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Abstract—Knowledge graphs play a central role in big data in-
tegration, especially for connecting data from different domains.
Bringing unstructured texts, e.g. from scientific literature, into a
structured, comparable format is one of the key assets. Here, we
use knowledge graphs in the biomedical domain working together
with text mining based document data for knowledge extraction
and retrieval from text and natural language structures. For
example cause and effect models, can potentially facilitate clinical
decision making or help to drive research towards precision
medicine. However, the power of knowledge graphs critically
depends on context information. Here we provide a novel seman-
tic approach towards a context enriched biomedical knowledge
graph utilizing data integration with linked data applied to
language technologies and text mining. This graph concept can
be used for graph embedding applied in different approaches, e.g
with focus on topic detection, document clustering and knowledge
discovery. We discuss algorithmic approaches to tackle these
challenges and show results for several applications like search
query finding and knowledge discovery. The presented remark-
able approaches lead to valuable results on large knowledge
graphs.

I. INTRODUCTION

I
N THIS paper we will present a novel approach towards

knowledge detection and discovery using semantic graph

embeddings on large knowledge graphs. The idea of semantic

graph embeddings was initially introduced in [1], the theoret-

ical background in [2] and the algorithms which are used as

a basis for our approach were introduced in [3]. Combining

these results, we will present a novel heuristic approach and

present experimental results on a large scale knowledge graph

from the biomedical field, see [4]. This graph is build upon text

mining results on biomedical literature databases. The real-

world use cases were collected from scientific projects.

A knowledge graph has a comprehensible topological rep-

resentation given by nodes and edges, but this is usually

not a very precise representation of the real world. A more

generic approach can be constructed by using classes. Thus

the basic idea is to divide a knowledge graph in different

knowledge layers either directly given by the data (like doc-

uments, authors) or manually defined. For example biological

relations might be associated with an ontology (ontology

layer), they can be annotated to a document with named entity

recognition (NER, annotation layer) and they might belong to a

domain specific language layer (for example BEL, biological

expression language, layer). See figure 1 for an illustration.

This approach is similar to the idea of molecular information

layers described in [5]. To sum up, we build linked data from

different data sources and ontologies. We use text mining and

natural language processing approaches to make these linked

data information interoperable, findable and re-usable. Thus,

every data type from a data source implies a different layer

and those layers are either linked with relations given in the

data source or by text mining.

The testing system is based on Neo4j and holds a dense

large scale labeled property graph with more then 75M nodes

and 960M edges. This graph is based on biomedical knowl-

edge graphs as described in [6] and [7].

This paper is divided into six sections. The first section

gives a brief overview of the state of the art and related work.

The second section describes the theoretical background and

the methods used for our novel approach. We will introduce

knowledge graphs, semantic graph embeddings and algo-

rithms. In the third section, we present applications from real

world use cases like search query finding and generating and

optimisation of cluster labels. The fourth section is dedicated

to experimental results on artificial and real-world scenarios.

Our conclusions are drawn in the final section.

We will propose two novel algorithmic approaches which

present promising performance. The results show a significant

improvement over the existing engine without using context

information.

II. RELATED WORK

In recent decades the field of natural language processing

(NLP) and knowledge discovery as well as the related fields

data mining and the management of information systems is

emerging. Several authors like Manning et al. [8] or Clarc

et al. [9] give an overview about the algorithmic part of

computational linguistics and NLP. In addition there is a

constant interest in using graphs for these problems, see [10].

In scientific research, expert systems provide users with

several methods for knowledge discovery. They are widely

used to find relevant or novel information. For example, med-

ical and biological researchers try to find molecular pathways,

mechanisms within living organisms or special occurrences

of drugs or diseases. Using expert knowledge as an input,

researches usually consider an initial idea and some content

like papers or other documents. The most common approach
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Fig. 1: (Illustration of some knowledge graph layers found in

the testing environment. Here, we can see some document-

specific layers which are combined from several data sources

(PubMed, DBLP, H2020): Document Type Layer, Journal

Layer, Person (Author) Layer. Other layers are specific to

the H2020 project data obtained from EU Open Data Por-

tal: Project Layer, Status Layer, Programme Layer and the

Affiliation Layer. We notice several intersections, for example

Quentin_Bouvier is no Author, but has both an affiliation

and is associated with the project NOAH.

is inquiring a search engine to find closely related information.

Thus two question are most frequently asked: "How can I find

these documents?" to adjust the search query for knowledge

discovery or "What are these documents all about?" to find

the topic. Both questions are heavily related to the context

of documents. Meta-data like authors, keywords and text are

used to retrieve results of a query using a search engine.

Current research in NLP and text mining usually does not

directly focus on finding a search query from a given corpus,

although a lot of research has been done on the analyses of

a given search query, see [11] or the analyses of queries on

different databases, see for example [12] for PubMed data.

Topic labeling – or cluster labeling – is under constant research

in several research areas.

There is a considerable amount of literature on both prob-

lems. Many studies have been published on probabilistic

or machine-learning-approaches, see [13], [14] or [15]. In

addition, in recent years there has been growing interest in

providing users with suggestions for more specific or related

search queries, see [16]. We already mentioned [17] but

most research focuses on artificial intelligence (AI), machine

learning (ML) or deep learning (DL) approaches, see [18] or

[19]. Our aim is a precise solution without a prior learning

step giving a deeper insight in the data and the context of this

data.

Here, knowledge graphs are becoming a key instrument for

knowledge discovery and modeling. These approaches rely on

structured data, e.g. about related proteins or genes, and form

cause-and-effect networks or – if enriched with literature data

and other linked datasources – knowledge graphs. A key aspect

of analysis on these graphs is the missing context.

III. METHOD

A. Knowledge Graph

Knowledge graphs play in general an important role in

recent knowledge mining and discovery. A knowledge graph

(sometimes also called a semantic network) is a systematic

way to connect information and data to knowledge on a more

abstract level than language graphs. It is thus a crucial concept

on the way to generate knowledge and wisdom, to search

within data, information and knowledge. The context is a

significant topic to generate knowledge or even wisdom. Thus,

connecting knowledge graphs with context is a crucial feature.

Many authors tried to give a definition of knowledge graphs,

but still a formal definition is missing, see [20]. In [21]

the authors compared several definitions, but the only formal

definition was related to RDF graphs which does not cover

labeled property graphs. Thus, here we propose a very general

definition of a knowledge graph using graph theory:

Definition III.1. (Knowledge Graph) We define a knowledge

graph as graph G = (E,R) with entities e ∈ E =
{E1, ..., En} coming from a formal structure Ei like ontolo-

gies.

The relations r ∈ R can be ontology or layer relations (like

"is related to" or "is co-Author"), thus in general we can say

every formal structure Ei which is part of the data model is a

subgraph of G indicating O ⊆ G. In addition, we allow inter-

structure relations between two nodes e1, e2 with e1 ∈ E1,

e2 ∈ E2 and O1 6= E2. In more general terms, we define

R = {R1, ..., Rn} as a list of either inter-structure or inner-

structure relations. Both E as well as R are finite discrete

spaces. See figure 3 for an example.

Every entity e ∈ E may have some additional meta informa-

tion which needs to be defined with respect to the application

of the knowledge graph. For instance, there may be several

node sets (some ontologies, some document spaces (patents,

research data, ...), author sets, journal sets, ...) E1, ..., En so

that Ei ⊂ E and E = ∪i=1,...,nEi. The same holds for R
when several context relations come together such as "is cited

by", "has annotation", "has author", "is published in", etc.

The basis for generating our large-scale Knowledge Graph

representation is biomedical literature (e.g.from PubMed and

PMC). We also integrated bibliographic data and metadata

from DBLP, monthly snapshot release of December 2019, see

https://dblp.uni-trier.de/ and [22]. Since the basic data coming

from SCAIView is already annotated with different biomedical

ontologies, we decided to use the CSO classifier (see [23]) to

annotate CSO to DBLP data.

We enriched our graph with data from the EU Open

Data Portal (CORDIS - EU research projects under Hori-

zon 2020, see https://data.europa.eu/euodp/en/data/dataset/

cordisH2020projects). This data set is free to reuse for both

commercial or non-commercial purpose. Here, we integrated

projects, their status, affiliations, persons and authors of pub-

lications mentioned in their data set.
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Fig. 2: (left) Illustration of the knowledge graph embedding between different layers. Here, every layer corresponds to a context

defining of new contexts on several other layers. Thus layers and contexts are flexible and can be defined in a feasible way

for every application. Data within the Knowledge Graph can be ordered according to context and information to data layers

(e.g. a molecular or mechanism layer). This helps to examine novel causal connections and context. Layer 1 defines Macro-

Context as Information Highway. The ordering of layers is based on the questions asked. It may also be used to allow an easy

and FAIR access to the data and benefit from semantic graph-queries. Date integration, adding more data will increase the

Knowledge-Foundation and gives a more precise view on the micro-context and helps to unveil new context and insights. This

is a method from top to bottom, the other direction is dedicated to Data Mining.

(right) Examle illustration of different layers obtained by document The molecular bases of Alzheimer’s disease and other

neurodegenerative disorders (PMID:11578751).
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Fig. 3: Illustrations of inter-structure and inner-structure re-

lations. Here, E1 (left) is a structure containing authors,

having an inner relation indicating co-authors. E2 (orange)

is a structure containing documents with an inner relation

indicating for example citations. We can see inter-structure

relations between both structures indicating authorship.

The articles or abstracts are the source for biological

relations. In addition, meta information like authors, jour-

nals, keywords, etc. are available. Ontologies can be used

to contextualize entities in the knowledge graph providing

biological or medical relations. Every ontology will form

another knowledge (sub-)graph. Using methods of natural

language processing (NLP) and text mining, we can combine

and link these knowledge graphs to a giant and very dense

new knowledge graph. This will meet a very general defini-

tion of context. We can see every knowledge (sub-)graph as

context to another. Biological expressions are context of the

corresponding literature, authors are context of a text, named

entities from ontologies found in a text are context to it or to

the corresponding biological expression.

Several ontologies and terminologies were added to the

knowledge graph, for example Computer Science Ontol-

ogy (CSO, see http://cso.kmi.open.ac.uk/home), HUGO Gene

Nomenclature Committee (HGNC, see [24]), Gene Ontology

(GO, see [25] and [26]) or Disease Ontology (DO), see [27]).

These ontologies can be used to annotate context with methods

from text mining to data entities within the graph, see [6].

B. Semantic Graph Embeddings

Semantic graph embeddings are closely related to the con-

cept of context. Here, we use a quite general definition of

context data. We assume that every information entity can

also be a context information for other entities. For example a

document can also be a context for other documents (e.g. by

citing or referring to the other publication). An author is both

a meta information to a document, but also itself context (by

other publications, affiliations, co-author networks, ...). Other

data is more obvious a context: named entities, topic maps,

keywords, etc. extracted with text mining from documents.

But already relations extracted from a text may stand for

themselves, occurring in multiple documents and still valuable

without the original textual information.

Definition III.2. (Context) We define context C as a set with

context subsets C = {c1, ..., cm}. This is a finite, discrete set.

Every node v ∈ G and every edge r ∈ R may have one or

more contexts c ∈ C denoted by con(v) ⊂ G or con(r) ⊂ G.

It is also possible to set con(v) = ∅. Thus we have a

mapping con : E ∪ R → P(C). If we use a quite general

approach towards context, we may set C = E. Therefore,

every inter-ontology relation defines context of two entities,

but also the relations within an ontology can be seen as

context,
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Fig. 4: Illustration of the steps for generating a semantic graph embedding EL where N is given by the yellow nodes and L is

given by the pink layer (1), see example III.5. Subfigure (2) depicts the output of algorithm 1, E(N) = N ∪ con(N). Limiting

this to L returns EL = E(N) ∩ L, see subfigure (3).

With the neighborhood N(Ei) every node set Ei ∈
{E1, ..., En} induces a subgraph G[Ei] ⊂ G:

Definition III.3. (Semantic Graph Embeddings) With

Gc[Ei] = G[Ei] ∪ N(Ei) we denote the extended context

subgraph or semantic graph embedding which also contains

the neighbors of each node in G, which is context of that

node. With Gc
L[Ei] = Gc[Ei] ∩ L we denote the graph

embedding on layer L ⊂ G.

To make the notation easier, we set E(N) = Gc[N ] and

EL(N) = Gc
L[N ].

For a graph drawing perspective, if Gc[Ei] defines a proper

surface, we can think about a graph embedding of another

subgraph Gc[Ej ] on Gc[Ei]. This concept was introduced

in [1]. Here, semantic knowledge graph embeddings were

displayed between different layers. Every layer (for example:

molecular layer, document layer, mechanism layer) corre-

sponds to another context defining new contexts on other

layers.

Example III.4. Consider the illustration in figure 2: Here

we can see, that every subgraph L′ of a layer L1, ..., Ln has

an extended context subgraph Gc[L′] = G[L′] ∪ N(L′) in

multiple layers. In addition, if we have a set of nodes L′′

in multiple layers Li, Lj the same holds. Thus to see the

embedding on just one layer Li we can limit this set using

Gc
Li
[L′] = Gc[L′] ∩ Li.

If the mapping con is well defined for the domain set, then

Graph H can be generated in polynomial time. Since this

is generally not the case, this step usually contains data or

text mining task to generate other contexts from free texts

or knowledge graph entities. With respect to the notation

described in [2] this problem p can be formulated as

p = D|R|f : D → X|err|∅ (1)

Here, the domain set D is explicitly given by D = G or –

if additional full-texts D̂ supporting the knowledge Graph G
exist – D = {G, D̂}, which in our case is the domain subset

R = D. Therefore, we need to find a description function

f : D → X with a description set X = C which holds all

contexts. To find relevant contexts, we also need to measure

the error as defined by err : D → [0, 1].

C. Heuristic

To solve the knowledge graph embedding problem, we

will use an extended version of algorithm 1 introduced in

[3] within the field of document set cover. In our case,

the input documents {d1, ..., dn} ⊂ D can be seen as any

elements or nodes {n1, ..., nn} ⊂ V . The descriptive elements

f(di) = {x1, ..., xm} ⊂ X are now given by the context

con(ni) = {c1, ..., cm} ⊂ V . See algorithm 1 for pseudocode.

Algorithm 1 s-GRAPH-EMBEDDING

Require: N = {n1, ..., nn} ⊂ V and descriptive elements

con(ni) = {c1, ..., cm} ⊂ V , maxiter as maximum of

iterations, s as sensitivity

Ensure: A semantic graph embedding E(N) = (V ′, E′) of

N with elements in V .

con′ = con
2: for every v ∈ N do

while iteration<maxiter AND con′(v) > (s · con(d))
do

4: remove c ∈ con′(v) with maximum weight

end while

6: end for

return E(N) = ({c, ∀c ∈ con′(n)} ∪ {n, ∀c ∈
con′(n)∀n ∈ N}, {(c, n), ∀c ∈ con′(n)∀n ∈ N})

Example III.5. See the example in figure 4. Here, we use

algorithm 1 to compute a semantic graph embedding EL where

N is given by the yellow nodes and L is given by the pink layer.

We set s = 1 and maxiter = 1. The context in this example is

defined as neighborhood in the graph, thus con(v) = N(v).
Algorithm 1 outputs both yellow and green nodes, which is

N ∪ con(N). In this simplified example algorithm 1 returns

E(N) = N ∪ con(N). Limiting the graph embedding to the

pink layer leads to EL = E(N) ∩ L.
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If we use documents for the input N and only keywords

as descriptive elements, algorithm 1 works exactly the same

as described in [3]. Thus, our approach is a generalization of

the initial algorithm to all descriptive elements found in any

descriptive layer in a knowledge graph. Again we can argue,

that that – while not limiting to a distinct layer – the algorithm

outputs at least the initial nodes given in N . If the sensitivity

is decreased to s < 1 we can see that less and less descriptive

elements are chosen. In the next section, we will explain how

to use this semantic graph embedding to knowledge discovery

within the knowledge graph.

IV. APPLICATION

The initial research question was how to apply a general

context added to biomedical knowledge graphs to answer

several generic questions dedicated to knowledge discovery.

As described above we have integrated several sources of pub-

lication data (PubMed, DBLP, H2020), several ontologies like

GO, HGNC and mappings, BEL networks from Parkinson’s

and Alzheimer’s disease as well as other structured data.

A. Search Query Finding and Knowledge Discovery

In [2] we proposed a very generic definition of search

engines and search queries. Here, we will show, how this

generic approach can be used to create real world search

queries. A search engine is a function q : X → D which

outputs a set of documents or any other content of the domain

set if the input is a subset of a description set X which we call

search query. With this, it follows that the problem of finding

a search query is given by

p = D|R|XXX|err|R

Given a knowledge graph G = (V,E) with layers

L1, ..., Ln. We denote LD with the document layer. Let

D′ ⊂ LD be an initial set of documents, and let ELD
(N) = D′

be the semantic graph embedding on LD. Thus, E(N) ∩ LD

holds all descriptive elements of all documents in D′ in other

layers. If all layers can be used to search for documents, this

returns a search query for D′. In [3] we proved this concept

for one single layer containing keywords.

In order to get a feasible search query, we need to modify

algorithm 1. In algorithm 2 we propose a generic approach not

limited to a distinct layer returning a logical concatenation of

nodes that are related to the semantic graph embedding. We

call this a semantic graph description of D′.

Changing the value of s makes the search query more or

less precise which helps with respect to knowledge discovery.

For example, given a set of documents we may use them as

seed to discovery more related documents. Here, choosing the

right description layers is quite important.

B. Generating and optimisation of Cluster Labels

In [2] we proposed a very generic approach towards cluster

labeling. Given a knowledge graph G = (V,E) finding cluster

labels for clusters C1, ..., Cn is the task of assigning a subset

of a description set X, in our case on or more layers, with the

Algorithm 2 s-GRAPH-DESCRIPTION

Require: N = {n1, ..., nn} ⊂ L and descriptive elements

con(ni) = {c1, ..., cm} ⊂ V , maxiter as maximum of

iterations, s as sensitivity

Ensure: A semantic graph description E(N) = (V ′, E′) of

N with elements in V ∩ L.

con′ = con
2: for every v ∈ N do

while iteration<maxiter AND con′(v) > (s · con(v))
do

4: remove c ∈ con′(v) with maximum weight

end while

6: end for

return Z = ∨v∈N (∧x∈con′(v))

description function f : V → X to a cluster C ∈ {C1, ..., Cn}.

Thus, this problem is given by

p = D|C|XXX|err|R

where the resulting label set is the image f(C) ⊂ X .

Depending on the choices of different layers to be included in

X this either leads to a set of metadata, terms from ontologies,

sentences or any subset of natural language.

Once again we can apply the modified algorithm 2. As input,

we use a set of nodes forming a cluster C ⊂ G. The return

value needs to be filtered according to our choice of X. As

suggested in [3] we can either transform the logical operators

to language (term x and term y or term z) or use a very low

threshold which will lead to very small return value and return

a ranked list of terms.

C. Document or Data Clustering

Document or data clustering is a specific application of text

or data mining and a sub-problem of cluster analyses. Without

any clusters pre-defined the goal is to cluster documents or

data points to clusters sharing common features. Limiting the

layers to documents will result in document clustering. If the

knowledge graph layers contain any data points, this will result

in data clustering. The application of clustering is a wide and

open field and in terms of complexity it is still under heavy

research, see for example [28] and [29].

Clustering is usually not perceived as a graph problem,

although several attempts have been made (e.g. [30]) and

here we will show how to generalize it on knowledge graphs.

Usually the problem can be formulated in the following way:

Given a similarity function for the document or data space D
as sim : D × D → R

+ and an ǫ ∈ R
+. We search for a

minimal number of clusters, so that every two documents x, y
in one cluster have sim(x, y) ≥ ǫ. For technical terms we

refer to [8].

One common problem is to find sim. Here, the inverse

problem helps: Given two data points d1, d2 they can be

interpreted as an embedding of different layers. Thus by
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Fig. 5: Example outputs of heuristic for Corpus "Alzheimer Disease" with different layers. We used "MeSH_Terms" (manually

annotated keywords from MeSH), MeSH (NER using terms in MeSH), SWISSPROT, HGNC and UBERON (NER). As we

can see, the precision varies and depends on which layers are used. The text mining based MeSH has a great impact on the

results, whereas the manually annotated expert knowledge from "MeSH_Terms" lead to a totally different result. For knowledge

discovery, it is very important to choose the right value for s and to choose the correct layers.

changing algorithm 2 we can compute the distance between

any two reverse embeddings or descriptions, see algorithm 3.

Algorithm 3 s-GRAPH-DISTANCE

Require: d1, d2 ⊂ L and descriptive elements con(di) =
{c1, ..., cm} ⊂ V , maxiter as maximum of iterations, s
as sensitivity

Ensure: A semantic graph distance sim(d1, d2) of d1, d2 with

elements in V ∩ L.

con′ = con(d1)
2: while iteration<maxiter AND con′ > (s · con(d2)) do

remove c ∈ con′ with maximum weight

4: end while

con1 = con′

6: con′ = con(d2)
while iteration<maxiter AND con′ > (s · con(d2)) do

8: remove c ∈ con′ with maximum weight

end while

10: con2 = con′

return
|con1∩con2|
|con1∪con2|

In line 11 we compute the Jaccard similarity but any other

distance measure is also possible. This describes two benefits

of the knowledge graph approach: First, data clustering is a

generalization of document clustering. Second, the similarity

measures can be computed by using any other data layers and

can be setup to fit the applications needs.

D. Knowledge Discovery on custom Layers

Combining both algorithm 1 and a custom layer in the

knowledge graph we can use this for quite general knowledge

discovery. Given a knowledge graph G = (V,E) with layers

L1, ..., Ln. Let N be a set of nodes which form a subgraph

N ⊂ G of the knowledge graph G. These nodes can be seen

as input data. If we generate a new custom layer L′ which

consists of data from different layers we can use algorithm 1

to embed the input data in the new layer.

We can generate several examples from NLP and text min-

ing for this. For example, we can use this for text classification.

If N contains only textual data (e.g. scientific literature from

DBLP or PubMed) we can use several subsets of connected

data to obtain the classes of any document. For text recognition

we may also use subsets of layers which are not directly

connected to documents. Given figure 1 we may use H2020

programmes or affiliations to recognize or classify whether a

text belongs to a class or not.

V. EXPERIMENTAL RESULTS

The validity and correctness of the proposed algorithm

in general was shown in [3]. Here, we will present some

experimental results to show the correctness of the proposed

algorithms on a multi-layer knowledge graph comprising mul-

tiple terminologies and the results of one specific knowledge

discovery on custom layers within the context of dementia

research.

A. Search Query Finding and Knowledge Discovery

Here, we will describe some results using algorithm 2. By

design, the heuristic returns the original set of documents and

a set of novel documents. Thus, the precision starting with a

large value of sensitivity is in general 1.

The testing was done on a set of small literature corpora

collected by scientists. Here, we present results using a corpus
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Fig. 6: Curves describing both precision and recall as well as the F1 score for the "Alzheimer Disease" corpus and a gold

standard containing 54251 documents. The results were computed using "MESH" and "HGNC" layers (left) and "MESH",

"UBERON", "SWISSPROT" and "HGNC" layers (right) in the knowledge graph. It is obvious, that the gold standard was

generated using MeSH-Terms. Changing layers has a great impact on the results.

of documents dedicated to alzheimers disease. First of all,

we tested the algorithms with a layer of manually annotated

keywords, the so called MeSH terms obtained from PubMed.

We repeated the testing with several sensitivity values, see

figure 5. Starting with the initial 8 documents, the amount

of documents increases to 52 when using a sensitivity of

0.95 and rapidly increases to 1078 documents at 0.75. Using

MeSH as a terminology used by named entity recognition the

number of documents increases to 15 when the sensitivity is

less than 0.45. Using all terminologies ("MESH", "UBERON",

"SWISSPROT", "HGNC") the result only changes by a few

documents, whereas the only usage of "UBERON", "SWIS-

SPROT", "HGNC" changes the picture very much. We can see

that different layers in the knowledge graph give a different

view on the document layer and return different results.

To analyse the results, we used a manually generated gold

standard for Alzheimers disease containing 54251 documents

which was generated using the MeSH-Terms. We computed

results using "MESH" and "HGNC" layers and "MESH",

"UBERON", "SWISSPROT" and "HGNC" layers, see figure

6. We computed both precision, recall and F1 score which is

the harmonic mean of both precision and recall. With true

positives (TP ) in the gold standard, false positives (FP ),

false negatives (FN ) and true negatives (TN ) the precision

is given by p = |TP |/(|TP | + |FP |) and recall by r =
|TP |/(|TP | + |FN |). With this we can compute F1-score

as F1 = 2pr
p+r

.

The results in figure 6 show that the quality of results

are related to the layers used and whether they were used

to manually generate a gold standard. They indicate that the

returned documents and their relevance relies on both the used

knowledge graph layers as well as the sensitivity used. Thus,

the evaluation of the proposed methods needs to consider the

use case. Do we need to retrieve just a few more documents

closely related to a set of documents or do we want to find all

documents within a corpus. Together with the results in figure

5 we would need to discuss how the best value for sensitivity

can be found.

B. Knowledge Discovery on custom Layers

We have tested the custom layer approach on a biomed-

ical use case in the field of neurodegeneration. Alzheimer’s

disease (AD), also referred to simply as Alzheimer’s, is a

chronic neurodegenerative disease that usually starts slowly

and gradually worsens over time. It is the cause of 60–70% of

cases of dementia. The cause of Alzheimer’s disease is poorly

understood. There are no medications or supplements that have

been shown to decrease risk of acquiring AD and there are no

treatments stop or reverse AD progression. The human brain

pharmacome project focuses on the design and construction of

a dedicated knowledge base for human brain pharmacology.

We used the approach discussed in this paper to create this

pharmacology knowledge base, referred to as the Human

Brain Pharmacome (HBP) as a unique and comprehensive

resource that aggregates data and knowledge around current

drug treatments that are available for major brain and neu-

rodegenerative disorders. The HBP knowledge base provides

data at a single place for building models and supporting hy-

potheses. Because knowledge-driven approaches to model the

relevant biology and chemistry are inherently limited by the

completeness and correctness of their associated knowledge

assemblies, natural language processing and relation extraction

are used to continuously extract biomedical relations from the

recent biomedical literature and prioritize for semi-automated

curation and update. One application for the HBP is Drug

repositioning (also called drug repurposing). It involves the

investigation of existing drugs for new therapeutic purposes.

One of the main advantages of drug repositioning lies in the

reduced number of required clinical trial steps and this could

potentially could reduce the time and costs for the medicine

to reach market

We used our knowledge graph to search for interesting

targets, how these targets are linked to AD and what drugs

are known to interact with these targets. As can be seen

in figure 8, AD can be linked to the gene CD33 which is

altered in some patients suffering from the disease. The gene

is coding for a protein also named CD33 which is involved
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in several biological processes. Microglial activation is one

of these processes that can be linked to phagocytosis. In a

multicellular organism’s immune system, phagocytosis is a

major mechanism used to remove pathogens and cell debris.

The ingested material is then digested in the phagosome.

Phagocytosis is one of the main mechanisms of the innate

immune defense. It is one of the first processes responding

to infection, and is also one of the initiating branches of an

adaptive immune response.

We have integrated H2020 data from EU Open Data Portal

which contains several data fields. Persons, affiliations and

documents can also be found in DBLP or PubMed data. Thus

we get an linked data knowledge graphs combining H2020

data with text mining on documents from other sources.

Carefully considering the H2020 data we found for all

projects, their meta data, research institutes, researchers and

publications. Not all publications and persons are described.

For example only 6 researchers are affiliated with Fraunhofer

in this data set. Thus using H2020 as provenance, we get

a fare more sparse dataset for Fraunhofer, whilst DBLP or

PubMed lists all past and present affiliations in the context

of publications. In addition, not all documents are listed.

Querying PubMed with project acronyms usually returns more

results.

In our knowledge graph the H2020 funded project PHAGO

is linked to the topic of phagocytosis. In figure 9 we present a

subset of the PHAGO project graph as seen by H2020. Within

this project several papers to the role of CD33 and TREM2

in the process of phagocytosis and its context to AD have

been published. We can directly identify experts working in the

field and the organizations they are working in by switching

the context. We can make several observations. First of all,

the authors involved in the publications do not intersect with

the researchers which are affiliated with the institutes. This

is due to the fact that usually only a few researchers are

mentioned in projects, thus the researchers illustrated are found

in a different project scope. Thus, for knowledge discovery we

can use project, documents and authors. Figure 7 illustrates the

different layers.

Our goal is to understand the embedding of a H2020

project called Phago in the context of scientific literature and

drug databases. Phago is related to Alzheimer’s disease and

studies TREM2, CD33 and related pathways in this field. Thus,

we are interested in overlaps between the knowledge graph

embedding towards other Alzheimer’s networks, for example

[31], and in drug networks, for example [32]. Thus as custom

target layers we use PubMed documents, BEL networks and

NE coming from the Alzheimer’s network, Substances from

PubChem, PharmGKB1 and DrugBank.

Applying the method proposed in section IV-D we obtain

a graph containing 126 documents, all from PubMed. We

receive 29 substances and descriptive elements from MeSH

and MeSH-Terms. In addition, we were able to find biomedical

relations from different networks containing more than 133

1See https://www.pharmgkb.org/.
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Fig. 7: An illustration of the different layers involved in

exploring H2020 data. The first layer – H2020 projects – is

just contained in H2020 data. Documents and Authors both

contain data from H2020 and other sources. All other layers

contain data from different ontologies and terminologies. They

are connected using NLP and text mining technologies and

also contain intra-ontologie relations like biological or cause-

and-effect relations.

entites from MeSH, 25 proteins and more than 66 genes, see

figure 8 for a subset network illustration.

Fig. 8: Biomedical relation subnetwork linked with document

PMID:30037848 entitled "Mycobacterial PknG Targets the

Rab7l1 Signaling Pathway To Inhibit Phagosome-Lysosome

Fusion".

VI. CONCLUSION AND OUTLOOK

Big Data approaches using NLP technologies on natural

language are an emerging topic in all data-driven fields.

More and more extensive data is being collected, e.g. in

medicine, engineering and also in the humanities (so-called

"digital humanities"). To evaluate this data, new methods from

the fields of artificial intelligence (AI), big data and high

performance computing must be developed. For example, in

medical research and digital health the massive data available

build the basis for a multitude of predictive medicine Machine

Learning (ML) and AI approaches. This includes also the

organization of this data (knowledge management) in order to

achieve reproducible research and to benchmark and evaluate

these methods since both training and validation data are

required.

Knowledge graphs play a central role in tackling these

challenges. They address central ethical standards of science:

reproducibility, transparency and a fair and – if possible –
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Fig. 9: A subset of the PHAGO project graph as seen by H2020. Blue nodes refer to H2020 projects, red nodes to research

institutes, green nodes to persons and orange nodes to documents. Persons, affiliations and documents can be found in DBLP

or PubMed data. Thus we get an linked data knowledge graphs combining H2020 data with text mining on documents from

other sources.

open, handling of data. These can be summarized with the

"FAIR Data" principle, which was published in 2016 by

Wilkinson et al. [33]. FAIR as an acronym refers to Findable,

Accessible, Interoperable and Re-usable. A central component

of FAIR Data is the semantic preparation of knowledge in a

format that allows not only the search and retrieval of (meta-

)data, but also interoperability and reusability. This provides

the central data for the application of AI methods since

knowledge graph aim at comparing research data records from

different sources as well as the selection of relevant data sets

using graph-theoretical algorithms. Making data interoperable

and accessible is necessary to develop next-generation services

in NLP and text mining.

Here we presented a novel semantic approach towards a

context enriched biomedical knowledge graph utilizing data

(PubMed, DBLP, H2020, biomedical network) integration with

linked data and text mining (NER, relation extraction) which

is based on a recent approach that annotates research data with

context information. The result is a knowledge graph repre-

sentation of data, the context graph. It contains computable

statement representation (e.g. RDF or BEL). This graph allows

to compare research data records from different sources as well

as the selection of relevant data sets using graph-theoretical

algorithms. It can be used as a reference system for question-

answering-processes and it can be a dedicated tool that assists

and guides knowledge discovery.

We showed, that this graph concept can be used for graph

embedding applied in the described different approaches, e.g

with focus on topic detection and knowledge discovery. We

discussed several algorithmic approaches to tackle these chal-

lenges and show results for three applications: search query

finding, generating cluster labels and knowledge discovery.

The presented remarkable approaches lead to valuable results

on large knowledge graphs. We faced several issues with data

integration and missing data, for example because the input

data had a bad quality. In addition we have not yet worked on
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the problem of author and affiliation disambiguation.

We compared the results of different knowledge graph lay-

ers on a text corpus. We could show that the graph embeddings

itself is only valuable for different use cases when choosing the

right layers and sensitivity. Although we have proven that this

approach is valid, we might need to evaluate more methods

to compute or estimate values for s and the knowledge graph

layers. This has thrown up many questions in need of further

investigation.
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