
How well a multi-model database performs against
its single-model variants: Benchmarking OrientDB

with Neo4j and MongoDB
Martin Macak1,2, Matus Stovcik1,2, Barbora Buhnova1,2, and Michal Merjavy2

1Institute of Computer Science, Masaryk University
2Faculty of Informatics, Masaryk University

Brno, Czech Republic
{macak, mstovcik, buhnova, merjavy}@mail.muni.cz

Abstract—Digitalization is currently the key factor for
progress, with a rising need for storing, collecting, and processing
large amounts of data. In this context, NoSQL databases have
become a popular storage solution, each specialized on a specific
type of data. Next to that, the multi-model approach is designed to
combine benefits from different types of databases, supporting
several models for data. Despite its versatility, a multi-model
database might not always be the best option, due to the risk of
worse performance comparing to the single-model variants. It is
hence crucial for software engineers to have access to benchmarks
comparing the performance of multi-model and single-model
variants. Moreover, in the current Big Data era, it is important
to have cluster infrastructure considered within the benchmarks.

In this paper, we aim to examine how the multi-model
approach performs compared to its single-model variants. To
this end, we compare the OrientDB multi-model database with
the Neo4j graph database and the MongoDB document store.
We do so in the cluster setup, to enhance state of the art in
database benchmarks, which is not yet giving much insight into
cluster-operating database performance.

I. INTRODUCTION

T
HE AGE we live in is governed by information. Our
society daily produces excessive amounts of raw data.

Big Data tools were created as the help to this issue, each
being a better fit for a different data set or scenario [1].
Existing surveys describe these tools either generally or are
focused on the visualization, processing, or storage options.
Focusing on the Big Data storage tools, it is difficult to
navigate between them and choose the most effective tool
for the given problem [2]. Therefore, for an efficient solution,
it is crucial to make the right choice of storage technology,
reflecting data variety and other characteristics [3].

Organizations are thus left to either compromise the func-
tionality and use one (i.e., single-model) database strategy
or combine more single-model solutions. Implementing and
maintaining more solutions means more load on the database
engineers and often higher costs [4]. Multi-model databases
were proposed as an answer to the need for new, more general,
data storing solution [5], offering a possibility to work with
one database with multiple types of data.

The ability to effectively store and process data is further
emphasized in the context of Big Data, which calls for operat-

ing the database solutions in a cluster setup. Even though there
are papers comparing databases in a cluster-based scenario [6],
the area of comparing multi-model databases with their single-
model variants using cluster setup is so far unexplored.

In this paper, we aim to address this gap and contribute
to state of the art in the decision about storage technology,
specifically choosing among multi-model database and its
single-model variants when there is a need to operate them in
a cluster setup. In the context of Big Data, NoSQL databases,
and specifically the document stores and graph databases,
belong among the most popular storage technologies. In our
research, we have, therefore, decided to compare these two
storage strategies with the multi-model variant (as can be
seen in Figure 1). Specifically, we compare the OrientDB
multi-model database with the Neo4j graph database and
the MongoDB document store. We chose OrientDB, as it is
currently one of the most popular and advanced multi-model
database [7], [8], whereas MongoDB and Neo4j are suitable
representatives of document [9] and graph [10] databases.
As for the comparison metric, we use the execution time of
queries as it is a standard metric for comparison also in other
(non-cluster) benchmarks [11], [12], [13].

To make the benchmarks relevant to the possible real-world
Big Data scenarios, we work with a big data set that asks
for a storage solution in a cluster of computers. Hence we
import this data to distributed versions of the databases, i.e.,
OrientDB, MongoDB, and Neo4j, exploring how the queries
behave in a cluster setup.

The structure of the paper is as follows. Following the
related work overview in Section II, we explain our choice of
the compared database technologies in Section III. Section IV
presents the used cluster configuration, chosen datasets, and
designed queries for our experiments. Then, Section V con-
tains the results of the experiments. We provide a summary
of these results, including key observations, in Section VI.
In Section VII, the threats to validity are discussed, and
Section VIII contains the conclusion of this paper.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 463–470

DOI: 10.15439/2020F76

ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 463

Fig. 1: Compared data structures

II. RELATED WORK

Relevant related work considering a multi-model database
can be identified in two directions, based on the metric of
the comparison. The first direction is based on the efficiency
of compared databases (Section II-A), i.e., the comparison
of their performance. The second direction is based on the
effectiveness of compared databases (Section II-B), i.e., the
comparison of their characteristics.

A. Comparisons based on performance

There are many comparisons of multi-model databases
with different representatives of its single-model variants. The
significant number of these comparisons used OrientDB and
compared it with Neo4j and MongoDB [12], [14]. However,
none of them used a cluster setup in their comparison.

The work of Ataky et al. [11] presented a paper about
performance testing of OrientDB and Neo4j. They focused on
the difference between query performance on the index and
non-indexed data. They conclude that Neo4j is more suitable
for non-indexed data, while MongoDB performed better on
data with indexes.

Messaoudi et al. [12] also used Neo4j, MongoDB, and
OrientDB in their comparisons. Their research was focused
on biomedical data. Their benchmarks covered different depth
levels but also some CRUD operations. They found out that
OrientDB better handles deeper levels of traversal. A similar
study by Messaoudi et al. [14] uses, as in the previous case,
Neo4j, MongoDB, and OrientDB. They evaluate databases’
ability to manage proteomics data. They observe that Mon-
goDB has better performance for importing protein informa-
tion in both large and small datasets, but not always in the

case when protein fields had a great number of fields. They
also found instances in which Neo4j outperformed OrientDB.

Jayathilake et al. [13] have enlarged the scope of focus
considering database tools by Cassandra and MemBase. The
primary interest was on handling a highly heterogeneous tree.
They did a ranking of database tools. Among those tools,
MongoDB, Neo4j, and OrientDB stood their place within a
higher ranking.

The work performed by Oliveira and del Val Cura [15]
focused on benchmarking NoSQL multi-model databases with
a polyglot persistence approach. They designed benchmarks
with three databases OrientDB, ArrangoDB, and the com-
bination of Neo4j and MongoDB. In contrary to our work,
they did not test a multi-model to single-model variant but
to a combination of two databases, document and graph
database. These tests showed that the combination of Neo4j
and MongoDB in some cases performed as good as OrientDB,
depending on the size of the dataset, and that ArrangoDB
has better performance on more document-based queries with
smaller depth levels.

B. Comparisons based on effectiveness

Several studies are extensively comparing the characteris-
tics, features, and benefits of the multi-model databases against
their single-model variants.

Fernandes and Bernardino [16] provided characteristics of
NoSQL databases, mainly comparing graph database and
multi-model database with graph aspect. They discussed
and explained the features and benefits of representation of
graph data in different databases, including AllegroGraph,
ArangoDB, InfiniteGraph, Neo4j, and OrientDB. The recom-

464 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

mendation was offered that Neo4j and ArrangoDB are the
correct way of representing a graph database in case of a
single-model database.

In the paper by Bathla et al. [17], the authors categorized
different databases. Among them, we can find Neo4j, Mon-
goDB, and OrientDB. They drew guidelines for choosing the
right database tools for users.

The survey by Mazumdar et al. [18] provided a better
understanding of choosing the right database solution based
non-functional requirements.

III. COMPARED DATABASES

For our benchmark, we have chosen one representative of
a multi-model database, OrientDB, and two representatives
of single-model variants: the Neo4j graph database and the
MongoDB document store. When selecting the representatives,
we considered the popularity of databases based on the DB-
Engines website1. This ranking of popularity is based on
various factors, like the frequency of Google search, relevance
in social networks, and a number of job offers. We were
looking only for non-commercial open-source databases with
the ability to run in a cluster setup.

A. MongoDB

MongoDB2 version 4.0.12 was chosen as a representative of
document store databases. It is classified as a NoSQL database.
Data are managed in structure-free storage, with the capability
of every collection to be different. Therefore, it stores data
in a more flexible way than SQL databases. Its flexibility is
one of the reasons for being chosen in our work. MongoDB
works with a JSON-like document schema. MongoDB uses
collections instead of tables, and it also implements references
for faster querying. In Listing 1 is an example query that
returns all females in a collection of people.

db.people.find({ sex: { "female" } })

Listing 1: MongoDB query example

B. Neo4j

Neo4j3 version 3.5.12 is an open-source native graph
database that is also ACID compliant, highly available, and
scalable. Neo4j is one of the leading software solutions in
graph databases with active support and development. Its stor-
age was explicitly designed for the management and storage
of graphs [19]. Neo4j appears to be the right choice as a
representative of graph databases; it has performed well in
many comparisons [20], [21], [22]. Neo4j stores data in graphs
format using nodes and relationships. Relationships are used
for connecting nodes and traversing through data, which is less
costly than using a SQL-like approach, i.e., joins. Nodes and
relationships are labeled by name, have properties, and are
grouped to sets. We can improve the performance of graph

1https://db-engines.com/en/ranking
2https://www.mongodb.com/
3https://neo4j.com/

traversals by dividing parts of the graphs and using indexes.
Data in Neo4j can be accessed through two different query
languages.

Neo4j implements cluster setup via core and read-only
nodes. This setup does not use the traditional concept of master
and slave hierarchy; a leader is voted every period to maintain
freshness and availability. Only the leader has the ability to use
write operations; followers are used only for read operations.
In Listing 2 is a query that returns a number of friends of
Jennifer using Neo4j.

match (a:Person {name: ’Jennifer’})

-[:Friend]->

(b:Person)

return count(b) as count;

Listing 2: Neo4j query example

C. OrientDB

OrientDB4 version 3.0.23 is a multi-model open source
NoSQL database management system that supports document,
graph, key-value, and object data model. It was released
in 2010, is implemented in Java, and is being developed
by OrientDB Ltd. It supports distributed architecture with
replication and is transactional.

OrientDB uses Paginated Local Storage for storing
data [23]. It is disk-based storage that uses a page model to
work with data and consists of several components that use
disk data trough disk cache. Paginated local storage is a two-
level disk cache that works together with a write-ahead log.
Files are split into pages, and this allows operations to be
atomic at a page level. Two-level disk cache allows OrientDB
to cache often accessed pages, separate pages that are not
accessed frequently, minimize the amount of disk head seeks
during data writes. It also enables the mitigation of pauses
that are needed to write data to the disk by flushing all
changed or newly added pages to the disk in a background
thread. Disk cache consists of two parts read cache and write
cache. Read cache is based on the 2Q cache algorithm and
write cache is based on WOW cache algorithm. One of the
possibilities or manipulating database data is using Java, SQL
with extension for graphs and Gremlin. OrientDB supports
schema-less, schema-full, or schema-mixed data. OrientDB
uses the Hazelcast Open Source project for automatic discov-
ery of nodes, storing cluster configuration, and synchroniza-
tion between nodes. Distributed architecture can be used in
different ways to achieve better performance, scalability, and
robustness. OrientDB also provides a web interface that can
be used for viewing graphs and data manipulation [16].

OrientDB can use the SQL-like approach for querying. The
following query in Listing 3 returns all people with sex equal
to ’Female’.

SELECT FROM People WHERE sex LIKE ’Female’

Listing 3: OrientDB SQL-like query example

4https://www.orientdb.org/

MARTIN MACAK ET AL.: HOW WELL A MULTI-MODEL DATABASE PERFORMS AGAINST ITS SINGLE-MODEL VARIANTS 465

The example of a query that uses an approach of a graph
database and returns a number of friends of Jennifer is in
Listing 4.

SELECT

both(’HasFriend’).size() AS FriendsNumber

FROM ‘Person‘

WHERE Name=’Jennifer’

Listing 4: OrientDB graph query example

IV. DESIGN OF EXPERIMENTS

This section presents the used cluster configuration and
datasets that were used for testing, together with all queries
that were designed. Each query contains a brief description of
the results it produces.

Our primary interest was to mirror real-world use cases.
Therefore, we designed our queries accordingly in the re-
spective data models. Graph databases stand out with abil-
ities to connect data with relationships and to query data
using relationship traversal. Therefore, we wanted to underline
these characteristics using queries with a various depth of
relationship traversing. Document databases store their data
in a structure that offers a suitable environment for filter
querying with single or multiple conditions. Hence, it is a
natural decision to mirror this into out benchmark queries.

For graph queries, we mostly focused on traversal between
nodes because we expect relationships to be more relevant than
information stored in individual nodes. In document queries,
we concentrated mainly on filtering the data with and without
indexes.

A. Setup

Each database is configured in a cluster of three nodes.
Nodes are located on the OpenStack cloud platform. All three
nodes are running on Ubuntu 18.04.2 LTS. One node runs
on dual-core CPU with 2GHz for each core and uses 4GB
of RAM. Remaining two nodes run on quad-core CPU witch
2GHz each and use 8GB of ram.

1) Graph dataset: To compare the graph database, we use
the 22.3 GB dataset of Twitter followers [24]. Files in this
dataset were processed into a format suitable for importing
it into the database. We are using CSV format for import as
both Neo4j and OrientDB support it. In Neo4j, we use the
Neo4j-admin import tool with a file that contains names of all
files about to be imported and the name of the database.

For loading data in OrientDB, we utilized the ETL tool
that requires a JSON file to define Extractor, Transformer, and
Loader. An extractor is responsible for extracting data from a
source file and defining other options for extraction, such as
separator, columns, and date format. The transformer defines
to which class it imports the data and edges that are related to
this class. The loader contains the name of the database, type
of the database, indexes for classes.

2) Document dataset: As dataset for a document database,
we use records of taxi rides in New York City from 2013 5.
This 18.3 GB dataset is already in the CSV format; hence, it
does not need any further alteration. We use this dataset for
both MongoDB and OrientDB. To MongoDB, it is imported
by the mongoimport tool, which required a path to file, which
we want to import and the database name. In OrientDB, we
use the same ETL tool as in the case with the graph database.

B. Graph queries

In these queries, we are using relationships for traversal
between nodes. Queries are labeled from GQ1 to GQ8. We
use a setup described in IV-A, with the exception of queries
GQ2 and GQ7, where we used 4GB of RAM on all nodes.
The description of the queries is as follows:

• GQ1 counts connected nodes that have less than 1000
followers until depth two,

• GQ2 identical to GQ1 (4GB of RAM on all nodes)
• GQ3 identical to GQ1 depth three,
• GQ4 identical to GQ1 depth four,
• GQ5 identical to GQ1 depth five,
• GQ6 finds the shortest path between two nodes where the

desired path is three edges long,
• GQ7 identical to GQ6 (4GB of RAM on all nodes),
• GQ8 finds the shortest path where the path between nodes

does not exist.

C. Document queries

In a document database, we focus on queries that deal
with filtering data for results that satisfy their requirements,
grouping data by some common denominators. Queries are
labeled from DQ1 to DQ10. We use a setup described in IV-A,
with the exception of queries DQ2 and DQ8, where we used
4GB of RAM on all nodes. The description of the queries is:

• DQ1 counts how many documents fulfill one condition6,
• DQ2 identical to DQ1 (4GB of RAM on all nodes),
• DQ3 counts how many documents fulfill two conditions,
• DQ4 counts how many documents fulfill three conditions,
• DQ5 counts how many documents fulfill four conditions,
• DQ6 sum of total tip amount on different types of

payments,
• DQ7 counts how many documents fulfill one condition on

an indexed property where a number of these documents
is more than ten million,

• DQ8 counts how many documents fulfill one condition on
an indexed property where a number of these documents
is more than ten million (4GB of RAM on all nodes),

• DQ9 counts how many documents fulfill one condition on
an indexed property where a number of these documents
is less than one hundred thousand,

• DQ10 combined index for two properties.

5https://chriswhong.com/open-data/foil_nyc_taxi/
6conditions are understood as WHERE statements

466 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

V. RESULTS OF THE EXPERIMENTS

This section presents all measurements of queries and inter-
pretation of the results for each comparison between OrientDB
and its single-model variant, namely Neo4j and MongoDB. We
provide further discussion and interpretation of the results.

The comparison between Neo4j and OrientDB is using a
built-in timer within. For comparing MongoDB and OrientDB,
we are using Unix command time. Each query was executed
five times. The final time is calculated as an average from all
runs of the query.

A. Graph queries measurements

TABLE I: Graphs queries

Query Neo4j OrientDB
GQ1 24.586s 1m16s
GQ2 30.638s 4m41s
GQ3 3m43s 10m52s
GQ4 30m38s 15m37s

GQ5 251m19s 28m41s

GQ6 2m7s 20.436s

GQ7 3m32s 1m22s

GQ8 1m14s 8.247s

Neo4j outperformed OrientDB in the first three queries, as
shown in Table I. However, in queries GQ4 and GQ5 where
the depth was four and five, respectively, OrientDB came
out on top with a significant lead in both cases. In our last
three queries where the objective was to find the shortest path
between selected nodes, OrientDB was also significantly faster
than Neo4j.

In queries GQ2 and GQ7, one can see that lowering the size
or RAM negatively affects both OrientDB and Neo4j.

B. Document queries measurements

TABLE II: Document queries

Query MongoDB OrientDB
DQ1 9m27s 38m2s
DQ2 17m6s 51m32s
DQ3 10m15s 32m13s
DQ4 12m47s 32m3s
DQ5 11m4s 34m42s
DQ6 18m42s 42m57s
DQ7 2.571s 50.324s
DQ8 2.652s 77.893s
DQ9 0.673s 1.078s
DQ10 0.562s 1.459s

Queries we tested are focused on filtering a different number
of properties and grouping data. In MongoDB filtering, a
different number of properties did add some additional time to
query executions. As we can see from Table II, in queries DQ2
and DQ3, where we were filtering two and three properties
respectively, OrientDB performed better than in DQ1. We
suspect that lower times in query DQ3 and DQ4 was due
to the lower number of results. In DQ5 execution time for
OrientDB increased, we assume it is because the last added
property was a string.

In the last four queries, there were indexes created for
properties that we used to filter the data. In OrientDB, it
was SB-Tree Index; for MongoDB, it was Single Field. Both
indexes are based on the B-tree algorithm. Both indexes
were chosen based on recommendations found in respective
documentations. In query DQ7, we can see that MongoDB
outperformed OrientDB, but in the query DQ9, that uses the
same index where the number of results was significantly
smaller. The difference in these queries in real-time was
negligible. In the last query, we used a combined index that
uses more than one property for the index, and OrientDB
performed a little bit better than MongoDB in this case. Since
not in all cases, it is beneficial to create an index on all the data
because it requires additional disk space and in most cases,
slows inserts it is essential to know how we want to use a
database.

In the case of non-indexed data, MongoDB outperforms
OrientDB, and in the case of indexed data, OrientDB does not
perform very differently to its variant. In query DQ7, where
we used only 4GB of RAM instead of 8GB, we also found that
having more RAM improved the performance of OrientDB on
indexed data significantly, and for MongoDB, it did not have
a significant impact in this case. The amount of RAM on non-
indexed data improved performance in both cases, as shown
in DQ1 and DQ2. This improvement was very similar in all
queries for non-indexed data.

VI. SUMMARY OF RESULTS

This section provides a summary of our results. We provide
evaluation and interpretation of the results as well as an
explanation for our outcomes. We also include a list of key
observations that emerged from our experiments.

A. Results of comparison with a graph database

For graph queries, the objective was to find the shortest path
between nodes with varying depths as we wanted to emphasize
the power of traversals. Our results in Figure 2 show that it
is advisable to use Neo4j up to a depth of three. With higher
levels of depths, OrientDB outperforms Neo4j; the difference
is most significant in the case of GQ5. However, when the
objective in graph data is to traverse different nodes up to the
depth of three, Neo4j appears to be a more suitable choice.

B. Results of comparison with a document database

Moving to document queries, we wanted our queries to
emphasize the difference between querying upon an indexed
and non-indexed field.

Figure 3 shows that the execution times of OrientDB were
many times larger than those of MongoDB. Our benchmarks
display how good these databases handle non-indexed data,
which means that MongoDB provides better management of
document data than OrientDB.

MARTIN MACAK ET AL.: HOW WELL A MULTI-MODEL DATABASE PERFORMS AGAINST ITS SINGLE-MODEL VARIANTS 467

Fig. 2: Average times of GQ queries (in seconds)

GQ1 GQ2 GQ3 GQ4 GQ5 GQ6 GQ7 GQ8

7
6 2
8
1

6
5
2

9
3
7 1
,
7
2
1

2
0
.
4
4

8
2

8
.
2
5

2
4
.
5
9

3
0
.
6
4

2
2
3

1
,
8
3
8

1
5
,
0
7
9

1
2
7

2
1
2

7
4

OrientDB Neo4j

Fig. 3: Average times of DQ queries (in seconds)

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6

2
,
2
8
2

3
,
0
9
2

1
,
9
3
3

1
,
9
2
3

2
,
0
8
2

2
,
5
7
7

5
6
7

1
,
0
2
6

6
1
5 7
6
7

6
6
4

1
,
1
2
2

OrientDB MongoDB

Indexing fields resulted in a significant improvement of both
MongoDB and OrientDB performances, as shown in Figure 4.
In our test case, an increasing amount of RAM had a minor
effect on MongoDB, but rather a significant impact on query
latencies of OrientDB. For OrientDB, the number of results
that our query produces is also very important, as we can see
in queries DQ7 and DQ9. In both queries, we used the same
data, but the difference between execution times of MongoDB
and OrientDB was remarkably smaller. In the case of DQ9
and DQ10 queries, indexing data made the performance of
OrientDB comparable to the MongoDB.

Fig. 4: Average times of DQ queries (in seconds)

DQ7 DQ8 DQ9 DQ10

5
0
.
3
2

7
7
.
8
9

1
.
0
8

1
.
4
6

2
.
5
7

2
.
6
5

0
.
6
7

0
.
5
6

OrientDB MongoDB

C. Key observations

In this section, we summarize a list of key observations
from our experiments. They also serve as recommendations for
future work, which could explore these observations further.

• KO1: OrientDB is beneficial when the practitioner is
unsure whether more data models will be needed in the
future.

• KO2: In the case of using only document data, MongoDB
is a more suitable choice than OrientDB.

• KO3: In the case of queries containing a significant level
of depth, OrientDB is a better choice than Neo4j. On the
other hand, Neo4j performed better for queries with a
smaller level of depth.

From our experiments, it was visible that OrientDB is
comparable to (or even better than) Neo4j for graph data
and MongoDB for document data. We have to take into
consideration that using two different database management
systems would have an impact on overhead time. Therefore we
assume OrientDB is more beneficial to use when more than
one data model is needed. Furthermore, as stated in KO1, it
is also beneficial to consider OrientDB when the practitioner
is unsure whether the support of more data models will be
needed in the future.

On the contrary, if the practitioner is aware that only
the document model will be used, as mentioned in KO2,
MongoDB is a more suitable choice because its performance
was significantly better in both indexed and non-indexed data.

Moreover, if the practitioner knows that only graph data
will be used, we can recommend the proper database based
on the level of depth of queries, as stated in KO3. When the
objective is to traverse different nodes up to the depth of three,
Neo4j performed better. However, if the queries use a higher
level of depth, OrientDB is a more suitable choice.

468 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

VII. THREATS TO VALIDITY

In this study, we needed to narrow our scope to keep focus.
This section discusses the limitations we opted for, together
with our reasoning behind it.

A. Construct validity threats

We are aware that the fact that in our comparisons, we used
only one metric, the query response time, which might be
limiting in the decision guidance. Measuring other metrics,
like throughput, memory usage, or processor usage, shall be
considered in future work to provide more detailed results,
although it is out of the scope of this paper.

Another construct validity is the fact that the queries we
used in our tests are not complete. There might be many more
queries that could be run in a cluster setup to determine the
suitability of multi-model database OrientDB over Neo4j and
MongoDB. In the future, we would suggest adding queries
with complicated aggregate functions. Using queries with even
greater depth could result in the possibility of showing another
threshold where Neo4j may outperform OrientDB. However,
we believe that our tests sufficiently contribute to state of the
art.

B. Internal validity threats

We are aware that the configuration of each benchmarked
database can affect the results of experiments. We have tried
several configurations of each one, and we believe that the
chosen configurations are designed for the best efficiency. An
exhaustive search of all configurations would be infeasible.

However, it is worth considering that experimenting with
multiple configurations of the nodes in a cluster may provide
different results. Also, the results may vary when the database
cluster contains a different number of nodes.

C. External validity threats

In order to get generalized results, there is a need to perform
more tests on different datasets. We have chosen a sufficiently
large graph and document dataset. However, this selection
might have an impact on the results. Despite this, we believe
that our work provides a step towards this goal.

D. Conclusion validity threats

Datasets we used are available online. Therefore they can
be downloaded for further investigation and replication. We
provided the configuration of our cluster so the tests might
be performed again on the same configuration. Using the
same approach of testing, we should obtain the same results.
However, as the development of chosen databases is fast,
it does not make sense to perform these tests on the older
versions.

VIII. CONCLUSION

In this paper, we compared the OrientDB multi-model
database with the Neo4j graph database and MongoDB doc-
ument database. We describe these databases, together with
a brief description of used datasets. We compared the per-
formance of these databases on several different queries that

were focused on various properties. Our work was aimed at
the cluster setup, precisely three nodes.

These queries are split into two different categories. The
first category is focused on queries related to graph data, and
the second is focused on document data. In each group, we
try to aim at queries that are possible for real-world scenarios.
For graph data, we focus on traversal between nodes. On the
other hand, for document data, we focus on filtering.

Based on the experiments, we provide a set of key obser-
vations. We believe that they are proper candidates for future
examination in this area.

ACKNOWLEDGMENT

The work was supported by the European Regional
Development Fund Project CERIT Scientific Cloud (No.
CZ.02.1.01/0.0/0.0/16_013/0001802). Access to the CERIT-
SC computing and storage facilities provided by the CERIT-
SC Center, under the "Projects of Large Research, Devel-
opment, and Innovations Infrastructures" programme (CERIT
Scientific Cloud LM2015085), is greatly appreciated.

REFERENCES

[1] M. Macak, H. Bangui, B. Buhnova, A. J. Molnár, and C. I. Sidló, “Big
data processing tools navigation diagram.” in IoTBDS, 2020, pp. 304–
312.

[2] F. Gessert, W. Wingerath, S. Friedrich, and N. Ritter, “Nosql database
systems: a survey and decision guidance,” Computer Science-Research

and Development, vol. 32, no. 3-4, pp. 353–365, 2017.
[3] S. Kaisler, F. Armour, J. Espinosa, and W. Money, “Big data: Issues and

challenges moving forward,” 01 2013. doi: 10.1109/HICSS.2013.645.
ISBN 978-1-4673-5933-7 pp. 995–1004.

[4] P. J. Sadalage and M. Fowler, NoSQL distilled: a brief guide to the

emerging world of polyglot persistence. Pearson Education, 2013.
[5] E. Raguseo, “Big data technologies: An empirical investigation on

their adoption, benefits and risks for companies,” International Journal

of Information Management, vol. 38, no. 1, pp. 187 – 195, 2018.
doi: https://doi.org/10.1016/j.ijinfomgt.2017.07.008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0268401217300063

[6] M. Macak, M. Stovcik, and B. Buhnova, “The suitability of graph
databases for big data analysis: A benchmark.” in IoTBDS, 2020, pp.
213–220.

[7] A. Messina, P. Storniolo, and A. Urso, “Keep it simple, fast and scalable:
A multi-model nosql dbms as an (eb) xml-over-soap service,” in 2016

30th International Conference on Advanced Information Networking and

Applications Workshops (WAINA), 2016, pp. 220–225.
[8] T. P. Hong and P. Do, “Combining apache spark orientdb to find

the influence of a scientific paper in a citation network,” in 2018

10th International Conference on Knowledge and Systems Engineering

(KSE), 2018, pp. 113–117.
[9] W. Schultz, T. Avitabile, and A. Cabral, “Tunable consistency in

mongodb,” Proc. VLDB Endow., vol. 12, no. 12, p. 2071–2081,
Aug. 2019. doi: 10.14778/3352063.3352125. [Online]. Available:
https://doi.org/10.14778/3352063.3352125

[10] T. T. Aung and T. T. S. Nyunt, “Community detection in scientific
co-authorship networks using neo4j,” in 2020 IEEE Conference on

Computer Applications(ICCA), 2020, pp. 1–6.
[11] S. Ataky T. M, L. Ferreira, M. Ribeiro, and M. Prado Santos, “Eval-

uation of graph databases performance through indexing techniques,”
International Journal of Artificial Intelligence & Applications (IJAIA),
vol. 06, pp. 87–98, 09 2015. doi: 10.5121/ijaia.2015.6506

[12] C. Messaoudi, M. Amrou, R. Fissoune, and B. Hassan, “A performance
study of nosql stores for biomedical data,” 11 2017.

[13] D. Jayathilake, C. Sooriaarachchi, T. Gunawardena, B. Kulasuriya, and
T. Dayaratne, “A study into the capabilities of nosql databases in
handling a highly heterogeneous tree,” in 2012 IEEE 6th International

Conference on Information and Automation for Sustainability, 2012, pp.
106–111.

MARTIN MACAK ET AL.: HOW WELL A MULTI-MODEL DATABASE PERFORMS AGAINST ITS SINGLE-MODEL VARIANTS 469

[14] C. Messaoudi, R. Fissoune, and B. Hassan, “A performance evaluation
of nosql databases to manage proteomics data,” International Journal

of Data Mining and Bioinformatics, vol. 21, pp. 70–89, 09 2018. doi:
10.1504/IJDMB.2018.10016724

[15] F. R. Oliveira and L. del Val Cura, “Performance evaluation
of nosql multi-model data stores in polyglot persistence
applications,” in Proceedings of the 20th International Database

Engineering & Applications Symposium, ser. IDEAS ’16. New
York, NY, USA: Association for Computing Machinery, 2016.
doi: 10.1145/2938503.2938518. ISBN 9781450341189 p. 230–235.
[Online]. Available: https://doi.org/10.1145/2938503.2938518

[16] D. Fernandes and J. Bernardino, “Graph databases comparison: Alle-
grograph, arangodb, infinitegraph, neo4j, and orientdb,” in Proceedings

of the 7th International Conference on Data Science, Technology and

Applications - Volume 1: DATA,, INSTICC. SciTePress, 2018. doi:
10.5220/0006910203730380. ISBN 978-989-758-318-6 pp. 373–380.

[17] G. Bathla, R. Rani, and H. Aggarwal, “Comparative study of
nosql databases for big data storage,” International Journal of

Engineering & Technology, vol. 7, no. 2.6, pp. 83–87, 2018.
doi: 10.14419/ijet.v7i2.6.10072. [Online]. Available: https://www.
sciencepubco.com/index.php/ijet/article/view/10072

[18] S. Mazumdar, D. Seybold, K. Kritikos, and Y. Verginadis, “A
survey on data storage and placement methodologies for cloud-
big data ecosystem,” Journal of Big Data, vol. 6, no. 1, p. 15,
Feb 2019. doi: 10.1186/s40537-019-0178-3. [Online]. Available:
https://doi.org/10.1186/s40537-019-0178-3

[19] F. Holzschuher and R. Peinl, “Performance of graph query languages:
comparison of cypher, gremlin and native access in neo4j,” in Proceed-

ings of the Joint EDBT/ICDT 2013 Workshops. ACM, 2013, pp. 195–
204.

[20] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó, S. Gómez-
Villamor, N. Martínez-Bazán, and J. L. Larriba-Pey, “Survey of graph
database performance on the hpc scalable graph analysis benchmark,”
in Web-Age Information Management, H. T. Shen, J. Pei, M. T. Özsu,
L. Zou, J. Lu, T.-W. Ling, G. Yu, Y. Zhuang, and J. Shao, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010. ISBN 978-3-642-16720-1
pp. 37–48.

[21] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph
databases,” in 2013 International Conference on Social Computing, Sep.
2013. doi: 10.1109/SocialCom.2013.106 pp. 708–715.

[22] M. Ciglan, A. Averbuch, and L. Hluchy, “Benchmarking traver-
sal operations over graph databases,” in 2012 IEEE 28th Interna-

tional Conference on Data Engineering Workshops, April 2012. doi:
10.1109/ICDEW.2012.47 pp. 186–189.

[23] A. S. Mondal, M. Sanyal, S. Chattopadhyay, and K. C. Mondal,
“Comparative analysis of structured and un-structured databases,” in
Computational Intelligence, Communications, and Business Analytics,
J. K. Mandal, P. Dutta, and S. Mukhopadhyay, Eds. Singapore: Springer
Singapore, 2017. ISBN 978-981-10-6430-2 pp. 226–241.

[24] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com

470 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

