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Abstract—The transportation problems (TPs) support the
optimal management of the transport deliveries. In classical TPs
the decision maker has information about the crisp values of the
transportation costs, availability and demand of the products.
Sometimes in the parameters of TPs in real life there is ambiguity
and vagueness caused by uncontrollable market factors.

Uncertain values can be represented by fuzzy sets (FSs) of
Zadeh. The FSs have the degrees of membership and non-
membership. The concept of intuitionistic fuzzy sets (IFSs)
originated in 1983 as an extension of FSs. Atanasov’s IFSs
also have a degree of hesitansy to representing the obscure
environment.

In this paper we formulate the TP, in which the transportation
costs, supply and demand values are intuitionistic fuzzy pairs
(IFPs), depending on the diesel prices, road condition, weather
and other factors. Additional constraints are included in the
problem: limits for the transportation costs. Its main objective is
to determine the quantities of delivery from producers to buyers
to maintain the supply and demand requirements at the cheapest
transportation costs. The aim of the paper is to extend the
fuzzy zero point method (FZPM [35]) to the intuitionistic FZPM
(IFZPM) to find an optimal solution of the intuitionistic fuzzy TP
(IFTP) using the IFSs and index matrix (IM) concepts, proposed
by Atanassov. The solution algorithm is demonstrated by a
numerical example. Its optimal solution is compared with that
obtained by the intuitionistic fuzzy zero suffix method (IFZSM).

I. INTRODUCTION

T
HE TP originally proposed by Hitchcock in 1941 [12].

Dantzig, in 1951, used simplex method to the TP [13].

The first overall, finished method for solving TP (“method of

potentials") is developed by Kantorovich in 1949 [26].

In classical TP the decision maker has information about the

values of the transportation costs, the demanded and offered

quantities of the product. In real-life transportation problems,

some of its parameters are uncertain due to climatic, road

conditions or other market conditions. The costs are fuzzy in

the absence of information or in uncertain environment. Zadeh

proposed the fuzzy set (FS) theory [27] in 1963 to deal with

uncertainty. In 1983, Atanassov proposed the IFSs [17], which

is an extension of FSs of Zadeh. The main difference between

FSs and IFSs is that the IFSs have a degree of hesitancy.
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Zlatarov University under Ref. No. NIX-423/2019 “Innovative methods for
extracting knowledge management” The work on Sect. III and Sect. IV is sup-
ported by the Ministry of Education and Science under the Programme “Young
scientists and postdoctoral students”, approved by DCM # 577/17.08.2018.

The following is a brief theoretical overview in the field

of fuzzy (FTPs) or intuitionistic FTPs (IFTPs). Chanas et al.,

in 1984, has proposed a fuzzy linear programming model for

solving TPs with clear transportation costs, fuzzy supply and

demand values [39]. Gen et al. have given a genetic algorithm

for finding an optimal solution of a bicriteria solid TP with

fuzzy numbers (FNs) [28]. Jimenez and Verdegay, in 1999,

researched fuzzy Solid TP with trapezoidal FNs and presented

a genetic approach for solving FTP [11]. Liu and Kao [41]

demostrated a method, based on Zadeh’s extension principle,

to find the optimal solution of the trapezoidal FTPs. Dinagar

and Palanivel [9] have described fuzzy Vogel’s approximation

method and modified distribution method for determining an

initial solution of trapezoidal FTPs. Pandian and Natarajan,

in 2010, studied zero point method for solution for FTP

with trapezoidal fuzzy parameters [35]. Improved zero point

methods were described in (see [1], [2], [43]) for solving

trapezoidal and triangular FTP.

Kaur and Kumar, in 2012, introduced fuzzy least cost

method, fuzzy north west corner rule and fuzzy Vogel ap-

proximation method for determining of an optimal solution of

FTP [5]. Basirzadeh [16] has found a fuzzy optimal solution

of fully FTPs by transforming the fuzzy parameters into the

crisp parameters using classical algorithms. Gani et al. [3] used

Arsham and Khan’s simplex algorithm [15] to find a fuzzy

optimal solution of FTPs with trapezoidal fuzzy parameters.

A comparative analysis on the FTPs [42] was made and the

conclusion has given that the zero point method is better than

both the modified distribution method and Vogel’s Approx-

imation method. Patil and Chandgude, in 2012, performed

“Fuzzy Hungarian approach” for TP with trapezoidal FNs [7].

Aggarwal and Gupta, in 2013, described an procedure for

solving intuitionistic fuzzy TP (IFTP) with trapezoidal IFNs

via ranking method [14]. Jahihussain and Jayaraman, in 2013,

presented a zero suffix method for obtaining an optimal solu-

tion for FTPs with triangular and trapezoidal FNs (see [37],

[38]). Zero suffix method to solve FTP after its converting into

the crisp problem was applied in [32] and [44]. A fuzzified

version of zero suffix method was performed and applied

in [29], in 2018, to FTPs. Shanmugasundari and Ganesan, in

2013, proposed a fuzzy modified distribution algorithm and

a fuzzy approximation method of Vogel to solve FTP with

FNs [30]. Gani and Abbas, in 2014 [4], and Kathirvel, and
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Balamurugun, in 2012 (see [24], [25]), proposed a method

for solving TP in which the quantities demanded and offered

are represented in the form of the trapezoidal intuitionistic

FNs (IFNs). Antony et al. used Vogel’s approximation method

for solving triangular IFTP in 2014 [36]. “PSK method”

for finding an optimal solution to IFTPs was presented by

Kumar and Hussain in 2015 [33]. Fully FTPs was resolved in

[40], in 2017, using a new method, based on the Hungarian

and MODI algorithm. Two new methods for finding a fuzzy

optimal solution of TPs with the LR flat fuzzy numbers were

proposed by Kaur, Kacprzyk and Kumar [6], based on the

tabular representation and on the fuzzy linear programming

formulation. In [49], we have proposed for the first time

the IFZSM to determine an optimal solution of the IFTP,

interpreted by the IFSs and IMs [18] concepts.

Here, we proposed for the first time intuitionistic fuzzy

zero point method (IFZPM) to solve optimally a type of

TP, in which the transportation costs, supply and demand

quantities are IFPs, depending on the climatic, road conditions

and economic factors. The constraints are formulated to the

problem additionally: limits to the transportation costs. The

optimal solution algorithm is demonstrated with a numerical

example. The optimal solutions, respectively obtained after

the application of the intuitionistic fuzzy zero suffix method

(IFZSM) and IFZPM, are compared. The two methods for

finding an optimal solution for IFTPs are free from the

problem of degeneracy. The optimal transportation cost of the

studied TP, obtained by the IFZPM is better than or equal to

that after the application of the IFZSM. The advantages of the

algorithm are that it can be easy generalized for an application

to multidimensional data and can be applied to both the TP

with clear or known parameters, and with intuitionistic fuzzy

ones. The structure of this paper is as follows: Section 2

recalls some remarks of the theories of the IMs and the IFPs.

In Section 3, we propose an algorithm for IFTP extending

the fuzzy zero point method [35] and using the concepts of

IMs and IFSs. The reliability of the proposed approach is

demonstrated by an example in Section 4 and the results are

compared with those obtained after application of IFZSM.

Section 5 outlines the conclusion and some directions for

future research.

II. INTRODUCTION TO IMS AND INTUITIONISTIC FUZZY

LOGIC

In this section we recall some basic definitions on intuition-

istic fuzzy pairs from (see [10], [19], [21], [23], [46]) and on

index matrix apparatus from (see [20], [48]).

2.1. Short Remarks on Intuitionistic Fuzzy (IF) Logic

The IFP has the form of an ordered pair 〈a,b〉 =
〈µ(p),ν(p)〉, where a,b ∈ [0,1] and a+ b ≤ 1, that is used

as an evaluation of a proposition p (see [21], [23]). µ(p)
and ν(p) respectively determine the “truth degree” (de-

gree of membership) and “falsity degree” (degree of non-

membership).

Let us recall some basic operations as “negation”, “addi-

tion”, “subtraction”, “multiplication” over two IFPs x = 〈a,b〉
and y = 〈c,d〉.

¬x = 〈b,a〉;
x∧1 y = 〈min(a,c),max(b,d)〉;
x∨1 y = 〈max(a,c),min(b,d)〉;

x∧2 y = x+ y = 〈a+ c−a.c,b.d〉;
x∨2 y = x.y = 〈a.c,b+d −b.d〉;
α.x = 〈1− (1−a)α ,bα〉(α ∈ R);

x− y = 〈max(0,a− c),min(1,b+d,1−a+ c)〉.

(1)

The forms of the relations with IFPs are the following

x ≥ y iff a ≥ c and b ≤ d; x ≤ y iff a ≤ c and b ≥ d;

x ≥✷ y iff a ≥ c; x ≤✷ y iff a ≤ c;

x ≥⋄ y iff b ≤ d; x ≤⋄ y iff b ≥ d;

x = y iff a = c and b = d

x ≥R y iff R〈a,b〉 ≤ R〈c,d〉,
(2)

where

R〈a,b〉 = 0.5(2−a−b)0.5(|1−a|+ |b|+ |1−a−b|) [10].

The IFP x is an “intuitionistic fuzzy false pair” (IFFP)

if and only if a ≤ b, while x is a “false pair” (FP) iff a =
0,b = 1.

Let a set E be fixed. An “intuitionistic fuzzy set” (IFS) A

in E is an object of the following form (see [19]):

A = {〈x,µA(x),νA(x)〉|x ∈ E},

where µA : E → [0,1] and νA : E → [0,1] define the degrees of

membership and non-membership of the x ∈ E, respectively,

and 0 ≤ µA(x)+νA(x)≤ 1 for every x ∈ E:

2.2. Definition, Operations and Relations over Intuitionistic

Fuzzy Index Matrices

Let I be a fixed set. The definition of two-dimensional

intuitionistic fuzzy index matrix (2-D IFIM) with index sets

K and L (K,L ⊂ I ) is the following:

[K,L,{〈µki,l j
,νki,l j

〉}]

≡

l1 . . . l j . . . ln
k1 〈µk1,l1 ,νk1,l1〉 . . . 〈µk1,l j

,νk1,l j
〉 . . . 〈µk1,ln ,νk1,ln〉

...
...

. . .
...

. . .
...

km 〈µkm,l1 ,νkm,l1〉 . . . 〈µkm,l j
,νkm,l j

〉 . . . 〈µkm,ln ,νkm,ln〉

,

where for i = 1, ...,m; j = 1, ...,n:

0 ≤ µki,l j
,νki,l j

,µki,l j
+νki,l j

≤ 1.

The basic operations over two IMs

A = [K,L,{〈µki,l j
,νki,l j

〉}]

and

B = [P,Q,{〈ρpr ,qs ,σpr ,qs〉}]

are as follows [20]:
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Negation: ¬A = [K,L,{〈νki,l j
,µki,l j

〉}].
Addition-(◦,∗): A ⊕(◦,∗) B = [K ∪ P,L ∪ Q,{〈φtu,vw ,ψtu,vw〉}],
where 〈φtu,vw ,ψtu,vw〉

=















































〈µki,l j
,νki,l j

〉, if tu = ki ∈ K and vw = l j ∈ L−Q

or tu = ki ∈ K −P and vw = l j ∈ L;

〈ρpr ,qs ,σpr ,qs〉, if tu = pr ∈ P and vw = qs ∈ Q−L

or tu = pr ∈ P−K

and vw = qs ∈ Q;

〈◦(µki,l j
,ρpr ,qs), if tu = ki = pr ∈ K ∩P

∗(νki,l j
,σpr ,qs)〉, and vw = l j = qs ∈ L∩Q;

〈0,1〉, otherwise.

where 〈◦,∗〉 ∈ {〈max,min〉,〈min,max〉,〈 average,average〉}.
Termwise subtraction-(max,min):

A−(max,min) B = A⊕(max,min)¬B.

Termwise multiplication-(min,max) :

A⊗(min,max) B = [K ∩P,L∩Q,{〈φtu,vw ,ψtu,vw〉}],

where

〈φtu,vw ,ψtu,vw〉= 〈min(µki,l j
,ρpr ,qs),max(νki,l j

,σpr ,qs)〉.

Transposition: A′ is the transposed IM of A.
Reduction: The symbol “⊥” denotes the lack of some

component in the definitions. The operation (k,⊥)-reduction

of the IM A is defined by:

A(k,⊥) = [K −{k},L,{ctu,vw}],

where ctu,vw = aki,l j
for tu = ki ∈ K −{k} and vw = l j ∈ L.

Projection: Let M ⊆ K and N ⊆ L. Then,

prM,NA = [M,N,{bki,l j
}],

where for each ki ∈ M and each l j ∈ N, bki,l j
= aki,l j

.
Substitution: Let IM A = [K,L,{ak,l}] be given. The some

forms of the substitution over A are defined for the couples of

indices (p,k) and/or (q, l), respectively, by

[ p

k
;⊥

]

A =
[

(K −{k})∪{p},L,{ak,l}
]

,

[

⊥;
q

l

]

A =
[

K,(L−{l})∪{q},{ak,l}
]

.

Index type operations:

AGIndex{(min/max)/(min✷ /max✷)/(min⋄ /max⋄)(minR /maxR)}(6⊥) (A)

= 〈ki, l j〉

finds the index of the minimum/ maximum element of A with

no empty value in accordance with the relations (2).

AGIndex{(min/max)/(min✷ /max✷)/(min⋄ /max⋄)(minR /maxR)}(6⊥)(/∈F)

(A) = 〈ki, l j〉

presents the index of the minimum/ maximum element be-

tween the elements of A, whose indexes /∈ F , with no empty

value in accordance with the relations (2).

Index{(min/max)/(min✷ /max✷)/(min⋄ /max⋄)(minR /maxR)}(6⊥),ki
(A)

= {〈ki, lv1
〉, . . . ,〈ki, lvx〉, . . . ,〈ki, lvV

〉},

where 〈ki, lvx〉 (for i = 1, ...,m; j = 1, ...,n;x = 1, ...,V ) are the

indices of the minimum/ maximum IFFP of ki-th row of A

with no empty value in accordance with the relations (2).

Index(6⊥)(A) = {〈k1, lv1
〉, . . . ,〈ki, lvi

〉, . . . ,〈km, lvm〉},

where 〈ki, lvi
〉 (for 1 ≤ i ≤ m) are the indices of the element

of A, whose cell is full.

Index(max µ(ν)),ki
(A) = {〈ki, lv1

〉, . . . ,〈ki, lvx〉, . . . ,〈ki, lvV
〉},

where 〈ki, lvx〉 (for 1 ≤ i ≤ V,1 ≤ x ≤ n) is the indices of the

IFFP of ki-th row of A, for which µ(ν)ki,lvx
is maximum.

Index(max µ(ν)),l j
(A) = {〈kw1

, l j〉, . . . ,〈kwy , l j〉, . . . ,〈kwW
, l j〉},

where 〈kwy , l j〉 (for 1 ≤ y ≤W,1 ≤ j ≤ n) are the indices of the

IFFP of l j-th column of A, for which µ(ν)kwy ,l j
is maximum.

Aggregation operations

Let us use the operations #q,(q ≤ i ≤ 3) from [47] for scaling

aggregation operations over two IFPs x = 〈a,b〉 and y = 〈c,d〉:
x#1y = 〈min(a,c),max(b,d)〉;
x#2y = 〈average(a,c),average(b,d)〉;
x#3y = 〈max(a,c),min(b,d)〉.

The following inequality holds:

x#1y ≤ x#2y ≤ x#3y [47].

Let k0 /∈K be a fixed index. The definition of the aggregation

operation by the dimension K is [20], [47]: is:

αK,#q(A,k0)

=

l1 . . . ln

k0

m

#q

i=1

〈µki,l1 ,νki,l1〉 . . .
m

#q

i=1

〈µki,ln ,νki,ln〉
,

where 1 ≤ q ≤ 3.

Aggregate global internal operation: AGIO⊕(max,min)
(A) .

This operation finds the addition of all elements of A.

Internal subtraction of the components of the IM A ([45],

[46], [48]):

IO−(max,min)
(
〈

ki, l j,A
〉

,〈pr,qs,B〉) = [K,L,{〈γtu,vw ,δtu,vw〉}]

〈γtu,vw ,δtu,vw〉

=















〈µtu,vw ,νtu,vw〉, if tu 6= ki ∈ K,
vw 6= l j ∈ L;

〈max(0,µki,l j
−ρpr ,qs), if tu = ki ∈ K,

min(1,νki,l j
+σpr ,qs ,1−µki,l j

+ρpr ,qs)〉 vw = l j ∈ L

where ki ∈ K, l j ∈ L; pr ∈ P, qs ∈ Q.
The non-strict relation “inclusion about value” The form of

this type of relations between two IMs A and B is as follows:

A ⊆v B iff (K = P) & (L = Q) & (∀k ∈ K)(∀l ∈ L)(ak,l ≤ bk,l).
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III. INTUITIONISTIC FUZZY ZERO POINT APPROACH TO

THE IFTP

Let us extend the IFTP from [49]: A trader supplies a product

to n different companies (consumers) {l1, . . . , l j, . . . , ln} after

delivery of that product from different m manifacturers (pro-

ducers) {k1, . . . ,ki, . . . ,km} in quantities cki,R (for 1 ≤ i ≤ m).
Let the consumers (destinations) need this product in quantities

of cQ,l j
(for 1 ≤ j ≤ n).

Let cki,l j
be the intuitionistic fuzzy cost for transporting one

unit quantity of the product from the ki-th producer to the

l j-th consumer; xki,l j
- the number of units of the product,

transported from ki-th source to l j-th destination and cpl,l j
(for

1 ≤ j ≤ n) are limits to the transportation costs of the delivery

a product from the ki-th manifacturer to the l j-th destination

under form of IFPs.

All parameters, involved in the problem, are IFPs. For

estimating the transportation costs in the form of IFPs, we can

use the expert approach described in detail in [19]. Each expert

needs to evaluate at least a part of the alternatives in terms of

their performance with respect to each defined criterion. The

experts is not sure about the transportation costs due the cli-

matic and traffic conditions, or economic factors. He hesitates

in prediction of the transportation cost due to changes in some

uncontrollable factors. The transportation costs are evaluated

as intuitionistic fuzzy numbers after a thorough discussion,

interpreted by the intuitionistic fuzzy concept: these numbers

express a “positive” and a “negative” evaluations, respectively.

The reliability of the expert assessment (confidence in her/his

evaluation with respect to each criterion) may be involved in

the evaluation process. The purpose of the trader is how to

satisfy the requests of the users so that the intuitionistic fuzzy

transportation cost is minimum according to (2).

Let us formulate the mathematical model of the above

problem:

An objective function: minimize
m

∑
i=1

n

∑
j=1

cki,l j
xki,l j

Subject to:
n

∑
j=1

xki,l j
= cki,R, i = 1,2, . . . ,m

m

∑
i=1

xki,l j
= cQ,l j

, j = 1,2, . . . ,n

(3)

We add the constraint to the problem (3): cpl,l j
, for 1 ≤ j ≤

n – an intuitionistic fuzzy upper limit to the corresponding

transportation cost of delivery a particular product from the

ki-th source to the l j-th destination.

Note: The operations “addition” and “multiplication”, used

in the problem (3) are those for IFPs, defined in Sect. II.

The transportation costs of the problem (3) for delivery from

a given manifacturer to a given user are entered in the cost

IM C:

C[K,L]

=

l1 . . . ln R pu

k1 〈µk1,l1 ,νk1,l1〉 . . . 〈µk1,ln ,νk1,ln〉 〈µk1,R,νk1,R〉 〈µk1,pu,νk1,pu〉
...

...
. . .

...
...

km 〈µkm,l1 ,νkm,l1〉 . . . 〈µkm,ln ,νkm,ln〉 〈µkm,R,νkm,R〉 〈µkm,pu,νkm,pu〉

Q 〈µQ,l1 ,νQ,l1〉 . . . 〈µQ,ln ,νQ,ln〉 〈µQ,R,νQ,R〉 〈µQ,pu,νQ,pu〉

pl 〈µpl,l1 ,νpl,l1〉 . . . 〈µpl,ln ,νpl,ln〉 〈µpl,R,νpl,R〉 〈µpl,pu,νpl,pu〉
pu1 〈µpu1,l1 ,νpu1,l1〉 . . . 〈µpu1,ln ,νpu1,ln〉 〈µpu1,R,νpu1,R〉 〈µpu1,pu,νpu1,pu〉

,

where K = {k1,k2, . . . ,km,Q, pl, pu1}, L =
{l1, l2, . . . , ln,R, pu} and for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

{cki,l j
,cki,R,cki,pu,cpl,l j

,cpl,R,cpl,pu,cQ,l j
,cQ,R,cQ,pu,cpu1,l j

,
cpu1,R,cpu1,pu} are IFPs.

Let we denote by |K| = m+ 3 the number of elements of

the set K; then |L|= n+2. We also define the IM

X [K∗,L∗] =

l1 . . . l j . . . ln
k1 xk1,l1 · · · xk1,l j

· · · xk1,ln
...

...
. . .

...
. . .

...

km xkm,l1 . . . xkm,l j
. . . xkm,ln

,

K∗= {k1,k2, . . . ,km}, L∗= {l1, l2, . . . , ln}, and for 1 ≤ i ≤ m,

1 ≤ j ≤ n: xki,l j
= 〈ρki,l j

,σki,l j
〉.

For the needs of the algorithm, let us we create the following

auxiliary index matrices:

1) S = [K,L,{ski,l j
}], such that S = C i.e. (ski,l j

= cki,l j
∀ki ∈

K,∀l j ∈ L);
2)

D[K∗,L∗] =

l1 . . . l j . . . ln
k1 dk1,l1 · · · dk1,l j

· · · dk1,ln
...

...
. . .

...
. . .

...

km dkm,l1 . . . dkm,l j
. . . dkm,ln

,

where K∗= {k1,k2, . . . ,km}, L∗= {l1, l2, . . . , ln} , and for i =
1, ...,m; j = 1, ...,n: dki,l j

= {1 or 2} depending on whether

the elements ski,l j
of S are crossed out with 1 or 2 lines.

3)

RC[K∗,e0] =

e0

k1 rck1,e0

...
...

km rckm,e0

,

where K∗ = {k1,k2, . . . ,km} and for 1 ≤ i ≤ m: rcki,l j
=

{0 or 1} depending on whether the ki-th row of the matrix

S is crossed out or not.

4)

CC[r0,L∗] =
l1 . . . l j . . . ln

r0 ccr0,l1 · · · ccr0,l j
· · · ccr0,ln

,

where L∗={l1, l2, . . . , ln} , and for 1≤ j ≤ n: ccki,l j
= {0 or 1}

depending on whether the l j-th row of the matrix S is crossed

out or not.

5)

RM[K/{Q, pl, pu1},R] = prK/{Q,pl,pu1},RC

and

CM[pu1,L/{R, pu}] = prpu1,L/{R,pu}C;
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6) U [K∗,L∗,{uki,l j
}] and for 1 ≤ i ≤ m, 1 ≤ j ≤ n:

uki,l j
=

{

1, if cki,l j
< cpl,l j

⊥, otherwise
;

When starting the algorithm, rmki,R = rcki,e0
= ccr0,l j

=
cmpu1,l j

= 0,uki,l j
=⊥,xki,l j

= 〈0,1〉 (∀ki ∈ K∗,∀l j ∈ L∗).

We will propose for the first time a new intuitionistic fuzzy

approach for determining the optimal solution of the TP

with intuitionistic fuzzy costs, demand and supply extending

the zero point method ([2], [35], [34], [43]) and using the

concepts of IMs and IFPs. In the program code was used a

part of Microsoft Visual Studio.NET 2010 C project’s.

Step 1. Let us create the IFIM C for the given problem and

then, convert it into a balanced one (
m

∑
i=1

cki,R =
n

∑
j=1

cQ,l j
), if it

is not.

The program executes the following operations:

– We define 2−D IMs as follows:

S1[Q,L/{R, pu}] = prQ,L/{R,pu}C;

S2[K/{Q, pl, pu1},R] = prK/{Q,pu1},RC

and let {km+1, ln+1} /∈ K ∪L.
By L/{R, pu} let us denote the index set L without the indices

R, pu.

– If αK,#q(S1, ln+1) ⊃v

[

Q
R

;⊥
]

(αL,#q(S2, ln+1))
′ (i.e.

m

∑
i=1

cki,R >
n

∑
j=1

cQ,l j
), then

introduce dummy column ln+1 having all its costs as 〈0,1〉
and execute operations for finding the demand at this dummy

destination: cQ,ln+1
=

m

∑
i=1

cki,R −
n

∑
j=1

cQ,l j
;

{Let us define 2−D IMs S3,S4,S5 such that

S3 = αK,#q(S1, ln+1)−(max,min)) αL,#q(

[

Q

R
;⊥

]

(S2, ln+1))
′;

S4 = [K/{Q, pl, pu1},{ln+1},{〈0,1〉}];

S5 = [K,{ln+1},{cki,ln+1
}] = S3 ⊕(max,min)) S4;

The new matrix of costs is obtained by carrying out the

operation “matrix addition":

C :=C⊕(max,min)) S5, go to Step 2. }

– If
[

⊥; R
Q

]

αK,#q(S1,km+1))
′ ⊂v αL,#q(S2,km+1))

′ (i.e.
m

∑
i=1

cki,R <
n

∑
j=1

cQ,l j
), then

introduce dummy row km+1 having all its costs as 〈0,1〉 and

execute operations for finding the demand at this dummy

destination: ckm+1,R =
m

∑
i=1

cki,R −
n

∑
j=1

cQ,l j
.

{Let us define 2−D IMs S3,S4,S5 such that

S3 = αK,#q(C2,kn+1)−(max,min))

[

⊥;
R

Q

]

αL,#q(C1,km+1))
′;

S4[{km+1},L/{Q, pu},{〈0,1〉}];

S5 = [km+1,L,{ckm+1,l j
}] = S3 ⊕(max,min)) S4;

C :=C⊕(max,min)) S5, go to Step 2. }

Step 2. Checking the conditions for limiting the

transportation costs

for (int i = 1; i < m; i++)

for (int j = 1; j < n; j++)

{If

([

ki

pl
;⊥

]

prpl,l j
C

)

⊃v prki,l j
C, thenuki,l j

= 1.}

EG = Index(⊥)(U)

= {〈ki1 , l j1〉,〈ki2 , l j2〉, . . . ,〈〈kiφ , l jφ 〉};

for each 〈ki, l j〉 ∈ EG, let us the element ski,l j
of S is equal to

〈1,0〉 [31];

Go to Step 3.

Step 3. Determination of zero membership value – row

level For each row of the matrix S, the smallest element is

found in accordance with the relations (2) and is saved to the

right of the row, in the column pu. The code uses the operation

AGIO for finding the indexes of the minimum elements of the

row:

for (int i = 1; i < m; i++)

for (int j = 1; j < n; j++)

{AGIndex{(min)/(min✷)/(min⋄)/(minR)}

(

prki,L/{R,pu}S
)

= 〈ki, lv j
〉;

If prki,lv j
S ⊆v

([

ki
pl

;⊥
]

prpl,lv j
S
)

, then

S6[ki, lv j
] = prki,lv j

S;S7 =

[

⊥;
pu

lv j

]

S6;

S := S⊕(max,min) S7.}

Then from each element of the matrix S, subtract the smallest

element in the same row:

for (int i = 0; i < m; i++)

for (int j = 0; j < n; j++)

{IO−(max,min)

(〈

ki, l j,S
〉

,
〈

ki, pu, prK/{Q,pl,pu1}S
〉)

};

Go to Step 4.

Step 4. Determination of zero membership value – column

level For each column of the matrix S, the smallest element

is found in accordance with the relations (2). It is saved at

the bottom of the column, in line pu1:

for (int j = 1; j < n; j++)

{AGIndex{(min)/(min✷)/(min⋄)/(minR)}

(

prK/{Q,pl,pu1},l j
S
)

= 〈kwi
, l j〉;

Let us create two 2-D IMs S6 and S7 :

S6[kwi
, l j] = prkwi

,l j
S;S7 =

[

pu1

kwi

;⊥

]

S6;

S := S⊕(max,min) S7.}
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for (int j = 1; j < n; j++)

for (int i = 1; i < m; i++)

{IO−(max,min)

(〈

ki, l j,S
〉

,
〈

pu1, l j, prpu1,L/{R,pu}S
〉)

};

Go to Step 5.

Step 5. Optimality criterion

1) Check if each quantity offered is less than or equal to

the total quantity offered, whose reduced costs are with zero

membership degrees.

for (int i = 1; i < m; i++)

{Index(min µ),ki
(A) = {〈ki, lv1

〉, . . . ,〈ki, lvx〉, . . . ,〈ki, lvV
〉;

We create 2−D IMs as follows:

Gv1
[ki, lv1

] = prki,lv1
C, . . . ,GvV

[ki, lvV
] = prki,lvV

C,

and G[ki,R] = prki,RC;

If

G[ki,R]⊆v Gv1
+(max,min) . . .+(max,min) Gvx + . . .+(max,min) GvV

,

then go to Step 5.2.

else {RM[ki,R] = 1 and go to Step 6.}

}

2) Check if each required quantity is less than or equal to

the total required quantity, whose reduced costs have zero

membership degrees.

for (int j = 1; j < n; j++)

{Index(min µ),l j
(A) = {〈kw1

, l j〉, . . . ,〈kwy , l j〉, . . . ,〈kwW
, l j〉};

We define 2−D IMs as follows:

Gw1
[kw1

, l j] = prkw1
,l j

C, . . . ,GwW
[kwW

, l j] = prkwW
,l j

C,

and G[pu1, l j] = prpu1,l j
C;

If

G[pu1, l j]

⊆v Gw1
+(max,min) . . .+(max,min) Gwy + . . .+(max,min) GwW

,

then go to Step 8.

else {CM[pu1, l j] = 1 go to Step 6. }

}

Step 6. Revise the cost IM All elements 〈0,1〉 in the S are

crossed out with minimum number of lines (horizontal, vertical

or both). If there is no element 〈0,1〉 in a given row or column,

then the element with the minimum degree of membership is

crossed out from that row or column in the cost IM S obtained

in step 4. (omitting the unsatisfied supply and demand of 5.1

and 5.2.

This step introduces IM D[K∗,L∗], which has the same dimen-

sions as the X matrix. We use it to mark whether an element

in the S is crossed out with a horizontal or vertical line, or

both.

If

dki,l j
= 1,

ski,l j
is crossed out with 1 line;

If

dki,l j
= 2,

the ski,l j
element is covered with 2 lines.

We create two matrices CC[r0,L∗] and RC[K∗,e0], in which it

is recorded that the element is covered by a line in a row or

column in the S matrix.

for (int i = 1; i < m; i++)

for (int j = 1; j < n; j++)
– If ski,l j

= 〈0,1〉 (or 〈ki, l j〉 ∈ Index(min µ),ki
(S),rmki,R = 0 and

dki,l j
= 0,

then {

rc[ki,e0] = 1;dki,l j
= 1 ∀l j;S(ki,⊥)

}

– If {ski,l j
= 〈0,1〉 (or 〈ki, l j〉 ∈ Index(min µ),ki

(S),cmpu1,l j
= 0

and dki,l j
= 1},

then {

dki,l j
= 2;ccr0,l j

= 1;dki,l j
= 1 ∀ki;S(⊥,l j)

}.

Step 7. Develop the new revised cost IM We select the

minimum IF cost of the S using the relations (2), that is not

crossed by the lines in Step 6, and subtract it from each of

its uncovered elements, and we add it to each of its elements

that is covered by two lines. We return to Step 5.

AGIndex(min,max) (S) = 〈kx, ly〉;

(that finds the smallest element index among the elements of

the S matrix.)

Subtract Skx,ly uncrossed each element of the matrix with

reduced prices:

IO−(max,min)
(〈S〉,〈kx, ly,S〉) .

We add it to each element of S, which is crossed out by two

lines, i.e. d[ki, l j] = 2:

for (int i = 1; i < m; i++)

for (int j = 1; j < n; j++)
{if dki,l j

= 2 then create

S1 = prkx,lyC;S2 = prki,l j
C⊕(max,min)

[

ki

kx

;
l j

ly

]

S1;

S := S⊕(max,min) S2;

if dki,l j
= 1 then

S := S⊕(+) prki,l j
C}.

Go to Step 5.

Step 8. Determination of a cell for allocation

1) Use relations (2) to select the largest IF cost in the IM
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S. If a tie exists, use any arbitrary tie-breaking choice. Let us

denote this cell as cki∗,l j∗
.

AGIndex(max,min) (S) = 〈kx∗, ly∗〉;

2) Select a single cost with zero degree of membership for

allocation corresponding to ki∗-th row and/or l j∗-th column

if exists and assigns the most possible to that cost cell and

strike the satisfied IF supply or IF demand.

Let us ske,lg = min(sIndex(min µ),kx∗(A)
,sIndex(min µ),l j∗

)(A).

Then the minimum of the required and offered quantity

is assigned to the corresponding ske,lg cell and delete the

row/column with exhausted required or offered quantity. So

we find the reduced IM S.

We find minimum of ske,R and sQ,lg by the operations:

We create the IMs S8[ke,R] = prke,RS and S9[Q, lg] = prQ,lgS;

If S8 ⊆v

[

ke
lg

; R
Q

]

(S9)
′ (i.e. min(ske,R,sQ,lg) = ske,R), then

{X := X ⊕(max,min)

[

⊥;
lg

R

]

S8;

We obtain a new matrix with dimensions

(m+2)× (n+2) by deleting the ke-th row of the S using the

operation “reduction" S(ke,⊥).

Let us create IM S10 as follows:

S10[Q, lg] = S9 −(max,min)

[

Q

R
;

lg

ke

]

(S8)
′;

Then S := S⊕(max,min) S10; }

If S8 ⊇v

[

ki
l j

; R
Q

]

(S9)
′ (i.e. min(ski,R,sQ,l j

) = sQ,l j
), then {the

IM X changes with: X := X ⊕(max,min)

[

ke
Q

;⊥
]

S9.

We obtain a new matrix with dimensions (m+3)× (n+1) by

reduction of the lg-th column of S. Let us construct IM S11 as

follows:

S11[ke,R] = S8 −(max,min)

[

ke

lg
;

R

Q

]

(S9)
′
;

S := S⊕(max,min) S11;}

Repeat Steps 8 until |S| = 6 (all the required quantities are

satisfied and all the offered quantities are exhausted), i.e. S is

reduced to the form

S[Kr,Lr]=

R pu

Q 〈µQ,R,νQ,R〉 〈µQ,pu,νQ,pu〉

pl 〈µpl,R,νpl,R〉 〈µpl,pu,νpl,pu〉
pu1 〈µpu1,R,νpu1,R〉 〈µpu1,pu,νpu1,pu〉

;

Go to Step 9.

Step 9.

D = Index 6⊥X

= {〈ki∗1
, l j∗1

〉, . . . ,〈ki∗ f
, l j∗ f

〉, . . . ,〈ki∗ϕ , l j∗ϕ 〉}.

If the intuitionistic fuzzy feasible solution is degenerated (it

contains less than m+ n− 1 (the total number of producers

and consumers decreased by 1) occupied cells in the X i.e.

|D| < m+ n− 1) [8] then increase the basic cells xki,l j
with

one to which the minimum transportation cost corresponds.

Let us the recorded delivery of this cell is 〈0,1〉. The IMs

operations are:

If

|D|< m+n−1,

then

{AGIndex{(min/max)/(min✷ /max✷)/(min⋄ /max⋄)(minR /maxR)}( 6⊥)(/∈D) (C)

= 〈kα , lβ 〉;

xkal ,lβ = 〈0,1〉}.

Go to Step 10.

Step 10.

for (int i = 1; i < m; i++)

for (int j = 1; j < n; j++)
If xki,l j

6= 〈⊥,⊥〉 and 〈ki, l j〉 ∈ EG then the problem has not

solution [8] and the algorithm stop else

{all the required and offered quantities are exhausted and the

algorithm stop. The optimal basic solution Xopt [K∗,L∗,{xki,l j
}]

is obtained.}

for (int i = 1; i < m; i++)

for (int j = 1; j < n; j++)
If xki,l j

= 〈⊥,⊥〉 then xki,l j
= 〈0,1〉.

The optimal intuitionistic fuzzy transportation cost is:

AGIO1
⊕(max,min))

(

C({Q,pl,pu1},{R,pu})⊗(min,max) Xopt

)

or

AGIO2
⊕(∨2)

)

(

C({Q,pl,pu1},{R,pu})⊗(∧2) Xopt

)

,

where ∨2 and ∧2 are the operations from (1).

IV. AN EXAMPLE OF THE IFTP

Let us extend the IFTP from [49]: A trader supplies a

product to 4 different companies {l1, l2, l3, l4}. Let a product

be produced at the manifacturers {k1,k2,k3} in quantities cki,R

(for 1 ≤ i ≤ 3). Let the companies ({l1, l2, l3, l4}) demand this

product in an quantity of cQ,l j
(for 1 ≤ j ≤ 4) and cpl,l j

(for

1 ≤ j ≤ 4) are intuitionistic fuzzy limits to the transportation

costs of delivery a particular product from the ki-th source

to the l j-th destination. The trader is not certain about the

transportation costs, the demanded and supplied quantities due

to several uncertainties. Let the cost cki,l j
for transporting one

unit quantity of the product from the ki-th producer to the l j-th

user is an IFP and is an element of IFIM C[K,L]

C[K,L] =







































l1 l2 l3 . . .
k1 〈0.6,0.2〉 〈0.7,0.1〉 〈0.3,0.1〉 . . .
k2 〈0.5,0.3〉 〈0.4,0.1〉 〈0.5,0.1〉 . . .
k3 〈0.4,0.2〉 〈0.3,0.2〉 〈0.6,0.1〉 . . .
Q 〈0.4,0.2〉 〈0.5,0.3〉 〈0.6,0.2〉 . . .
pl 〈0.55,0.3〉 〈0.6,0.4〉 〈0.75,0.2〉 . . .

pu1 〈⊥,⊥〉 〈⊥,⊥〉 〈⊥,⊥〉 . . .

. . . l4 R pu

. . . 〈0.8,0.1〉 〈0.5,0.2〉 〈⊥,⊥〉

. . . 〈0.3,0.2〉 〈0.7,0.1〉 〈⊥,⊥〉

. . . 〈0.7,0.2〉 〈0.4,0.5〉 〈⊥,⊥〉

. . . 〈0.06,0.02〉 〈⊥,⊥〉 〈⊥,⊥〉

. . . 〈⊥,⊥〉 〈⊥,⊥〉 〈⊥,⊥〉

. . . 〈⊥,⊥〉 〈⊥,⊥〉 〈⊥,⊥〉
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Let xki,l j
is the number of units of the product, transported

from the ki-th producer to l j-th destination (for 1 ≤ i ≤ 3 and

1 ≤ j ≤ 4) and is an element of IFIM X with initial elements

〈⊥,⊥〉. The trader wants to satisfy the required quantities of

the users so that the intuitionistic fuzzy transportation cost is

minimum.

Solution of the problem:

Step 1. The problem is balanced.

Step 2. Checking the conditions for limiting the transportation

costs

for (int i = 1; i < m; i++)

for (int j = 1; j < n; j++)

{If
([

ki

pl
;⊥

]

prpl,l j
C

)

⊂v prki,l j
C,

then

uki,l j
= 1

}.

The IM C is transformed in:

C[K,L] =







































l1 l2 l3 . . .
k1 〈0.6,0.2〉 〈1,0〉 〈0.3,0.1〉 . . .
k2 〈0.5,0.3〉 〈0.4,0.1〉 〈0.5,0.1〉 . . .
k3 〈0.4,0.2〉 〈0.3,0.2〉 〈0.6,0.1〉 . . .
Q 〈0.4,0.2〉 〈0.5,0.3〉 〈0.6,0.2〉 . . .
pl 〈0.55,0.3〉 〈0.6,0.4〉 〈0.75,0.2〉 . . .

pu1 〈⊥,⊥〉 〈⊥,⊥〉 〈⊥,⊥〉 . . .

. . . l4 R pu

. . . 〈1,0〉 〈0.5,0.2〉 〈⊥,⊥〉

. . . 〈0.3,0.2〉 〈0.7,0.1〉 〈⊥,⊥〉

. . . 〈0.7,0.2〉 〈0.4,0.5〉 〈⊥,⊥〉

. . . 〈0.06,0.02〉 〈⊥,⊥〉 〈⊥,⊥〉

. . . 〈0.65,0.3〉 〈⊥,⊥〉 〈⊥,⊥〉

. . . 〈⊥,⊥〉 〈⊥,⊥〉 〈⊥,⊥〉

Let us define IM S = [K,L,{ski,l j
}] such that S =C.

Step 3. Determination of zero membership value – row

level In each row of the S[K,L], the smallest element is found

in accordance with the relation (2):

〈a,b〉 ≤R 〈c,d〉 iff R〈a,b〉 ≥ R〈c,d〉

and it is subtracted from all elements in the row and go to

Step 4.

S =







































l1 l2 l3 . . .
k1 〈0.3,0.3〉 〈0.7,0.1〉 〈0,0.2〉 . . .
k2 〈0.2,0.5〉 〈0.1,0.3〉 〈0.2,0.3〉 . . .
k3 〈0.1,0.4〉 〈0,0.4〉 〈0.3,0.3〉 . . .
Q 〈0.4,0.2〉 〈0.5,0.3〉 〈0.6,0.2〉 . . .
pl 〈0.55,0.3〉 〈0.6,0.4〉 〈0.75,0.2〉 . . .

pu1 〈⊥,⊥〉 〈⊥,⊥〉 〈⊥,⊥〉 . . .

. . . l4 R pu

. . . 〈0.7,0.1〉 〈0.5,0.2〉 〈0.3,0.1〉

. . . 〈0,0.4〉 〈0.7,0.1〉 〈0.3,0.2〉

. . . 〈0.4,0.4〉 〈0.4,0.5〉 〈0.3,0.2〉

. . . 〈0.06,0.02〉 〈⊥,⊥〉 〈⊥,⊥〉

. . . 〈0.65,0.3〉 〈⊥,⊥〉 〈⊥,⊥〉

. . . 〈⊥,⊥〉 〈⊥,⊥〉 〈⊥,⊥〉

Step 4. Determination of zero membership value – column

level The smallest element is found for each column of the

matrix S[K,L] in accordance with the relation from (2)

〈a,b〉 ≤R 〈c,d〉 iff R〈a,b〉 ≥ R〈c,d〉

and it is subtracted from all elements in the corresponding

column and go to Step 5.

S =







































l1 l2 l3 . . .
k1 〈0.2,0.7〉 〈0.7,0.3〉 〈0,0.4〉 . . .
k2 〈0.1,0.9〉 〈0.1,0.7〉 〈0.2,0.5〉 . . .
k3 〈0,0.8〉 〈0,0.8〉 〈0.3,0.5〉 . . .
Q 〈0.4,0.2〉 〈0.5,0.3〉 〈0.6,0.2〉 . . .
pl 〈0.55,0.3〉 〈0.6,0.4〉 〈0.75,0.2〉 . . .

pu1 〈0.1,0.4〉 〈0,0.4〉 〈0,0.2〉 . . .

. . . l4 R pu

. . . 〈0.7,0.3〉 〈0.5,0.2〉 〈0.3,0.1〉

. . . 〈0,0.8〉 〈0.7,0.1〉 〈0.3,0.2〉

. . . 〈0.4,0.6〉 〈0.4,0.5〉 〈0.3,0.2〉

. . . 〈0.06,0.02〉 〈⊥,⊥〉 〈⊥,⊥〉

. . . 〈0.65,0.3〉 〈⊥,⊥〉 〈⊥,⊥〉

. . . 〈0,04〉 〈⊥,⊥〉 〈⊥,⊥〉

Step 5. Optimality criterion

1) Check if each required quantity is less than or equal to

the total required quantity, whose reduced costs are with zero

membership degrees.

2) Check id each quantity offered is less than or equal to

the total quantity offered, whose reduced costs have zero

membership degrees.

3) If 5.1 and 5.2 are satisfied then go to Step 8. else go to

Step 6.

Step 6. Revise the cost IM Minimum number of lines

(horizontal, vertical or both) are drawn to cover all elements

〈0,1〉 in the S. If there is no element 〈0,1〉 in a given row

or column, then the element with the minimum degree of

membership is crossed out from that row or column in the

cost IM S obtained in Step 4.

Step 7. Develop the new revised cost IM We select the

minimum IF cost of the S that is not crossed by the lines in

Step 6., and subtract it from each of its uncovered elements,

and we add it to each of its elements that is covered by two

lines. We return to Step 5.

The Steps 5., 6. and 7. are executed twice and then proceeds
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to Step 8. IM S takes the following form after these steps:

S =







































l1 l2 l3 . . .
k1 〈0,1〉 〈0.5,0.5〉 〈0,0.4〉 . . .
k2 〈0,1〉 〈0,1〉 〈0.28,0.45〉 . . .
k3 〈0,0.8〉 〈0,0.8〉 〈0.43,0.41〉 . . .
Q 〈0.4,0.2〉 〈0.5,0.3〉 〈0.6,0.2〉 . . .
pl 〈0.55,0.3〉 〈0.6,0.4〉 〈0.75,0.2〉 . . .

pu1 〈0.1,0.4〉 〈0,0.4〉 〈0,0.2〉 . . .






































. . . l4 R pu

. . . 〈0.6,0.4〉 〈0.5,0.2〉 〈0.3,0.1〉

. . . 〈0,0.8〉 〈0.7,0.1〉 〈0.3,0.2〉

. . . 〈0.46,0.54〉 〈0.4,0.5〉 〈0.3,0.2〉

. . . 〈0.06,0.02〉 〈⊥,⊥〉 〈⊥,⊥〉

. . . 〈0.65,0.3〉 〈⊥,⊥〉 〈⊥,⊥〉

. . . 〈0,04〉 〈⊥,⊥〉 〈⊥,⊥〉

Step 8.

1) Use relations from (2) to select the largest IF cost in the

IM S. Let us denote this cell as cki∗,l j∗
.

2) Select a single cost with zero degree of membership for

allocation corresponding to ki∗-th row and/or l j∗-th column if

exists and determine the most possible to that cost cell and

strike the satisfied IF supply or IF demand.

Steps 8. is repeated three times until |S|= 6 (all the demands

are satisfied and all the supplies are exhausted).

Step 9. The intuitionistic fuzzy optimal solution, presented

by the IM Xopt is non-degenerated, it includes 6 occupied

cells. The IM Xopt has the following form:

Xopt =















l1 l2 l3 l4
k1 〈0,1〉 〈0,1〉 〈0.5,0.2〉 〈0,1〉
k2 〈0.4,0.2〉 〈0.1,0.8〉 〈0.1,0.4〉 〈0.06,0.02〉
k3 〈0,1〉 〈0.4,0.5〉 〈0,1〉 〈0,1〉

.

(4)

Step 10. The optimal intuitionistic fuzzy optimal solution

Xopt [K∗,L∗,{xki,l j
}] is obtained. The optimal intuitionistic

fuzzy transportation cost is:

AGIO1
⊕(max,min))

(

C({Q,pl,pu1},{R,pu})⊗(min,max) Xopt

)

= 〈0.4,0.2〉

(5)

or

AGIO2
⊕(∨2)

)

(

C({Q,pl,pu1},{R,pu})⊗(∧2) Xopt

)

= 〈0.464,0.006〉.

(6)

The degree of membership (acceptance) of this optimal so-

lution is equal to 0.4 (or 0.464) and the its degree of non-

membership (non-acceptance) is equal to 0.2 (or 0.006).

Let us compare the results, obtained after application

of IFZSMA [49] and IFZPM over IFTP, presented in the

section IV. The optimal solution IM Xopt [K∗,L∗], obtained

after application of IFZSM is as follows [49]:

Xopt =















l1 l2 l3 l4
k1 〈0,1〉 〈0,1〉 〈0.5,0.2〉 〈0,1〉
k2 〈0.4,0.2〉 〈0.2,0.6〉 〈0.1,0.4〉 〈0.03,0.02〉
k3 〈0,1〉 〈0.4,0.5〉 〈0,1〉 〈0,1〉

.

(7)

The optimal intuitionistic fuzzy cost of the IFTP is [49]:

AGIO1
⊕(max,min))

(

C({Q,pl,pu1},{R,pu})⊗(min,max) Xopt

)

= 〈0.4,0.2〉

or

AGIO2
⊕(∨2)

)

(

C({Q,pl,pu1},{R,pu})⊗(∧2) Xopt

)

= 〈0.475,0.005〉.

The optimal solutions (4) and (7), obtained respectively by

the IFZSM and the IFZPM, coincide.

The ranking function R, defined in (2), we can use to

rank alternatives of decision-making process. For the ob-

tained optimal solutions of IFZSM and IFZPM R〈0.4;0.2〉 =
0.42,R〈0.475;0.005〉 = 0.39, and R〈0.464;0.006〉 = 0.41. When we

use the pairs of operations 〈max,min〉 and 〈min,max〉 in (5),

the optmal transportation cost after IFZSM and IFZPM coin-

cide. When we use the pairs of operations ∨2 and 〈∧2〉 in (6),

the optmal transportation cost after IFZPM is less than the

optimal transportation cost after IFZPM.

The example illustrates the reliability of the proposed

IFZPM.

V. CONCLUSION

In this paper it is proposed for the first time to extend the

FZPM [2] to IFZPM for determining an optimal solution of

a type of IFTP using the concepts of the IMs anf IFSs. The

formulated IFTP has additional constraints: upper limits to the

transportation costs. The proposed algorithm for solution of

the IFTP is illustrated with a numerical example. The optimal

solution of the problem in the example is compared with

that obtained by the intuitionistic fuzzy zero suffix method

(IFZSM). The advantages of the proposed algorithm is that it

can be easy generalized to the multidimensional intuitionistic

fuzzy TPs [22] and also can be applied to both the TP with

crisp parameters and with intuitionistic fuzzy ones.

In the future, we will extend IFZPM to the multidimensional

intuitionistic fuzzy TPs [22] and will apply the proposed

approach for the TPs in different areas.
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