Logo PTI Logo FedCSIS

Proceedings of the 16th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 25

In-Bed Person Monitoring Using Thermal Infrared Sensors

, , ,

DOI: http://dx.doi.org/10.15439/2021F15

Citation: Proceedings of the 16th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 25, pages 121125 ()

Full text

Abstract. Technological solutions involving cameras can contribute to safety in home and healthcare, but they pose privacy issues. We use a low-resolution infrared thermopile array sensor, which offers more privacy, to determine if the user is on the bed. Two datasets were captured, one under constant conditions, and a second one under different variations. We test three machine learning algorithms under 10-fold cross validation, with the highest accuracy in the main dataset being 99\%. The results with variable data show a lower reliability under certain circumstances, highlighting the need of extra work to meet the challenge of variations in the environment.

References

  1. S. S. (SCB), “Stora insatser krävs för att klara 40-talisternas äldreomsorg,” https://www.scb.se, accessed 03/2021.
  2. Boverket, National Board of Housing, Building and Planning, “Bostadsmarknadsenkäten,” www.boverket.se, accessed 03/2021.
  3. Eurostat, “Ageing europe - statistics on population developments,” https: //ec.europa.eu/eurostat, accessed 03/2021.
  4. Panasonic, “Infrared array sensor grid-eye,” https://industrial.panasonic.com/cdbs/www-data/pdf/ADI8000/ADI8000C66.pdf, accessed 03/2021.
  5. J. Lundström et al., “Halmstad Intell Home,” Proc HealthyIoT, 2016.
  6. A. Rogalski, Infrared Detectors, C. Press, Ed. CRC Press, 2020.
  7. A. D. Shetty et al., “Detection and tracking of a human using the infrared thermopile array sensor — Grid-EYE,” in Proc IEEE ICICICT, 2017.
  8. A. Trofimova et al., “Indoor human detection based on thermal array sensor data & adaptive backgr. estimation,” J. Comp & Comm (5), 2017.
  9. Z. Chen, Y. Wang, “Infrared–ultrasonic sensor fusion for SVM–based fall detection,” J. Intell Material Systems and Structures (29) 2018
  10. B. Pontes et al., “Human-sensing: Low res thermal array classif of location postures,” Dist Ambient & Perv Interactions, Springer 2017
  11. C.-L. Liu et al., “Fall detect sys w kNN classif,” Expert Sys Appl 2010
  12. C. Cortes, V. Vapnik, “Support-vector nets,” Mach. Learn. (20), 1995.
  13. S. Dudani, “Distance-weighted k-nearest-neighb rule,” IEEE TSMC 1976
  14. E. Alpaydin, Introduction to Machine Learning, The MIT Press, 2010.
  15. D. Stathakis, “How many hidden layers & nodes” J Rem Sensing, 2009.
  16. A. Burkov, “The Hundred-Page Machine Learning Book” http://themlbook.com/wiki/doku.php, 2019.
  17. D. Altman et al., “Statistics with Confidence Confidence Intervals and Statistical Guidelines,” John Wiley & Sons 2013