
Extended Distributive Contact Lattices and

Extended Contact Algebras

Tatyana Ivanova

Bulgarian Academy of Sciences

Institute of Mathematics and Informatics

in Sofia

1113, Sofia, Bulgaria, Acad. Georgi Bonchev Str., Block 8

Email: tatyana.ivanova@math.bas.bg

Abstract—The notion of contact algebra is one of the main
tools in mereotopology. This paper considers a generalisation
of contact algebra (called extended distributive contact lattice)
and the so called extended contact algebras which extend the
language of contact algebras by the predicates covering and
internal connectedness.

I. INTRODUCTION

I
N CLASSICAL Euclidean geometry the notion of point

is taken as one of the basic primitive notions. In contrast,

region-based theory of space (RBTS) has as primitives the

more realistic notion of region (abstraction of physical body)

together with some basic relations and operations on regions.

Some of these relations are mereological - part–of, overlap

and its dual underlap. Other relations are topological - contact,

nontangential part-of, dual contact and some others definable

by means of the contact and part-of relations. This is one

of the reasons that the extension of mereology with these new

relations is commonly called mereotopology. There is no clear

difference in literature between RBTS and mereotopology. The

origin of RBTS goes back to Whitehead and de Laguna ([30],

[21]). According to Whitehead points, as well as the other

primitive notions in Euclidean geometry such as lines and

planes, do not have separate existence in reality and because

of this are not appropriate for primitive notions. Survey papers

on RBTS are [26], [7], [16], [22] (also the handbook [1] and

[5], containing some logics of space).

RBTS has applications in computer science because of its

simpler way of representing of qualitative spatial information.

Mereotopology is used in the field of Artificial Intelligence,

called Knowledge Representation (KR). RBTS initiated a spe-

cial field in KR, called Qualitative Spatial Representation and

Reasoning (QSRR) which is appropriate for automatization

[6], [24]. RBTS is applied in geographic information systems,

robot navigation. Surveys concerning various applications are

for example [8], [9] and the book [17] (also special issues

of Fundamenta Informaticae [11] and the Journal of Applied

Nonclassical Logics [3]). One of the most popular systems

in Qualitative Spatial Rrepresentation and Reasoning is the

Region Connection Calculus (RCC) [23].

The notion of contact algebra is one of the main tools in

RBTS. This notion appears in the literature under different

names and formulations as an extension of Boolean algebra

with some mereotopological relations [29], [25], [28], [27],

[7], [15], [10], [14]. The simplest system, called just a contact

algebra was introduced in [10] as an extension of Boolean

algebra B = (B, 0, 1, ·,+, ∗) with a binary relation C called

contact and satisfying five simple axioms:

(C1) If aCb, then a 6= 0,

(C2) If aCb and a ≤ c and b ≤ d, then cCd,

(C3) If aC(b+ c), then aCb or aCc,
(C4) If aCb, then bCa,

(C5) If a · b 6= 0, then aCb.
The elements of the Boolean algebra are called regions

and are considered as analogs of physical bodies. Boolean

operations are considered as operations for constructing new

regions from given ones. The unit element 1 symbolizes the

region containing as its parts all regions, and the zero element

0 symbolizes the empty region.

Topological spaces are among the first mathematical models

of space, applied in practice. Standard models of contact

algebras are topological. Let X be a topological space and a
be its subset. We say that a is regular closed if a is the closure

of the interior of a. It is a well known fact that the set RC(X)
of all regular closed subsets of X is a Boolean algebra with

respect to the following definitions: a ≤ b iff a ⊆ b, 0 is the

empty set, 1 is the set X, a+ b = a∪ b, a · b = Cl Int (a∩ b),
a∗ = Cl(X \ a). If we define a contact by taking aCb iff

a ∩ b is nonempty, then we obtain a contact algebra related

to X , namely RC(X) = (RC(X),≤, 0, 1, ·,+, ∗, C) ([10],

Example 2.1).

This paper is mostly a summary of the work, contained

in [20], [19], [18], [4]. The results, concerning quantifier-free

first-order logics for extended contact algebras, are novel and

will be submitted as a paper with title “Quantifier-free first-

order logics for extended contact algebras”.

II. EXTENDED DISTRIBUTIVE CONTACT LATTICES (EDCL)

Sometimes there is a problem in the motivation of the

operation Boolean complement (∗) of contact algebra. A

question arises - if a represents some region, what region

does a∗ represent - it depends on the universe in which

we consider a. Moreover if a represents a physical body,
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then a∗ is unnatural - such a physical body does not exist.

Because of this we can drop the operation of complement and

replace the Boolean part of a contact algebra with distributive

lattice. First steps in this direction were made in [12], [13],

introducing the notion of distributive contact lattice. In a

distributive contact lattice the only mereotopological relation is

the contact relation. Non-tangential inclusion and dual contact

are not included in the language. In [20], the language of

distributive contact lattices is extended by considering these

two relations as nondefinable primitives. An axiomatization

is obtained of the theory consisting of the universal formulas

in this more expressive language, true in all contact algebras.

The structures, satisfying the axioms in question, are called

extended distributive contact lattices (EDCL). The well known

RCC-8 system of mereotopological relations is definable in

the language of EDCL and is not definable in the language of

distributive contact lattices.

EDCL is a generalization of contact algebra, defined in the

following way:

Definition 2.1: [20] Extended distributive contact lattice.

Let D = (D,≤, 0, 1, ·,+, C, Ĉ,≪) be a bounded distributive

lattice with three additional relations C, Ĉ,≪, called respec-

tively contact, dual contact and nontangential part-of. The

obtained system, denoted shortly by D = (D,C, Ĉ,≪), is

called extended distributive contact lattice (EDCL, for short)

if it satisfies the axioms listed below.

Notations: if R is one of the relations ≤, C, Ĉ,≪, then its

complement is denoted by R.

Axioms for C alone: The axioms (C1)-(C5) mentioned

above.

Axioms for Ĉ alone:

(Ĉ1) If aĈb, then a, b 6= 1,

(Ĉ2) If aĈb and a′ ≤ a and b′ ≤ b, then a′Ĉb′,
(Ĉ3) If aĈ(b · c), then aĈb or aĈc,
(Ĉ4) If aĈb, then bĈa,

(Ĉ5) If a+ b 6= 1, then aĈb.

Axioms for ≪ alone:

(≪ 1) 0 ≪ 0,

(≪ 2) 1 ≪ 1,

(≪ 3) If a ≪ b, then a ≤ b,
(≪ 4) If a′ ≤ a ≪ b ≤ b′, then a′ ≪ b′,
(≪ 5) If a ≪ c and b ≪ c, then (a+ b) ≪ c,
(≪ 6) If c ≪ a and c ≪ b, then c ≪ (a · b),
(≪ 7) If a ≪ b and (b · c) ≪ d and c ≪ (a + d),
then c ≪ d.

Mixed axioms:

(MC1) If aCb and a ≪ c, then aC(b · c),
(MC2) If aC(b · c) and aCb and (a · d)Cb, then

dĈc,
(MĈ1) If aĈb and c ≪ a, then aĈ(b+ c),

(MĈ2) If aĈ(b+ c) and aĈb and (a+ d)Ĉb, then

dCc,

(M ≪ 1) If aĈb and (a · c) ≪ b, then c ≪ b,

(M ≪ 2) If aCb and b ≪ (a+ c), then b ≪ c.

Lemma 2.2: [20] Let (W,R) be a relational system with

reflexive and symmetric relation R and let D be any collection

of subsets of W which is a bounded distributive set-lattice with

relations C, Ĉ and ≪ defined as follows:

(Def CR) aCRb iff ∃x ∈ a and ∃y ∈ b such that xRy;

(Def ĈR) aĈRb iff ∃x 6∈ a and ∃y 6∈ b such that xRy;

(Def 6≪R) a 6≪R b iff ∃x ∈ a and ∃y 6∈ b such that xRy.

Then (D,CR, ĈR,≪R) is an EDCL.

EDCL D = (D,CR, ĈR,≪R) over a relational system

(W,R) is called discrete EDCL. If D is a set of all subsets of

W then D is called a full discrete EDCL.

Corollary 2.3: [20] The axioms of the relations C, Ĉ and

≪ are true in contact algebras.

Generalizing the Stone representation theorem for distribu-

tive lattices it is proved the following theorem.

Theorem 2.4: [20] Relational representation theorem of

EDCL. Let D = (D,C, Ĉ,≪) be an EDCL. Then there is a

relational system W = (W,R) with reflexive and symmetric

R and an embedding h into the EDCL of all subsets of W .

Corollary 2.5: [20] Every EDCL can be isomorphically

embedded into a contact algebra.

In [20], it is obtained a new stronger form of the well-

known in the theory of distributive lattices Filter-extension

lemma. This stronger form is equivalent to the Axiom of

Choice. This stronger form is used in the proof of the relational

representation theorem for EDCL.

Lemma 2.6: [20] Strong filter-extension Lemma. Let F0

be a filter, I0 be an ideal and F0 ∩ I0 = ∅. Then there exists

a prime filter F such that F0 ⊆ F , (∀x ∈ F )(x 6∈ I0) and

(∀x 6∈ F )(∃y ∈ F )(x · y ∈ I0).

III. TOPOLOGICAL REPRESENTATION THEORY OF EDCL

In [20], are considered also some axiomatic extensions

of EDCL yielding representations in T1 and T2 topological

spaces.

Several additional axioms for EDCL are formulated which

are adaptations for the language of EDCL of some known

axioms considered in the context of contact algebras. The first

new axioms for EDCL are the so called extensionality axioms

for the definable predicates of overlap - aOb ↔def a · b 6= 0

and underlap - aÔb ↔def a+ b 6= 1.

(Ext O) a 6≤ b → (∃c)(a · c 6= 0 and b · c = 0) - extensionality

of overlap,

(Ext Ô) a 6≤ b → (∃c)(a+c = 1 and b+c 6= 1) - extensionality

of underlap.
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We say that a lattice is O-extensional if it satisfies (Ext

O) and U-extensional if it satisfies (Ext Ô). Note that the

conditions (Ext O) and (Ext Ô) are true in Boolean algebras

but not always are true in distributive lattices.

The following additional axioms are considered too:

(Ext C) a 6= 1 → (∃b 6= 0)(aCb) - C-extensionality,

(Ext Ĉ) a 6= 0 → (∃b 6= 1)(aĈb) - Ĉ-extensionality,

(Con C) a 6= 0, b 6= 0 and a+b = 1 → aCb - C-connectedness

axiom ,

(Con Ĉ) a 6= 1, b 6= 1 and a ·b = 0 → aĈb - Ĉ-connectedness

axiom ,

(Nor 1) aCb → (∃c, d)(c+ d = 1, aCc and bCd),

(Nor 2) aĈb → (∃c, d)(c · b = 0, aĈc and bĈd),

(Nor 3) a ≪ b → (∃c)(a ≪ c ≪ b).

(U-rich ≪) a ≪ b → (∃c)(b+ c = 1 and aCc),

(U-rich Ĉ) aĈb → (∃c, d)(a+ c = 1, b+ d = 1 and cCd),

(O-rich ≪) a ≪ b → (∃c)(a · c = 0 and cĈb),

(O-rich C) aCb → (∃c, d)(a · c = 0, b · d = 0 and cĈd).
Let (D1, C1, Ĉ1,≪1) and (D2, C2, Ĉ2,≪2) be two EDCL

and D1 is a substructure of D2. It is valuable to know under

what conditions we have equivalences of the form:

D1 satisfies some additional axiom iff D2 satisfies the same

axiom.

Remark 3.1: [20] The importance of such conditions is

related to the representation theory of EDCL satisfying some

additional axioms. In general, if we have some embedding

theorem for EDCL D satisfying a given additional axiom A,

it is not known in advance that the lattice in which D is

embedded also satisfies A. That is why it is good to have such

conditions which automatically guarantee this. Below several

such "good conditions" are formulated: dense and dual dense

sublattice, C-separable sublattice.

Definition 3.1: [20] Dense and dual dense sublattice. Let

D1 be a distributive sublattice of D2. D1 is called a dense

sublattice of D2 if the following condition is satisfied:

(Dense) (∀a2 ∈ D2)(a2 6= 0 ⇒ (∃a1 ∈ D1)(a1 ≤ a2 and

a1 6= 0)).

If h is an embedding of the lattice D1 into the lattice D2

then we say that h is a dense embedding if the sublattice

h(D1) is a dense sublattice of D2.

Dually, D1 is called a dual dense sublattice of D2 if the

following condition is satisfied:

(Dual dense) (∀a2 ∈ D2)(a2 6= 1 ⇒ (∃a1 ∈ D1)(a2 ≤ a1
and a1 6= 1)).

If h is an embedding of the lattice D1 into the lattice D2

then we say that h is a dual dense embedding if the sublattice

h(D1) is a dually dense sublattice of D2.

(See [13] for some known characterizations of density and

dual density in distributive lattices.)

For the case of contact algebras [26] and distributive contact

lattices [13] the notion of C-separability is introduced as

follows. Let D1 be a substructure of D2; we say that D1

is a C-separable sublattice of D2 if the following condition is

satisfied:

(C-separable) (∀a2, b2 ∈ D2)(a2Cb2 ⇒ (∃a1, b1 ∈ D1)(a2 ≤
a1, b2 ≤ b1, a1Cb1)).

For the case of EDCL this notion is modified, adding two

additional clauses corresponding to the relations Ĉ and ≪ just

having in mind the definitions of these relations in contact

algebras. Namely

Definition 3.2: [20] C-separability. Let D1 be a substruc-

ture of D2; we say that D1 is a C-separable EDC-sublattice

of D2 if the following conditions are satisfied:

(C-separability for C) -

(∀a2, b2 ∈ D2)(a2Cb2 ⇒ (∃a1, b1 ∈ D1)(a2 ≤ a1, b2 ≤
b1, a1Cb1)).

(C-separability for Ĉ) -

(∀a2, b2 ∈ D2)(a2Ĉb2 ⇒ (∃a1, b1 ∈ D1)(a2+a1 = 1, b2+
b1 = 1, a1Cb1)).

(C-separability for ≪) -

(∀a2, b2 ∈ D2)(a2 ≪ b2 ⇒ (∃a1, b1 ∈ D1)(a2 ≤ a1, b2 +
b1 = 1, a1Cb1)).

If h is an embedding of the lattice D1 into the lattice D2

then we say that h is a C-separable embedding if the sublattice

h(D1) is a C-separable sublattice of D2.

Theorem 3.3: [20] Topological representation theorem for

EDCL. Let D = (D,C, Ĉ,≪) be an EDCL. Then there exists

a topological space X and an embedding of D into the contact

algebra RC(X) of regular closed subsets of X .

Definition 3.4: [20] U-rich and O-rich EDCL. Let D =
(D,C, Ĉ,≪) be an EDCL. Then:

(i) D is called U-rich EDCL if it satisfies the axioms (Ext

Ô), (U-rich ≪) and (U-rich Ĉ).

(ii) D is called O-rich EDCL if it satisfies the axioms (Ext

O), (O-rich ≪) and (O-rich Ĉ).

In [20], is developed the topological representation theory of

U-rich EDCL. In a dual way can be developed the topological

representation theory of O-rich EDCL.

Theorem 3.5: [20] Topological representation theorem for

U -rich EDCL.

Let D = (D,C, Ĉ,≪) be an U -rich EDCL. Then there exists

a compact semiregular T0-space X and a dually dense and C-

separable embedding h of D into the Boolean contact algebra

RC(X) of the regular closed sets of X . Moreover:
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(i) D satisfies (Ext C) iff RC(X) satisfies (Ext C); in this

case X is weakly regular.

(ii) D satisfies (Con C) iff RC(X) satisfies (Con C); in this

case X is connected.

(iii) D satisfies (Nor 1) iff RC(X) satisfies (Nor 1); in this

case X is κ-normal.

There is also a topological representation theorem of U-rich

EDCL, satisfying (Ext C), in T1-spaces.

Adding the axiom (Nor 1), it is obtained representability in

compact T2-spaces.

IV. LOGICS FOR EDCL

In [19], are considered a logic for EDCL and several ex-

tending it logics, corresponding to topological spaces possess-

ing various additional properties. Completeness theorems are

given with respect to both algebraic and topological semantics

for these logics. It turns out that they are decidable.

It is considered the quantifier-free first-order language L
which includes:

• constants: 0, 1;

• function symbols: +, ·;
• predicate symbols: ≤, C, Ĉ, ≪.

Every EDCL is a structure for L.

It is considered the logic L with rule MP and the following

axioms:

• the axioms of the classical propositional logic;

• the axiom schemes of distributive lattice;

• the axioms for C, Ĉ, ≪ and the mixed axioms of EDCL -

considered as axiom schemes.

The following additional rules and an axiom scheme are

considered:

(R Ext Ô)
α→(a+p 6=1∨b+p=1) for all variables p

α→(a≤b) , where α is

a formula, a, b are terms

(R U-rich ≪)
α→(b+p 6=1∨aCp) for all variables p

α→(a≪b)
, where α is

a formula, a, b are terms

(R U-rich Ĉ)
α→(a+p 6=1∨b+q 6=1∨pCq) for all variables p, q

α→aĈb
,

where α is a formula, a, b are terms

(R Ext C)
α→(p 6=0→aCp) for all variables p

α→(a=1) , where α is a

formula, a is a term

(R Nor1)
α→(p+q 6=1∨aCp∨bCq) for all variables p, q

α→aCb
, where α

is a formula, a, b are terms

(Con C) p 6= 0 ∧ q 6= 0 ∧ p+ q = 1 → pCq

The additional axioms for EDCL (the axioms (Ext Ô), (U-

rich ≪), (U-rich Ĉ), (Ext C), (Nor 1)) correspond to these

rules.

Let L′ be for example the extension of L with the rule

(R Ext Ô) and the axiom scheme (Con C). Then we denote

L′ by L
ConC,ExtÔ

and call the axioms (Con C) and (Ext

Ô) additional axioms, corresponding to L′. In a similar way

we denote any extension of L with some of the considered

additional rules and axiom scheme and in a similar way we

define its corresponding additional axioms.

The following theorem is true

Theorem 4.1: [19] Completeness theorem with respect to

algebraic semantics. Let L′ be some extension of L with zero

or more of the considered additional rules and axiom scheme.

The following conditions are equivalent for any formula α:

(i) α is a theorem of L′;

(ii) α is true in all EDCL, satisfying the additional axioms,

corresponding to L′.

To every of the logics

1) L;

2) L
ExtÔ,U−rich≪,U−richĈ

;

3) L
ExtÔ,U−rich≪,U−richĈ,ExtC

;

4) L
ExtÔ,U−rich≪,U−richĈ,ConC

;

5) L
ExtÔ,U−rich≪,U−richĈ,Nor1

;

6) L
ExtÔ,U−rich≪,U−richĈ,ExtC,ConC

;

7) L
ExtÔ,U−rich≪,U−richĈ,Nor1,ConC

;

8) L
ExtÔ,U−rich≪,U−richĈ,ExtC,Nor1

;

9) L
ExtÔ,U−rich≪,U−richĈ,ExtC,ConC,Nor1

.

is juxtaposed a class of topological spaces:

1) the class of all T0, semiregular, compact topological spaces;

2) the class of all T0, semiregular, compact topological spaces;

3) the class of all T0, compact, weakly regular topological

spaces;

4) the class of all T0, semiregular, compact, connected topo-

logical spaces;

5) the class of all T0, semiregular, compact, κ - normal

topological spaces;

6) the class of all T0, compact, weakly regular, connected

topological spaces;

7) the class of all T0, semiregular, compact, κ - normal,

connected topological spaces;

8) the class of all T0, compact, weakly regular, κ - normal

topological spaces;

9) the class of all T0, compact, weakly regular, connected, κ
- normal topological spaces.

We have the following theorems

Theorem 4.2: [19] Completeness theorem with respect to

topological semantics. Let L′ be any of the considered above

logics. The following conditions are equivalent for any formula

α:

(i) α is a theorem of L′;

(ii) α is true in all contact algebras over a topological space

from the class, corresponding to L′.
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Theorem 4.3: [19] (i) The logics

L,

L
ExtÔ,U−rich≪,U−richĈ

,

L
ExtÔ,U−rich≪,U−richĈ,ExtC

,

L
ExtÔ,U−rich≪,U−richĈ,Nor1

,

L
ExtÔ,U−rich≪,U−richĈ,ExtC,Nor1

have the same theorems and are decidable;

(ii) The logics

LConC,U−rich≪,

L
ExtÔ,U−rich≪,U−richĈ,ConC

,

L
ExtÔ,U−rich≪,U−richĈ,ConC,Nor1

,

L
ExtÔ,U−rich≪,U−richĈ,ExtC,ConC

,

L
ExtÔ,U−rich≪,U−richĈ,ExtC,ConC,Nor1

have the same theorems and are decidable.

V. EXTENDED CONTACT ALGEBRAS

The predicate internal connectedness (intuitively meaning

that the interior is connected) cannot be defined in the language

of contact algebras ([18], Proposition 2.1). So we consider

extended contact algebras:

Definition 5.1: [18] Extended contact algebra (ExtCA, for

short) is a system B = (B,≤, 0, 1, ·,+, ∗,⊢, C, co), where

(B,≤, 0, 1, ·,+, ∗) is a nondegenerate Boolean algebra, ⊢
(covering or extended contact) is a ternary relation in B such

that the following axioms are true:

(1) a, b ⊢ c → b, a ⊢ c,
(2) a ≤ c → a, b ⊢ c,
(3) a, b ⊢ x, a, b ⊢ y, x, y ⊢ c → a, b ⊢ c,
(4) a, b ⊢ c → a · b ≤ c,
(5) a, b ⊢ c → a+ x, b ⊢ c+ x,

C is a binary relation in B such that

(6) aCb ↔ a, b 6⊢ 0,

co (internal connectedness) is a unary predicate in B such that

(7) co(a) ↔ ∀b∀c(b 6= 0 ∧ c 6= 0 ∧ a = b+ c → b, c 6⊢ a∗).

ExtCAs extend the language of contact algebras by the pred-

icate covering and the predicate internal connectedness. The

internal connectedness is defined by the relation of covering

(co(a) iff ∀b∀c(b 6= 0 ∧ c 6= 0 ∧ a = b+ c → b, c 6⊢ a∗) ([18],

Proposition 3.1)). Another motivation for considering the rela-

tion of covering is that by it we can define the property of two

regions their intersection to be a region. Extended contact gives

also the possibility to define the relation of contact. One of the

motivations for adding the predicate internal connectedness is

that by its help the property "existing of cavities in a physical

body" can be defined: we have "a has cavities" if and only

if "a∗ is not internally connected". We cannot define "a has

cavities" if and only if "the complement of a is not connected",

using the predicate connectedness because the complement

of a is not necessarily regular closed set i.e. element of the

topological model of ExtCA. If we define "a has cavities"

if and only if "a∗ is not connected", this is wrong - if the

cavity in the ball a touches its boundary, a∗ is connected

(and at the same time is not internally connected). Because of

these reasons we need the predicate "internal connectedness"

instead of "connectedness" for defining the property "existing

of cavities in a physical body".

Primary semantics for ExtCAs is topological. Let X be a

topological space. A topological ExtCA over X is the structure

with universe the set RC(X) of all regular closed subsets

together with the following interpretations: a ≤ b iff a ⊆ b,
0 = ∅, 1 = X , a · b = Cl Int (a ∩ b), a + b = a ∪ b, a∗ =
Cl (X \ a), a, b ⊢ c iff a ∩ b ⊆ c, aCb iff a, b 6⊢ ∅, co(a) iff

Int a is a connected subspace of X .

We have the following

Theorem 5.2: [18] Topological representation theorem.

Let B = (B,≤, 0, 1, ·,+, ∗,⊢, C, co) be an ExtCA. Then there

is a compact, semiregular, T0 topological space X and an

embedding of B into the topological ExtCA over X .

It is interesting also to consider a relational semantics for

ExtCAs. This is done in [4].

Definition 5.3: [4] An equivalence frame of type 2 is a

relational structure of the form (W,R1, R2), where W is a

nonempty set and R1 and R2 are equivalence relations on W .

Definition 5.4: [4] Let (W,R1, R2) be an equivalence frame

of type 2. A relational ExtCA over (W,R1, R2) is the struc-

ture: B = (2W ,⊆, ∅,W,∩,∪, ∗,⊢, C, co), where ∗ denotes the

set theoretical complement and for any subsets of W a, b, and

c:
• a, b ⊢ c iff ∀A,A1, B,B1

(
AR1A1 ∈ a,BR1B1 ∈ b,

AR2B → (∃C,C1)(CR1C1 ∈ c, AR2C)
)

and a ∩ b ⊆ c,
• aCb iff a, b 6⊢ ∅,
• co(a) iff (∀b, c ⊆ W )(b 6= ∅, c 6= ∅, a = b ∪ c →

b, c 6⊢ (W \ a)).

We say that a formula is true in (W,R1, R2) if it is true in

the ExtCA over (W,R1, R2).
It turns out that the internal connectedness in a relational

ExtCA means the following (see Figure 1):

co(a) if and only if (∀b, c ⊆ W )(b, c 6= ∅ and a = b ∪ c →
b ∩ c 6= ∅ or

(∃A,A1, B,B1)(AR1A1 ∈ b, BR1B1 ∈ c, AR2B,

(∀C,C1)(AR2C,BR2C,CR1C1 → C1 ∈ a)))

We have the following

Theorem 5.5: [4] Relational representation theorem. Let

B be a finite ExtCA. Then B is isomorphically embedded in

the relational ExtCA over some equivalence frame of type 2

(W,R1, R2).

We consider a quantifier-free first-order logic ▲ for ExtCAs

which has the following:
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Fig. 1. Internal connectedness in a relational ExtCA

• axioms:

- the axioms of the classical propositional logic;

- the axioms of Boolean algebra;

- the axioms of ExtCA concerning the relations extended

contact and contact;

- the axiom schemes:

(Ax co) co(p) ∧ q 6= 0 ∧ r 6= 0 ∧ p = q + r → q, r 6⊢ p∗

(Ax co 1) co(0)

(Ax co 2) ¬co(p+ q) → ¬co(p) ∨ ¬co(q)
(Ax co 3) co(p+ q) → co(p) ∧ co(q)
• rules:

- MP

This logic is decidable and we have the following

Theorem 5.6: Completeness theorem with respect to

relational semantics. For every quantifier-free formula α the

following conditions are equivalent:

i) α is a theorem of ▲;

ii) α is true in all equivalence frames of type 2.

Theorem 5.7: Completeness theorem with respect to

topological and algebraic semantics. For every quantifier-

free formula α the following conditions are equivalent:

i) α is a theorem of ▲;

ii) α is true in all ExtCAs;

iii) α is true in all topological ExtCAs over a compact, T0,

semiregular topological space.

Extended contact gives also the possibility to define the

relation of contact (aCb iff a, b 6⊢ 0) and the binary relation

RC∩ meaning that the intersection of two regular closed sets

is a regular closed set (RC∩(a, b) iff a, b ⊢ a · b). It is worth

to consider also a quantifier-free first-order language without

the predicate of internal connectedness i.e. L(0, 1; ·,+, ∗;≤
,⊢, C). In this weaker language one equivalence relation is

enough - we consider equivalence frames of type 1:

Definition 5.8: [4] An equivalence frame of type 1 is

a relational structure of the form (W,R), where W is a

nonempty set and R is an equivalence relation on W .

Definition 5.9: [4] Let (W,R) be an equivalence frame of

type 1. A relational ExtCA over (W,R) in L is the structure

B = (2W ,⊆, ∅,W,∩,∪, ∗,⊢, C), where ∗ denotes the set

theoretical complement and for any subsets of W a, b, and c:

• a, b ⊢ c iff
(
(∃A ∈ a)(∃B ∈ b)ARB → (∃C ∈ c)ARC

)

and a ∩ b ⊆ c,
• aCb iff a, b 6⊢ ∅

Theorem 5.10: [4] Relational representation theorem. Let

B be a finite ExtCA. Then in L B is isomorphically embedded

in the relational ExtCA over some equivalence frame of type

1 (W,R).

This representation theorem is only for finite ExtCA. Trying

to overcome this drawback, we define:

Definition 5.11: [4] A weak extended contact algebra is a

structure of the form B = (B,≤, 0, 1, ·,+, ∗,⊢), where (B,≤
, 0, 1, ·,+, ∗) is a non-degenerate Boolean algebra and ⊢ is a

ternary relation on B such that for all a, b, d, e, f ∈ B,

(1) if a ≤ d, b ≤ e and d, e ⊢ f , then a, b ⊢ f ,

(2) if a = 0 or b = 0, then a, b ⊢ f ,

(3) if a, b ⊢ f and d, e ⊢ f , then a · d, b + e ⊢ f and

a+ d, b · e ⊢ f ,

(4) if a, b ⊢ d and d ≤ f , then a, b ⊢ f .

Obviously, every extended contact algebra is also a weak

extended contact algebra. The converse is not true.

Definition 5.12: [4] A parametrized frame is a structure of

the form (W,R), where W is a nonempty set and R is a

function associating to each subset of W a binary relation on

W .

Definition 5.13: [4] Let (W,R) be a parametrized frame.

A relational weak ExtCA over (W,R) is the structure B =
(2W ,⊆, ∅,W,∩,∪, ∗,⊢), where ∗ denotes the set theoretical

complement and ⊢ is the ternary relation on W ’s powerset

defined by

• a, b ⊢ d iff for all S ∈ a, T ∈ b and u ⊆ W , if d ⊆ u,

then (S, T ) /∈ R(u).

Theorem 5.14: [4] Relational representation theorem. Let

B = (B,≤, 0, 1, ·,+, ∗,⊢) be a weak ExtCA. Then B is

isomorphically embedded in the relational weak ExtCA over

some parametrized frame (W,R).

Thus we obtain in L a relational representation theorem

for all ExtCA, not only finite (because every ExtCA is a

weak ExtCA), but the structure in which we embed is not an
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ExtCA and the parametrized frame it is based on is a relatively

complex relational structure.

Let ▲1 be the logic obtained from ▲ by removing axioms

(Ax co), (Ax co 1), (Ax co 2) and (Ax co 3). This logic is

called extended contact logic. It is decidable and we have the

following

Theorem 5.15: Completeness theorem with respect to

relational semantics. For every formula α in L the following

conditions are equivalent:

i) α is a theorem of ▲1;

ii) α is true in all equivalence frames of type 1.

VI. CONCLUSION

Possible future research directions are for example:

• the complexity of the considered logics;

• to be obtained representation theorems in Euclidean

spaces;

• generalization of Theorems 5.5 and 5.10 for all ExtCAs,

not only for finite;

• to be obtained a stronger form of Theorem 5.14, where

we embed in an ExtCA and the relational structure is simpler.

• in reference to temporal reasoning, if we add to the

language of EDCL the binary relation P (X,Y ), meaning that

the start of time interval X is before the start of time interval

Y , then we obtain a language rich enough to define all possible

relations between two intervals of Allen’s interval algebra

([2]).
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