).
The MDT/IIT algorithm generates the schedule in O(mn2)

times. It generates the schedule by n iterations, the processor

selection requires O(m) times and the job selection requires

O(n) time on each iteration.

264 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

III. PROPERTY OF MDT/IIT ALGORITHM

Let algorithm generate a schedule S, and for each job j
we have the start time τ(j). The makespan is Cmax(S) =
max{τ(j) + t(j) + q(j) | j ∈ U}.

Definition 3.1:

Critical job jc is the first processed job such that Cmax(S) =
τ(jc) + t(jc) + q(jc).

Let Copt be the length of an optimal schedule.

Theorem 3.2: Cmax(S)− Copt < tmax(2m− 1)/m,
and this bound is tight.

Proof:

Let c be the critical job then Cmax(S) = τ(c)+ t(c)+q(c).
If the processors do not idle in the time interval [0, τ(c)], then

we set τ∗ = 0, else let

τ∗ = max{t | 0 < t < τ(c)},

where t is the time, when the number of processors working

from time t− 1 to t is smaller then m.

Let J = {vi ∈ U |τ∗ ≤ τ(vi) < τ(c)} be the set of jobs,

which begin in interval [τ∗, τ(c)).
Let τ(j0) = max{τ(vi)|τ(j0) < τ(c) & q(vi) < q(c)}.

The job j0 is the last scheduling job with q(j0) < q(c) and

τ(j0) < τ(c).
If there is no such work j0, then we set τ(j0) = 0.

We consider four cases.

Case 1. There is not any idle time of processors before τ(c)
and then τ∗ = 0.

Let τ(j0) = 0, then all jobs, which start time τ(vi) < τ(c),
have delivery time q(vi) ≥ q(c). The jobs from J must start

in interval [0, τc), then
∑

vi∈J

t(vi) ≥ mτ(c)

and

Copt ≥
∑

vi∈J

t(vi)/m+t(c)/m+q(c) ≥ τ(c)+t(c)/m+q(c).

Then

Cmax(S)− Copt ≤ t(c)− t(c)/m < tmax

.

Case 2. Let 0 ≤ τ(j0) < τ∗ < tmax.
Then q(vi) ≥ q(c), ∀vi ∈ J.

We can consider three sets of jobs:

A1 = {vi ∈ J |r(vi) ≥ τ∗}, the jobs can start in interval

[τ∗, τc),
A2 = {vi ∈ J |r(vi) < τ∗}, the jobs can start before τ∗,
A3 = {vi ∈ U |τ(vi) ≤ τ∗ − 1 & τ(vi) + t(vi) ≥ τ∗}.

A3 contains not more m− 1 jobs and this jobs process in the

interval [τ∗ − 1, τ∗]. There are no any idle time of processors

in the interval [τ∗, τ(c)], then

TA =
∑

vi∈A3

(t(vi)− 1)+
∑

vi∈A1

t(vi)++
∑

vi∈A2

t(vi) ≥ m(τ(c)−τ∗).

The jobs from set A1 can process only after the time τ∗,
but the jobs from sets A2 and A3 can process before τ∗. The

job c can process before τ∗, if r(c) < τ∗.

Copt ≥ (TA + t(c))/m+ q(c) ≥ τ(c)− τ∗ + t(c)/m+ q(c).

Hence

Cmax(S)− Copt ≤ τ∗ + t(c)− t(c)/m < tmax(2− 1/m),

because τ∗ < tmax (see step 3 of MDT/IIT algorithm).

Case 3. Let tmax ≤ τ∗ and τ(j0) < τ∗.

If tmax ≤ τ∗ then A2 = ∅ and the job c can process only

after τ∗. Then

∑

vi∈A3

(t(vi)− 1) +
∑

vi∈A1

t(vi) ≥ m(τ(c)− τ∗).

Copt ≥ τ∗ +
∑

vi∈A1

t(vi)/m+ t(c)/m+ q(c) ≥

≥ τ(c)−
∑

vi∈A3

(t(vi)− 1)/m+ t(c)/m+ q(c)

A3 contains not more m− 1 jobs, hence

Cmax(S)− Copt ≤ t(c)− t(c)/m+ 1/m
∑

vi∈A3

(t(vi)− 1) ≤

≤ t(c)− t(c)/m+ (m− 1)/m(tmax − 1) ≤

≤ (2tmax − 1)(m− 1)/m < tmax(2− 1/m).

Case 4. Consider the case 0 ≤ τ∗ ≤ τ(j0).
Let J = {vi ∈ U |τ(j0) < τ(vi) < τ(c)}.
For all vi ∈ J it is true, that r(vi) > τ(j0), otherwise the

processor must process job vi instead of j0. q(vi) ≥ q(c).
Then

Copt ≥ τ(j0) + 1 +
∑

vi∈J t(vi)/m+ t(c)/m+ q(c).
We can see the set of jobs:

A3 = {vi ∈ U |τ(vi) ≤ τ(j0) & τ(vi)+ t(vi) ≥ τ(j0)+1},

the jobs must process in interval [τ(j0), τ(j0)+1]. A3 contains

m jobs. Then
∑

vi∈A3

(t(vi)− 1) +
∑

vi∈J

t(vi) ≥ m(τ(c)− τ(j0)− 1).

Copt ≥ τ(j0)+1+τ(c)−τ(j0)−1−1/m
∑

vi∈A3

(t(vi)− 1)+

+t(c)/m+ q(c) =

= τ(c) + t(c)/m+ q(c)− 1/m
∑

vi∈A3

(t(vi)− 1).

A3 contains m jobs, hence

Cmax(S)−Copt ≤ 1/m
∑

vi∈A3

(t(vi)− 1)+ t(c)(m−1)/m ≤

≤ tmax − 1 + tmax(m− 1)/m

NATALIA GRIGOREVA: MULTIPROCESSOR SCHEDULING PROBLEM WITH RELEASE AND DELIVERY TIMES 265

TABLE I
MDT SCHEDULE Cmax(MDT) = 5m− 2

t m− 1 m− 1 m m m

P1 idle u1 u4 a v3 v6
P2 idle u2 u5 v1 v4 idle

P3 idle u3 u6 v2 v5 idle

TABLE II
OPTIMAL SCHEDULE Cmax = 3m

t m m m

P1 v3 a v6
P2 v1 u1 u4 u3 v4
P3 v2 u2 u5 u6 v5

Cmax(S)− Copt ≤ tmax(2m− 1)/m− 1.

Now, we show that this bound is tight.

Example 3.3: Consider the m2+m+1 jobs and m machine

instance. There are 2m jobs vi : r(vi) = 0; t(vi) = m; q(vi) =
0. There are m(m − 1) jobs ui : r(ui) = m − 1; t(ui) = 1;
q(ui) = m and job a : r(a) = m− 1; t(a) = m; q(a) = m.

The makespan of MDT/IIT schedule is Cmax(MDT) =
5m − 2. The makespan of the Jackson’s schedule is

Cmax(JR) = 4m− 1. The optimal makespan is equal 3m.

Table 1 shows the schedule posted by algorithm MDT/IIT,

and Table 2 shows the optimal schedule, for the case m = 3.

The first row of the table shows the time of the assignments.

The next three lines indicate the tasks performed on the

processors P1, P2, P3, respectively.

We can see that Cmax(MDT)−Copt is equal 2m− 2, that

is 2tmax − 2.
We compare schedules constructed by MDT/IIT algorithm

with schedules constructed by nondelay Jackson’s algorithm.

Consider next example.

Example 3.4: Consider the m2 + 1 jobs and m machine

instance.

There are m jobs vi : r(vi) = 0; t(vi) = m; q(vi) = 0.

There are m(m−1) jobs ui : r(ui) = 1; t(ui) = 1; q(ui) = m
and there is job a : r(a) = 1; t(a) = m; q(a) = m.

The makespan of the Jackson’s schedule is

Cmax(JR) = 4m− 1. The makespan of MDT/IIT schedule is

Cmax(MDT) = 3m. The makespan of an optimal schedule

is Copt = 2m+ 1.

Table 3 shows the schedule posted by algorithms MDT/IIT,

Table 4 shows the Jackson’s schedule schedule and Table 5

shows the optimal schedule for the case m = 3.

The algorithms JR and MDT are in a certain sense oppo-

sites: if the algorithm JR generates a schedule with a large

TABLE III
MDT SCHEDULE Cmax(MDT) = 3m

t 1 m− 1 m m

P1 idle u1 u4 a v3
P2 idle u2 u5 v1 idle

P3 idle u3 u6 v2 idle

TABLE IV
THE JACKSON’S SCHEDULE Cmax(JR) = 4m− 1.

t m m− 1 m

P1 v1 u1 u4 a

P2 v2 u2 u5 idle

P3 v3 u3 u6 idle

TABLE V
OPTIMAL SCHEDULE Cmax = 2m+ 1

t 1 m m

P1 idle a v6
P2 idle u1 u4 u3 v4
P3 idle u2 u5 u6 v5

error, the algorithm MDT/IIT works well and vice versa.

Examples 3.3 and 3.4 illustrate this property of the algorithms.

We propose the combined algorithm that builds two schedules:

one by the algorithm JR, the other by the algorithm MDT and

selects the best.

IV. COMPUTATION RESULT

In this section we present the results of testing the proposed

algorithm on several types of tests. The quality of the sched-

ules we estimated the average relative gap produced by each

algorithm, where the gap is equal to RT = (Cmax−LB)/LB.

We compared algorithms JR, MDT/IIT and the combined

algorithm CA, that builds two schedules (one schedule by the

algorithm JR, the other by the algorithm MDT) and selects the

best solution.

The experiment considered several types of examples. The

number of jobs n changed from 100 to 500.

In examples type A job processing time, release and de-

livery times are generated with discrete uniform distribu-

tions between 1 and n. Groups for m = 20 and n =
100, 200, 300, 400, 500 were tested. For each n we generate

30 instances. 150 instances of type A are tested. The results

are given in Table 6. The first column of this table contains

the number of jobs n.The columns Nopt(MDT), Nopt(JR)
and Nopt(CA) shows the cases (in percents) where optimal

schedules were obtained by MDT method, JR method and

combined method.

We can see that the problem becomes easier as n increases,

because the average number of jobs per processor tends to

increase. The average relative gap ranges from 4 % to 21 %

for CA algorithm. The combined algorithm allows to improve

RT in all cases.

TABLE VI
TYPE A. VARIATION OF n.

n RT (MDT) RT (JR) Nopt(CA) RT (CA)

100 0.219 0.228 0 0.216

200 0.147 0.159 0 0.141

300 0.061 0.066 0 0.058

400 0.053 0.051 0 0.052

500 0.047 0.042 0 0.039

266 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

In the next experiment we fix the number of jobs n = 500
and change the number of processors m from 3 to 170.

For each m we generate 30 instances and a total of 240

instances are tested. The results of the experiments are shown

in Table 7. The first column of this table contains the number

of processors m. Table 7 shows the performance of JR, MDT

and CA algorithms.

Table 7 shows that average relative gap increases when m
changes from 3 to 100 and reaches a maximum at m = 100.

Then it decreases and when m = 170 algorithm MDT

generates 98 % optimal solutions, algorithm JR 96 % and

algorithm CA generates optimal solutions for all instances.

Algorithms JR and MDT give very close solutions and only

with m = 3, 20, 30, 130, 170 the algorithm MDT has an

advantage. The combined algorithm allows to improve RT in

all cases.

We can see from tables 6 and 7 that the most difficult

examples occur when the average number of jobs per processor

is equal 5.

In the next series of tests, we restricted our instances to

those types that found hard. The number of jobs n is equal

to 100 and the number of processors m is equal to 20 (5

jobs on average per processor). In instances of type C we

change tmax. Type C, that were randomly generated as follows:

the job processing time is generated with discrete uniform

distributions between 1 and tmax, where t max changes from

20 to 500. For each tmax we generate 30 instances.240

instances of type C are tested. Release and delivery times are

generated with discrete uniform distributions on [1,100]. The

results of the work are given in Table 8.

We can see that the problem becomes more difficult with

increasing tmax, the average relative gap increases and remains

large at a tmax from 100 to 500. The maximum deviation is

reached at tmax = 200. The combined algorithm allows to

increase (at tmax = 50) the number of optimal solutions by

9% and to improve RT in all cases.

In the series of tests considered, the average deviation

was slightly different for the algorithms JR and MDT. The

combined algorithm allowed us to slightly improve the value

of the objective function.

In order to get a better picture of the actual effectiveness of

MDT/IIT we consider other types of instances.

In next series we consider instances in which jobs have the

same processing time.

Type EJ (Equal job): The heads are drawn from the discrete

uniform distribution on [1, 10] and tails from [1, 60], n = 100.

All processing times ti = 60. We can see the computational

results in Table 9, where the last column F contains the

difference RT (JR)−RT (MDT).

We can see that for examples of Type EJ the average relative

gap is less for algorithm MDT/IIT for all values of m. For

m = 50, the average relative gap for the JR algorithm is equal

0.40, but for the MDT/IIT algorithm it is only 0.17.

Type SG (small-great) : The heads are generated from the

discrete uniform distribution on [1, 10] and tails on [1, 80],

n = 100. The processing times are drawn from the discrete

uniform distribution on [40, 60].
Table 10 shows the results of examples of type SG. For cases

m = 40 and m = 50, there is a significant difference between

the results obtained by different algorithms. The average

relative gap for MDT algorithm and JR algorithm is equal

0.14 and 0.24, respectively, for m = 40. Algorithm MDT/IIT

generated 100% of optimal solutions, whereas algorithm JR

only 25% for m = 50. We observe from Tables 9 and 10 that

MDT/IIT exhibits a good performance with instances of types

EJ and SL.

Type GS(great-small): The r(u) are drawn from the discrete

uniform distribution on [1, 100] and q(u) on [1, 20], n = 100.

Table 11 shows the results of examples of type LS. The pro-

cessing times are drawn from the discrete uniform distribution

on [1, n].
For examples of the type LS, the greatest deviation is

observed at m = 20 and m = 30. The optimal solutions were

obtained only at m = 50. The combined algorithm works

better than each of the algorithms separately in all types of

examples.

V. CONCLUSION

We propose an approximation IIT algorithm named

MDT/IIT (maximum delivery time/ inserted idle time) for

P |rj , qj |Cmax problem. We proved that Cmax(S) − Copt <
tmax(2m − 1)/m, and this bound is tight, where Cmax is

the objective function of MDT/IIT schedule, and Copt is the

makespan of an optimal schedule. We observe that MDT/IIT

algorithm exhibits a good performance with instances in which

delivery times are large compared with processing times and

release times.

We propose the combined algorithm that builds two sched-

ules (one by the algorithm JR, the other by the algorithm

MDT) and selects the best solution.The algorithms JR and

MDT are in a certain sense opposites: if the algorithm JR

generates a schedule with a large error, the algorithm MDT

works well and vice versa. Computational experiments have

shown that the combined algorithm works better than each of

the algorithms separately.

REFERENCES

[1] C. Artigues, D. Feillet, "A branch and bound method for the job-shop
problem with sequence-dependent setup times",Annals of Operations

Research, vol. 159,2008, pp.135—159.

[2] K.R. Baker,Introduction to Sequencing and Scheduling. John Wiley &
Son, New York, 1974.

[3] P. Brucker, Scheduling Algorithms. fifth ed. Springer,Berlin, 2007.

[4] J. Carlier, E. Néron, "An exact algorithm for solving the multiprocessor
flowshop," RAIRO Operations Research, vol. 34, 2000, pp. 1—25.

[5] J. Carlier, "The one machine sequencing problem." European Journal

of Operational Research,vol.11,1982, pp. 42–47.

[6] J. Carlier, E. Pinson, " Jackson’s pseudo preemptive schedule for
the Pm|rj, qj|Cmax scheduling problem," Annals of Operations Re-

search, vol. 83, 1998, pp.41–58.

[7] J. Carlier, "Scheduling jobs with release dates and tails on identical
machines to minimize the makespan."European Journal of Operational

Research, vol. 29, 1987,pp.298—306.

NATALIA GRIGOREVA: MULTIPROCESSOR SCHEDULING PROBLEM WITH RELEASE AND DELIVERY TIMES 267

TABLE VII
TYPE A. VARIATION OF m.

m Nopt(MDT) RT (MDT) Nopt(JR) RT(JR) Nopt(CA) RT (CA)

3 0 0.003 0 0.004 0 0.002

10 0 0.019 0 0.016 0 0.014

20 0 0.042 0 0.046 0 0.041

30 0 0.068 0 0.075 0 0.066

50 0 0.146 0 0.135 0 0.132

100 0 0.201 0 0.195 0 0.191

130 0 0.021 0 0.025 0 0.019

170 98 0.001 97 0.001 100 0.000

TABLE VIII
TYPE C. VARIATION OF tmax .

tmax Nopt(MDT) RT (MDT) Nopt(JR) RT(JR) Nopt(CA) RT (CA)

20 100 0.000 99 0.000 100 0.000

50 51 0.004 52 0.005 61 0.003

70 0 0.016 0 0.014 0 0.013

100 0 0.212 0 0.219 0 0.210

200 0 0.223 0 0.221 0 0.220

300 0 0.209 0 0.218 0 0.207

400 0 0.207 0 0.213 0 0.206

500 0 0.203 0 0.206 0 0.202

TABLE IX
TYPE EJ. VARIATION OF m.

m RT (MDT) RT (JR) RT (CA) F

20 0.03 0.04 0.03 0.01

30 0. 22 0.24 0.22 0.02

40 0.26 0.32 0.26 0.06

50 0.17 0.40 0.17 0.23

TABLE X
TYPE SG. VARIATION OF m

m RT (MDT) RT(JR) RT (CA) F

20 0.10 0.11 0.10 0.01

30 0.19 0.23 0.19 0.04

40 0.14 0.24 0.14 0.10

50 0.000 0.23 0.000 0.23

TABLE XI
TYPE GS. VARIATION OF m.

m RT (MDT) RT (JR) RT (CA)

3 0.015 0.014 0.014

10 0.100 0.110 0.092

20 0. 239 0.236 0.227

30 0.205 0.198 0.192

50 0.006 0.008 0.000

[8] C. Chandra, Z.Liu, J. He, J,T. Ruohonen, "A binary branch and bound
algorithm to minimize maximum scheduling cost," Omega, vol. 42,
2014„pp.9–15.

[9] A.,Gharbi, M.,Haouari, "Minimizing makespan on parallel machines
subject to release dates and delivery times," Journal of Scheduling,vol.
5, 2002, pp.329—355.

[10] A. Gharbi, M. Haouari, "Optimal parallel machines scheduling with
availability constraints,"Discrete Applied Mathematics vol. 148, 2005,
pp.63—87.

[11] A. Gharbi,M. Haouari, "An approximate decomposition algorithm for
scheduling on parallel machines with heads and tails," Computers &

Operations Research, vol. 34, 2007, pp.868 —883.

[12] R.L. Graham, E.L. Lawner, A.H.G. Rinnoy Kan, "Optimization and ap-
proximation in deterministic sequencing and scheduling," A survey.Ann.

of Disc. Math., vol. 5 (10),1979, pp. 287–326.

[13] N.S.Grigoreva, "Branch and bound method for scheduling precedence
constrained tasks on parallel identical processors", Lecture Notes in
Engineering and Computer Science. In proc. of The World Congress

on Engineering 2014, WCE 2014 London, U.K. 2014, pp.832–836.

[14] N.Grigoreva, "Single Machine Inserted Idle Time Scheduling with
Release times and Due Dates," Proc.DOOR2016. Vladivostoc,Russia.

Sep.19-23.2016. CEUR-WS.2016, vol.1623, pp. 336—343.

[15] D.Gusfield, "Bounds for naive multiple machine scheduling with release
times and deadlines,"Journal of Algorithms vol.5,1984, pp.1—6.

[16] L.A.Hall, D.B. Shmoys, "Jackson’s rule for single-machine scheduling:
making a good heuristic better," Mathematics of Operations Research.

vol.17 (1),1992, pp.22–35.

[17] L.A.Hall,D.B. Shmoys, "Approximation schemes for constrained
scheduling problems", Proceedings of the 30th IEEE Symposium on

Foundations of Computer Science, 1989, pp. 134 —139.

[18] M. Haouari, A. Gharbi, "Lower bounds for scheduling on identical
parallel machines with heads and tails,"Annals of Operations Research

vol. 129, 2004, pp.187—204.

[19] J. Kanet, V. Sridharan, "Scheduling with inserted idle time:problem
taxonomy and literature review," Oper.Res. vol.48 (1),2000, pp. 99–
110.

[20] J.A Lenstra, A.H.G. Rinnooy Kan, P. Brucker, "Complexity of machine
scheduling problems,"Ann. of Disc. Math., vol. 1,1977, pp.343–362.

[21] M. Mastrolilli, "Efficient approximation schemes for scheduling prob-

268 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

lems with release dates and delivery times,"Journal of Scheduling, vol.
6, 2003, pp.521—531.

[22] E. Nowicki, C. Smutnicki, "An approximation algorithm for a single-
machine scheduling problem with release times and delivery times,"
Discrete Applied Mathematics ,vol. 48, 1994, pp.69–79.

[23] J. Omer, A. Mucherino, "Referenced Vertex Ordering Problem",Theory,

Applications and Solution Methods HAL open archives, hal-02509522,

version 1, March, 2020.
[24] K. Sourirajan, R. Uzsoy, "Hybrid decomposition heuristics for solving

large-scale scheduling problems in semiconductor wafer fabrication,"
Journal of Scheduling, vol. 10, 2007, pp.41–65.

[25] Y. Pan, L. Shi, "Branch and bound algorithm for solving hard instances
of the one-machine sequencing problem,"European Journal of Opera-

tional Research, 168, 2006, pp. 1030—1039.
[26] C.N. Potts, "Analysis of a heuristic for one machine sequencing with

release dates and delivery times," Operational Research. vol. 28 (6),
1980, pp. 445–462.

[27] J. Ullman, "NP-complete scheduling problems," J. Comp. Sys. Sci. vol.
171, 1975,pp. 394—394.

[28] Y. Zinder, D. Roper, "An iterative algorithm for scheduling unit-
time operations with precedence constraints to minimize the maximum
lateness,"Annals of Operations Research, 81, 1998, pp.321–340.

[29] Y. Zinder, " An iterative algorithm for scheduling UET tasks with due
dates and release times," European Journal of Operational Research,

vol.149, 2003, pp.404–416.

NATALIA GRIGOREVA: MULTIPROCESSOR SCHEDULING PROBLEM WITH RELEASE AND DELIVERY TIMES 269

