
Comprehension analysis considering programming

thinking ability using code puzzle

Hiroki Ito

Ritsumeikan University

Graduate School of Information

Science and Engineering

Email: hirokiito6900@de.is.ritsumei.ac.jp

Hiromitsu Shimakawa

Ritsumeikan University

College of Information

Science and Engineering

Email: simakawa@cs.ritsumei.ac.jp

Fumiko Harada

Connect Dot Ltd.

Email: harada@de.is.ritsumei.ac.jp

Abstract—In programming education, the instructor tries to
find out the learners who needs help by grasping the learners’
development of understanding using tests that require knowledge.
However, in reality, not many learners will acquire the skill
of writing source codes. This kind of current situation implies
that programming ability of learners cannot be measured by
tests that require knowledge. This paper focuses on not only
the knowledge items required for programming but also the
programming thinking (computational thinking), which is the
ability to combine the constituent elements of the program.
In this paper, we propose a method to estimate the learner’s
understanding from the learner’s process to solve the code puzzles
that require programming thinking as well as knowledge. We
developed the interface to realize the proposed method. The
experimental result with the interface showed that the proposed
method could estimate with the accuracy of 80% or more.

I. INTRODUCTION

I
N programming education for beginners, there are many

learners who cannot create correct sources in spite of

passing written tests that ask their knowledge about grammar

and how to express algorithms. The programming ability can-

not be measured only by verifying only learner’s knowledge.

This is because programming skill also requires the ability to

construct program elements logically with a perspective.[1][2]

Programming thinking is the ability to assemble the compo-

nents of a program with a perspective. The method of measur-

ing programming thinking ability from the requirements to be

satisfied has not been established yet. In the actual situation,

the only way to verify the true programming ability of a

learner, which consists of both knowledge and programming

thinking ability, is for the instructor to stand next to the learner

and watch the answer. However, in a large-class lecture, it

takes too much time to check the understanding of all students

in this way. Most of the current educational settings use

measurement methods that are biased in terms of knowledge

because it is easy to grasp the understanding situation. As

the result, many learners will not be able to understand the

intention of the task and to acquire the ability to realize it.

From such the situation, there is a demand for a method that

can easily estimate the learners’ understanding situation by

considering programming thinking ability.

II. PROGRAMMING EDUCATION SUPPORT

A. Current programming education support

This paper discusses an understanding analysis focusing on

programming thinking ability. Programming thinking ability

means “what kind of combination of movements is necessary

to realize a series of activities intended by oneself, and how to

combine symbols corresponding to each movement. And the

ability to logically consider how to improve the combination

of symbols to get closer to the intended activity. "[3]

Although programming education for beginners is con-

ducted in educational institutions such as universities and

newcomer education at companies, many people cannot ac-

tually program even if they can pass a written test that

asks knowledge. This indicates that programming cannot be

achieved by knowledge alone, and is thought to be due to the

lack of programming thinking as mentioned above as pointed

out by the Ministry of Education, Culture, Sports, Science and

Technology in Japan[3].

This paper defines the learning item achievement level

as the degree of acquirement of the knowledge given in

a lecture, materials, and so on. It is a contrasting skill of

the programming thinking ability. Most current programming

education support focuses on the learning item achievement

level. Therefore, there is an urgent need to establish a learning

support method that considers programming thinking.

B. Programming learning by a code puzzle

This research uses a code puzzle as a learning interface.

A code puzzle is a rearrangement problem where the learner

rearranges code fragments such as source code and pseudo

code and assembles them to perform appropriate processing.

The code puzzle is inspired by Parson’s Programming Puzzle

proposed by Parson et al.[4] Parson et al. said that, for

beginners, code puzzles are more effective and better at

nurturing logical thinking than full-coding . Moreover, code

puzzles present the logic flow unlike the blank filling problem.

Code puzzles simplifies to acquire a feature of the learner’s

learning behavior used for estimation of comprehension from

the actions of selecting, moving, and rearranging blocks.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 609–618

DOI: 10.15439/2020F44

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 609

C. Schema for programming tasks

Schema is a term in cognitive psychology. Schema in cog-

nitive psychology refers to the relationship between thought

patterns and knowledge for problem solving in human long-

term memory.[5]

When a person solves a problem of programming, he or

she reads the problem and sets a path for problem solving. At

this time, if he/she has no necessary knowledge and thought

pattern, it is not possible for him/her to set the path for problem

solving. In other words, we can consider that humans combine

knowledge to solve problems. In the process of combining

knowledge, humans form patterns of knowledge and thinking

as a schema. The pattern of knowledge or thinking here

is exactly the programming thinking. In this research, we

consider to estimate the degree of schema construction from

the combination of knowledge and logic based on the schema

theory.

D. Related works

The method proposed by Jadud et al.[6] is an early study

that identifies learners who need guidance using compilation

errors. However, this focuses only on the error, and it is not

possible to measure why the error occurred and how much the

learner understood.

Mysore et al[7] proposed a Web system Porta that can

identify the part where the learner is struggling. The compre-

hension factor is inherently intricately intertwined. However,

Porta estimates the comprehension level only by focusing on

the fact that the learner takes time. Therefore, the ability and

growth of learners are not taken into consideration.

Guo et al.[8] proposed an interface that supports one-to-

many programming learning in real time and its implemen-

tation Codeopticon. However, Codeopticon depends on the

quality of the instructor and forces a heavy burden on the

instructor.

Asai et al.[9] identified the cognitive load on learners and

the factors that caused the cognitive load by the blank filling

problem. However, the blank-filling problem prevents the flow

of logic. It cannot be said that it considers programming

thinking.

Many of these existing researches focus only on the aspect

of knowledge and do not estimate the degree of understanding

based on logic(programming thinking).

As a study focusing on behavior, Ihantola et al.[10] esti-

mated the difficulty level of a task using a decision tree from

the answering process such as answering time and keystroke

of a programming task. They suggested that the answer pro-

cess brings significant difference in learner’s comprehension.

However, they did not mention programming thinking ability

and cannot estimate factors of misunderstanding.

As one of the traditional programming education formats,

there is Parson’s programming puzzle proposed by Parsons et

al. This is introduced as a tool that is easy for beginners to

work on. Parson et al. asserted that code puzzles can iden-

tify specific points and errors that the learner has stumbled.

They argued that, since the code puzzle answer is a well

model answer, learners can relive good programming practice.

However, although this tool focuses on the acquisition of

programming thinking ability, it does not estimate the degree

of comprehension.

III. EDUCATIONAL SUPPORT USING BEHAVIOR WHEN

ANSWERING CODE PUZZLES

A. Educational support focusing on programming thinking

The purpose of this study is to provide novel education

support method focusing on not only the learning item achieve-

ment level as shown in ordinary education support but also

the ability to assemble those learning items and to realize the

intended program (called Programming thinking). The learning

item achievement level in this paper is defined as the level of

knowledge necessary to solve programming problems. On the

other hand, programming thinking ability is defined as the

ability to combine the knowledge to design deliverables that

match the programming task. The learning item achievement

can be measured easily by paper-based or Web-based tests.

However, programming thinking ability cannot be measured

without observing the programming process of the learner,

which is the learner’s behavior. This is because programming

thinking occurs in the process of creating a program. A

learner who can perform programming thinking will answer a

programming problem with prospecting and constructing the

logic flow toward the answer. Therefore, it is not possible to

judge whether the learner has acquired programming thinking

or not unless the learner’s behavior in the answering process

is investigated.

It has been difficult to measure programming thinking

ability unless the instructor watches the learner’s answering

process to the programming task. Code puzzles are a better

tool for learners to focus on combining knowledge. The

method proposed in this research estimates such programming

thinking ability by analyzing the process in which a learner

solves a code puzzle. The outline of the educational support

method aimed at in this research is shown in Figure 1. At

first, the learners solve the code puzzle. The interface used

for the code puzzle is the original application that runs on

the WEB. This application collects the operation histories of

the learners. These operation histories will differ depending

on the learner. Based on this hypothesis, the understanding

levels of the learner are classified by machine learning based

on the collected operation histories. A machine learning model

that can interpret the reason for classification is adopted. The

reason feedbacks to the learner and instructor.

B. Collecting learner behavior using code puzzles

The method proposed in this study uses the tools shown

in Figure 2 and 3 to collect learner’s characteristic behaviors

to measure the understanding. The test subjects are Japanese,

so the content is displayed in Japanese. In this research,

the notation of the program is based on PAD proposed by

Futamura et al.[11]

In the proposed method, an exemplary program or source

code that satisfies all the requirements given in the task is

610 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Fig. 1. Schematic diagram of the proposed method

divided into code fragments or pseudo code with functional

cohesion. A code fragment generated by the division is defined

as a block in this paper.

As shown in Figure 2 and 3, blocks for assembling the

program are displayed for a task. The learner assembles the

program using the blocks so that all the given requirements are

satisfied. This can be regarded as a code puzzle that considers

the arrangement of blocks so that the constraints are satisfied.

The proposed method examines the learners’ thinking pro-

cesses during solving the code puzzle in order to judge whether

the learners have acquired programming thinking or not. When

the learners answer with a perspective of how to combine

the blocks toward satisfying the given requirements, they will

place the blocks in the correct position without hesitation.

The learners without such a perspective will wonder where to

place the blocks. The learners who incorrectly interpreted the

meaning of the problem sentence and/or given requirements

will quickly move the blocks to wrong positions. In this way,

it is assumed that the learners’ thinking processes during

answering appears in the behavior of moving blocks. From

this idea, the proposed method analyzes the behavior of each

learner collected by the tool during the learner is placing

blocks.

The learner can switch between the task sentence screen(2)

and the drawing screen(3) from the tab at the top of the tool.

The learner interprets the problem from the task sentence as

shown in Figure 2, selects suitable blocks from the blocks

displayed on the left side of the tool as shown in Figure 3, and

assembles them by drag and drop. Some of the blocks contain

blanks. Blocks with blanks increase the degree of freedom in

expressing procedures and are intended to cause the learner

to get lost. Additionally, if the learner hovers the mouse over

a block, a description of that block is displayed. The learner

finishes the answer by pressing the submit button when they

think they has answered it correctly.

C. Explanatory variables collected by the tool

The tool analyzes the relationship between the learners’

behaviors during answering and their programming ability

through machine learning models. In this research, the be-

havior of the learner is the explanatory variables and the

understanding of the learner is the response variables. Before

applying this method, we consider what the explanatory vari-

ables correspond to the learner’s thinking so that the learner’s

HIROKI ITO ET AL.: COMPREHENSION ANALYSIS CONSIDERING PROGRAMMING THINKING ABILITY 611

Fig. 2. Question sentence screen

incomprehensible factors can be investigated. The explanatory

variables used in the proposed method are roughly divided into

three.

• Attention to each block

– First time of touching each block

– Time spent watching at each block description by

hover

– The number of times each block has been dragged

and dropped

– Drag and drop frequency

– Frequency of drag and drop in each quarter of the

answering time

– Dispersion of time watching the description

– Dispersion of drag and drop number

• Correctness in placing blocks

– Correctness or incorrectness of input to each blank

– Number of times each blank correction failed

– How close the whole is to the model answer (editing

distance)

– Number of times overall blank correction failed

• Time spent

– Total task time

– Ratio of drawing screen display time for task sen-

tence screen display time

– Number of times to switch between the task sentence

screen and the drawing screen

The attention level and correctness of each block reveal the

block that confuses the learner. The overall correctness reveals

how accurately the blocks are combined. In addition, the time

and ratio spent on drawing using PAD indicate how much the

learner got confused during drawing.

D. Estimating the understanding for each learner

In this method, the understanding is estimated based on the

behavior of the learner collected by the tool. It is estimated

using the random forest method and logistic regression as

machine learning methods. Since the two methods can cal-

culate the importance of variables, it is possible to consider

classification factors. Although the random forest method is

more accurate, the probability of classification can be known

by logistic regression, and this classification probability can

be grasped as an understanding level of 0.0 to 1.0.

In the proposed method, the understanding is estimated

based on the behavior of the learner collected by the tool.

It is estimated using the random forest method and logistic

612 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Fig. 3. Drawing screen

regression as machine learning methods. Since the two meth-

ods can calculate the importance of variables, it is possible

to consider classification factors. Although the random forest

method is more accurate, the probability of classification

can be known by logistic regression and this classification

probability can be grasped as an understanding level of 0.0

to 1.0. The understanding is judged by two measures: the

learning item achievement level and programming thinking

ability. Therefore, the proposed method uses machine learn-

ing to create two models of learning item achievement and

programming thinking. This is based on the knowledge that

the real ability of programming cannot be realized unless the

learning items achievement and the programming thinking are

compatible.[12]

According to the schema theory[5], a person combines

knowledge to solve tasks. Therefore, the programming think-

ing, which is the power to combine knowledge, is considered

to be based on knowledge.

Therefore, the degree of schema construction is defined as

follows by using the learning item achievement k and the

programming thinking ability l as an index that integrates

the learning item achievement and the programming thinking

ability. k and l are defined by values between 0 and 1.

d =

{

1√
2
1√
2

}

•

{

k

l

}

e = (f (k)− l)2 = (k − l)2

s = d− e

d is the dot product with the unit vector (1√
2
, 1√

2
) and vector

(k.l). In other words, d takes the maximum value if both of

k and l are 1.0. d become larger as k approaches to l. From

the geometrical perspective, as d becomes larger the direction

vector (k.l) approaches to that of the line with the slope 45

degrees, whose direction vector is (1√
2
, 1√

2
). e is the squared

error from the line f(x) = x. When calculating s, which

represents the balance between learning item achievement

and programming thinking ability, e indicates imbalance and

functions as a penalty.

E. Factors of understanding for each learner

In order to estimate the understanding of a learner, it is

possible to obtain the classification result of whether or not

the learner understands the task from the machine learning

model. When using logistic regression and random forest, it

is possible to see which explanatory variables and how much

HIROKI ITO ET AL.: COMPREHENSION ANALYSIS CONSIDERING PROGRAMMING THINKING ABILITY 613

influenced the classification by referring to the regression

coefficient and variable importance, respectively. From these

indexes, the factors that a learner classified as not being

understood are found. The position on the code to which the

factor corresponds, that is, the misunderstanding part, becomes

clear. In this study, this factor is called the misunderstanding

factor. In addition, these indicators provide clues as to where

learners tend to stumble and which parts a learner does not

know.

F. Feedback to learners and teachers

The proposed method provides two types of feedback:

• Degree of Schema construction including programming

thinking

• Misunderstanding factors and Misunderstanding points

that take programming thinking into consideration

The schema construction can visualize understanding of a

large number of learners with unified numerical values. Based

on the schema construction, the learner can grasp how much

he/she understand with compared to others. Furthermore, the

instructor can detect learners who need guidance at early stage.

In addition, when analysis is performed over a period of

time, it is possible to calculate the degree of growth and to

find stumbling based on changes in the degree of schema

construction.

The misunderstanding factors and misunderstanding points

can be considered from the coefficient of logistic regression

and the importance variables of the random forest. The mis-

understanding factors can be grasp by comparing the learner’s

behavior based on the variables of high importance. This

analysis tells the learner what part they do not understand

or how they tends to answer. In addition, the instructor can

be informed of what part learners confused and what learners

do not understand. Therefore, it is possible to create a new

teaching plan for individuals and the whole.

IV. EXPERIMENT

A. Objective and method

The purpose of this experiment is to clarify the understand-

ing considering the learner’s programming thinking ability

from the learner’s operation history using code puzzles. The

subjects are 17 university students, including first-year under-

graduate students who started learning programming and first-

year graduate students who are accustomed to programming.

Each of the subjects solved a given programming task. The

time to solve the task took the minimum of 7 minutes and

the maximum of 40 minutes. The degrees of attainment were

various between the subjects. The experiment was conducted

with the time constraint of 1 hour per person. In the first 10

minutes, we gave a brief tutorial on how to use the tool. In the

next 40 minutes, each subject worked on a programming task

using the code puzzle. In the last 10 minutes, for the labeling

described later, we conducted a questionnaire asking about the

cognitive load of this task and usual experience. While solving

the task, the instructor did not give any hints and just watched

to measure programming thinking ability.

B. Actual understanding and cognitive load measurement

Before performing analysis by machine learning, the in-

structor labeled the objective variables used in supervised

learning. The label used for training is a binary value (0/1)

indicating whether or not the subject understood. For subject,

a 0 or 1 label was assigned to each subject for each of the

learning item achievement and programming thinking ability.

1) The problem content was very complicated.

2) The knowledge used for filling in the blanks and

functions was very complicated.

3) The concepts and ideas in the task were very

complicated.

4) It was very unclear how to use tools and PAD

notation.

5) It was difficult to understand how to use tools and

PAD notation.

6) Tools and PAD notation are very inefficient from

a learning perspective.

7) The task has improved my understanding of pro-

gramming.

8) The task improved the understanding of program-

ming process

9) The task has increased my understanding of pro-

gramming concepts and definitions.

10) The task has improved my knowledge of program-

ming.

11) It took a lot of mental effort because the task was

complicated.

12) Due to the explanation in the task and the usage

of the tool, I took a lot of mental effort.

13) It took a lot of effort to improve knowledge and

understanding in the task.

14) Relative programming score

15) Relative programming experience

Fig. 4. Questionnaire for measuring cognitive load

The questionnaire answer in the experiment was used for

labeling. Figure 4 shows the list of questionnaires used in this

method. The questionnaire includes the items to investigate

the cognitive load [13] felt by the subject while solving the

task. This questionnaire is a question group based on a 10-

point Likert scale. The subject answers the question sentence

subjectively. Generally, if the learner does not misunderstand

a task, a high cognitive load means a low understanding of

the task. However, in reality, there were many contradictory

in the answer to the questionnaire and the performance of

the task. In other words, there were many subjects who did

not perform the task well despite the small cognitive load.

This suggests that some subjects misunderstood the content

of task. From this, it can be said that it is difficult to evaluate

understanding, especially programming thinking ability, unless

the instructor watches the learner’s behavior of the process

614 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

of solving the task. Therefore, in the labeling, with referring

to the questionnaire, the instructor give the labeling from

the viewpoint of both the learning item achievement and the

programming thinking based on the behavior during task.

C. Estimation of understanding and distribution of learners

Based on the operation history data collected from the 17

subjects and the labels given by the instructor, the learning

item achievement and programming thinking ability were clas-

sified. Both the random forest and logistic regression are used

for classification. With the random forest, high classification

accuracy and variable importance can be obtained. On the

other hand, with the logistic regression, variable importance

based on regression coefficient and understanding by values

from 0.0 to 1.0 can be obtained. For the analysis, we used

Scikit-learn in Python to find the optimum parameters by the

grid search and ensured the generalization performance by

using the Leave-one-out cross-validation.

TABLE I
PERFORMANCE OF LEARNING ITEM ACHIEVEMENT CLASSIFICATION

MODELS

Logistic regression Random forest
Accuracy 0.82 Accuracy 0.82
Precision 0.78 Precision 0.86
Recall 0.88 Recall 0.75
F-score 0.82 F-score 0.80

TABLE II
PERFORMANCE OF PROGRAMMING THINKING CLASSIFICATION MODEL

Logistic regression Random forest
Accuracy 0.82 Accuracy 0.94
Precision 0.79 Precision 0.92
Recall 1.00 Recall 1.00
F-score 0.88 F-score 0.96

Tables I and II show the accuracy rates of the model created

by this experiment. The accuracy rates of both models exceeds

80% and it can be said that the models have a high degree of

accuracy.

Additionally, the distribution of the subjects’ understanding

is displayed on the two-dimensional coordinates using the

two axes of the classification probabilities of learning item

achievement and programming thinking ability predicted by

the logistic regression. The distribution map is shown in Fig.

5. The label of the distribution map is the degree of schema

construction of the corresponding subject. In the distribution

map, the subjects close to the diagonal line of 45 ° show that

the degree of learning items achievement and the programming

thinking ability are similar and that the two abilities are well

balanced. Among them, the subjects located in the upper right

shows that both abilities are high. On the other hand, learners

distant from the 45 ° line to the lower side have a high learning

item achievement but have a low programming thinking ability,

which indicates a poor balance. If the schema construction

degree is used, those who have high knowledge are evaluated

only to some extent and those who have a balance of both

values are highly evaluated.

V. CONSIDERATION

A. Correlation between schema build and grade

The validity of the schema construction level is confirmed

by comparing the calculated schema construction level with

the results of the actual class performance.. Table III shows

the calculated schema construction level of the subjects and the

total scores of the 32 fill-in-the-blank tasks that the subjects

have took in the actual classes. The correlation coefficient

among them is also shown. The subjects were those who

were able to obtain actual class performance data among the

17 subjects. In addition, we excluded those that could not be

tested due to poor physical condition and excluded weeks of

tasks that were not directly related to programming.

TABLE III
CORRELATION WITH THE CALCULATED SCHEMA CONSTRUCTION LEVEL

AND A LIST OF GRADES

Subject Schema construction level Score

A 1.922 754

B 1.887 760

C 1.885 736

D 1.510 713

E 1.502 769

F 1.016 723

G 1.001 775

H 0.430 542

I 0.215 674

Correlation 0.67

The correlation coefficient of 0.67 cannot be said to be

extremely high. However, it correlates to some extent with the

credible data of scores. This shows the validity of the degree of

schema construction. The reason why a high correlation does

not appear is that the data of the performance of the fill-in-the-

blank tasks does not consider programming thinking ability.

On the other hand, the proposed method easily quantifies the

real programming ability considering programming thinking

ability.

B. Consideration of Understanding Factor and Learner Be-

havior by Important Variables

We compare the classification models of learning item

achievement and programming thinking ability and consider

the differences. Table IV shows the important variables of the

models created in this experiment.

The subjects with low learning item achievements moved

many variable blocks and loop blocks by focusing on the

variables related to "touch" and "hover". From this, it is said

that they did not understand how to use variables and could

not answer the basic parts such as loop statements. It is

considered that this is because the subject with low learning

item achievement could not think the meaning of the variable

name. In addition, the learning item achievement is lower

when the iterator variable “i” is declared earlier and the touch

frequency up to 1/4 hour is higher. This suggests that the

learners who worked on the task sooner after provision of the

task got confused. It is considered that they have repeatedly

switched between the drawing screen and the task display

HIROKI ITO ET AL.: COMPREHENSION ANALYSIS CONSIDERING PROGRAMMING THINKING ABILITY 615

Fig. 5. Distribution chart based on learning item achievement and programming thinking ability

screen. On the other hand, the subjects with high programming

thinking ability took less time to adopt the "input block". From

this, it is considered they immediately grasped the meaning

from the name of the variable and adopt it. Moreover, since

they read the explanation of the variable especially "loop

block" carefully, it can be said that they tend to think carefully

how many times to loop.

In the learning item achievement level, the "one-character

printing block", which is the deepest part of the loop, is

important. From this, it can be seen that the subjects with

low learning item achievement could not reach to think this

module. On the other hand, in programming thinking, the

time spent for watching the explanation of single-character

printing is important. This suggests that the subjects with high

programming thinking have reached the deepest part of the

loop and considered it.

In addition, the variables related to the touch frequency is

important in the learning item achievement. This indicates that

the subjects with low learning item achievement tended to

assemble modules without thinking. In programming thinking

ability, the variable of touch frequency is important. In other

words, it was found that the subjects without programming

thinking touched many modules that were not necessary for

the task. They have been at a loss. In addition, there are many

important variables that indicate "looking at the module de-

scription". This shows that the subjects with high programming

thinking ability firmly identified the modules to be used at first

and established the course before tackling the task.

The important variables for the programming thinking

ability can indicate similarity between the model and the

subject’s answers. This shows that an ideal answer cannot be

achieved only with the learning item attainment level. It is be-

cause programming thinking is indispensable for solving code

puzzles.[4]. In addition, the variable of "the time of looking

at the explanation of 1-character printing" is important. This

results implies that the subjects who were confused about the

matters such as "1-character printing" may be greatly evaluated

negatively. Moreover, since "designation of arguments and

616 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

TABLE IV
TOP 10 IMPORTANT VARIABLES BY LOGISTIC REGRESSION AND RANDOM FOREST

touch: Number of drag and drop
hover: Time spent looking at the code block description

first: How fast the code block was first adopted
[1]List of important variables

for classifying learning item achievement
[2]List of important variables

for classifying programming thinking ability

conditions" is important, it can be said that a learner with

high programming thinking ability grasps the flow of data and

chooses appropriate variables.

The findings about the subjects with low understanding

obtained in this experiment are shown below.

Regarding the low learning item achievement, it is difficult

to interpret the usage of variables and loops block and there

is a tendency to get lost in basic matters. , They also tend

to tackle the task immediately without interpreting the task

deeply.

Regarding the low programming thinking ability, it is

greatly evaluated negatively when the subjects cannot ap-

proach the model answer and eventually stumbles on a basic

matter. They do not look at the explanations deeply, touch

many blocks, and do not set the course for answers. In other

words, they cannot think deeply. Furthermore, they cannot

assemble the structure firmly. They do not understand the data

flow and cannot specify arguments or conditions. From these

facts, it is considered that the learning item achievement is the

basic ability and the programming thinking ability is the com-

prehensive ability including the learning item achievement.

C. Usefulness in educational settings

The results of this experiment show that it is possible to

estimate the comprehension level considering the program-

ming thinking ability from the learner’s operation history when

answering the code puzzle. At present, there are many one-

to-many forms in educational settings such as universities or

companies. Though they sometimes hire multiple assistants

to support learners, the current situation is that the number

of assistant is insufficient. Therefore, it is difficult for the

instructor to grasp the understanding level of all learners.

The schema construction estimated by the proposed method

can measure the understanding of many learners at once if a

model is learned by labeling dozens of samples. In particular,

the classification probability output by the logistic regression

is a value from 0.0 to 1.0. Therefore, by setting a threshold

appropriately, we can discriminate between learners who can

be able to solve the task and learners who need guidance.

In the field of education, it is common to learn various ele-

ments with multiple tasks. The schema construction calculated

for multiple tasks over a period can be visualized by studying

the transitions of learning progress and growth. Moreover,

by referring to the important variables, the instructor can

consider where the learner stumbled. For example, in the task

of this experiment, it can be seen that many learners did not

understand what the meaning of the variable has from its name

because the importance of the block for the variable was high.

Since the importance of variables on blocks regarding the

number of loops was high, it can be seen that many learners

could not fully consider the processing flow.

VI. ISSUES AND FUTURE

The problem of the proposed method is the ambiguity of

blocks used in code puzzles and the cost of labeling. At first,

creating blocks used in code puzzle is a large cost for creating

a task in an actual educational setting. As a countermeasure,

it is possible to implement an algorithm for adding similar

blocks or randomly select blocks from other tasks’ blocks and

them.

HIROKI ITO ET AL.: COMPREHENSION ANALYSIS CONSIDERING PROGRAMMING THINKING ABILITY 617

In addition, labeling is not a small cost in the educational

setting. However, this is unavoidable as long as supervised

learning is used. Blikstein et al. [14] suggested that the

understanding of learners can be measured by using the

clustering method with programming structure. Therefore, in

our research, there is a possibility that the understanding and

the factor of misunderstanding can be estimated by labeling

using such the clustering method. The model created in one

year can be used in the following years as long as the

tasks are the same and the level of learners is the same. In

general, at one university, the levels of students are almost the

same for several years. Furthermore, the distribution of the

programming ability of students as described in this paper

can be visualized based on the learning item achievement

and programming thinking ability calculated by the model.

Furthermore, there is a program that visualizes the students’

behavior. With visualization tools, it is not difficult to label

for multiple people. This also allows refinement of the model.

VII. CONCLUSION

This paper proposed a method to estimate the learner’s

programming thinking ability as well as learning item achieve-

ment by analyzing his/her answering process of the code

puzzles.

In order to measure programming ability precisely, it is

necessary to provide the learners an environment like a code

puzzles where he/she can focus on combining programming

elements and to extract his/her answering process and behav-

ior. The estimation is performed by learning the random forest

and logistic regression models, where the objective variables

are programming thinking or learning item achievement levels,

respectively, and the explanatory variables are learner’s actions

in solving code puzzles.

As the result of the experiment, it was found that the

proposed method was able to estimate the understanding with

the accuracies of more than 80In addition, considering the

difference between the learning item achievement and the

programing thinking ability from the difference of the variable

importance, it was confirmed that the programming thinking

ability is based on the learning item achievement and that

the programming ability cannot be measured only by the

learning item achievement. Furthermore, based on the schema

theory[5], we defined the schema construction level from two

labels, learning item achievement and programming thinking

ability. We compared it with the performance of the fill-in-

the-blank problems in actual classes. These results suggest that

just the performance of the fill-in-the-blank problems does not

indicate the programming ability.

The results of this experiment show that the learner’s

programming ability can be measured more accurately by

considering the learner’s logical constructive ability in the code

puzzle rearrangement problem. The accurate measurement of

the learner’s programming ability contributes to developing the

learner’s true programming ability, which cannot measured by

only the score of written tests. In addition, the importance of

each variable in the behavior analysis leads to the identification
of learner’s misunderstanding factors and the improvement of

class contents.

In the future, we will develop a new method to deal with

more complicated programming problems and to simplify

making tasks to be applied to the proposed method.

REFERENCES

[1] J. T. S. P. o. C. S. B.-S. C. B. Kenneth L. Whipkey, “Identifying
predictors of programming skill,” ACM SIGCSE Bulletin, vol. 16, no. 4,
pp. 36–42, 1984.

[2] L. J. M. U. of Cincinnati, “Identifying potential to acquire programming
skill,” Communications of the ACM, vol. 23, no. 1, pp. 14–17, 1980.

[3] M. of education, “Elementary programming education guide (sec-
ond edition),” https://www.mext.go.jp/component/a_menu/education/
micro_detail/__icsFiles/afieldfile/2018/11/06/1403162_02_1.pdf.

[4] D. Parsons and P. Haden, “Parson’s programming puzzles: a fun and
effective learning tool for first programming courses,” in Proceedings of

the 8th Australasian Conference on Computing Education-Volume 52,
2006, pp. 157–163.

[5] W. Schnotz and C. Kürschner, “A reconsideration of cognitive load
theory,” Educational psychology review, vol. 19, no. 4, pp. 469–508,
2007.

[6] M. C. Jadud, “Methods and tools for exploring novice compilation
behaviour,” in Proceedings of the second international workshop on

Computing education research, 2006, pp. 73–84.
[7] A. Mysore and P. J. Guo, “Porta: Profiling software tutorials using

operating-system-wide activity tracing,” in Proceedings of the 31st

Annual ACM Symposium on User Interface Software and Technology,
2018, pp. 201–212.

[8] P. J. Guo, “Codeopticon: Real-time, one-to-many human tutoring for
computer programming,” in Proceedings of the 28th Annual ACM

Symposium on User Interface Software & Technology, 2015, pp. 599–
608.

[9] H. S. So Asai, Dinh Thi Dong Phuong, “Identification of factors
affecting cognitive load in programming learning with decision tree,”
vol. 14, no. 11, 2019, pp. 624–633.

[10] P. Ihantola, J. Sorva, and A. Vihavainen, “Automatically detectable
indicators of programming assignment difficulty,” in Proceedings of the

15th Annual Conference on Information technology education, 2014, pp.
33–38.

[11] Y. Futamura, T. Kawai, Y. Horikoshi, M. Tsutsumi et al., “Program
design and creation with pad (problem analysis diagram),” IPSJ Trans-

actions, vol. 21, no. 4, pp. 259–267, 1980.
[12] J. W. Coffey, “Relationship between design and programming skills in an

advanced computer programming class,” Journal of Computing Sciences

in Colleges, vol. 30, no. 5, pp. 39–45, 2015.
[13] B. B. Morrison, B. Dorn, and M. Guzdial, “Measuring cognitive load

in introductory cs: adaptation of an instrument,” in Proceedings of the

tenth annual conference on International computing education research,
2014, pp. 131–138.

[14] P. Blikstein, M. Worsley, C. Piech, M. Sahami, S. Cooper, and D. Koller,
“Programming pluralism: Using learning analytics to detect patterns
in the learning of computer programming,” Journal of the Learning

Sciences, vol. 23, no. 4, pp. 561–599, 2014.

618 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

