Logo PTI Logo FedCSIS

Proceedings of the 16th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 25

Algorithms for the Safe Management of Autonomous Vehicles

, , , ,

DOI: http://dx.doi.org/10.15439/2021F18

Citation: Proceedings of the 16th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 25, pages 153162 ()

Full text

Abstract. We deal here with a fleet of autonomous vehicles, devoted to internal logistics inside some protected area. This fleet is ruled by a hierarchical supervision architecture, which, at the top level distributes and schedules the tasks, and, at the lowest level, ensures local safety. We focus here on the top level, while introducing a time dependent estimation of the risk induced by the traversal of any arc. We set a model, state structural results, and design a bi-level algorithm and a A* routing/scheduling algorithms which both aim at a well-fitted compromise between speed and risk and rely on reinforcement learning.

References

  1. Amazon.com, inc. amazon prime air. [online]., Available http://www.amazon.com/primeair (2013).
  2. C. Artigues, E. Hébrard, A. Quilliot, H. Toussaint: “Models and algorithms for natural disaster evacuation problems”. Proceedings of the 2019 FEDCSIS WCO Conference, p 143-146, (2019). http://dx.doi.org/http://dx.doi.org/10.15439/978-83-952357-8-8
  3. B. Bakker, S. Whiteson, L. J. Kester, F. Groen: “Traffic light control by multi-agent reinforcement learning systems”; In Interactive Collaborative Information Systems, (2010). http://dx.doi.org/10.1007/978-3-642-11688-9_18
  4. B. Berbeglia, J-F. Cordeau, J-F., I. Gribkovskaïa, G. Laporte: “Static pick up and delivery problems : a classification scheme and survey”. TOP: An Official Journal of the Spanish Society of Statistics and Operations Research 15, p 1-31, (2007). http://dx.doi.org/10.1007/s11750-007-0009-0
  5. L. Chen, C. Englund: “Cooperative intersection management: a survey”; IEEE Transactions on Intelligent Transportation Systems 17-2, p 570-586, (2016). http://dx.doi.org/10.1109/TITS.2015.2471812
  6. D. Duque, L.Lozano, A.L.Medaglia. An exact method for the biobjective shortest path problemfor large-scale road network. EJOR 242, p 788-795, (2015). http://dx.doi.org/10.1016/j.ejor.2014.11.003
  7. S. Fidanova, O. Roeva, M. Ganzha: “Ant colony optimization algorithm for fuzzy transport modelling”. Proceedings of the 2020 FEDCSIS WCO Conference, p 237-240, (2020). http://dx.doi.org/ http://dx.doi.org/10.15439/978-83-955416-7-4
  8. A. Franceschetti, E. Demir, D. Honhon, T. Van Woensel, G. Laporte, and M. Stobbe. “A metaheuristic for the time dependent pollution- routing problem”; European Journal of Operational Research, 259 (3): 972 – 991, (2017). http://dx.doi.org/10.1016/j.ejor.2016.11.026
  9. S. Bsaybes, A.Quilliot, A.Wagler: “Fleet management for autonomous vehicles using multicommodity coupled flows in time-expanded networks”; 17th International Symposium on Experimental Algorithms (SEA 2018) (LIPIcs) 103, (2018). http://dx.doi.org/10.4230/LIPIcs.SEA.2018.25
  10. M.Krzyszton: “Adapative supervison: method of reinforcement learning fault elimination by application of supervised learning”. Proceedings of the 2018 FEDCSIS AI Conference, p 139-149, (2018). http://dx.doi.org/http://dx.doi.org/10.15439/978-83-949419-5-6
  11. J. Kumar, V. V. Ranga: “Multi-robot coordination analysis, taxonomy, challenge and future scope”; Journal of Intelligent and Robotic Systems, 102:10, (2021). https://doi.org/10.1007/s10846-021-01378-2
  12. T. Le-Anh, M. B. De Koster:: “A review of design and control of automated guided vehicle systems” European Journal of Operational Research, 171, 1-23, (2006). https://doi.org/10.1016/j.ejor.2005.01.036
  13. Y.Li, E.Fadda, D.Manerba, R.Tadei, O.Terzo: “ Reinforcement learning algorithms for online single machine scheduling“. Proceedings of the 2020 FEDCSIS WCO Conference, p 277-283, (2020). http://dx.doi.org/http://dx.doi.org/10.15439/978-83-949419-5-6
  14. Nilsson, J.: Artificial Intelligence; SpringerY, (1982). ISBN 978-3-540-11340-9
  15. Philippe, C., Adouane, L., Tsourdos, A., Shin, H.S., Thuilot, B. : “Probability collective algorithm applied to decentralized coordination of autonomous vehicles”; 2019 IEEE Intelligent Vehicles Symp., 1928–34. IEEE, Paris (2019). http://dx.doi.org/10.1109/IVS.2019.8813827
  16. V. Pimenta, A. Quilliot, H. Toussaint, D. Vigo: “Models and algorithms for reliability oriented DARP with autonomous vehicles”; European Journ. of Operat. Res., 257, 2, p 601-613, (2016). http://dx.doi.org/10.1016/j.ejor.2016.07.037.
  17. Y. Rizk, M. Awad, E. Tunstel: “Cooperative heterogenous mutlti-robot systems: a survey”; ACM Computing Surveys 29, (2019). https://doi.org/10.1145/3303848
  18. C. Ryan, F. Murphy, F., Mullins, M.: “Spatial risk modelling of behavioural hotspots: Risk aware paths planning for autonomous vehicles”; Transportation Research A 134, p 152-163 (2020). http://dx.doi.org/10.1016/j.tra.2020.01.024
  19. K.Stoilova, T.Stoilov: “Bi-level optimization application for urban traffic management”. Proceedings of the 2020 FEDCSIS WCO Conference, p 327-336, (2020). http://dx.doi.org/http://dx.doi.org/10.15439/978-83-949419-5-6
  20. K. C. Vivaldini, G. Tamashiro, J. Martins Junior, M. Becker: “Communication infrastructure in the centralized management system for intelligent warehouses”. In: Neto, P., Moreira, A.P., et al. (eds.) WRSM 2013. CCIS, vol. 371, pp. 127–136. Springer, (2013)
  21. I. F. Vis: “Survey of research in the design and control of AGV systems”. European Journal of Operations Research 170:677–709, (2016). http://dx.doi.org/10.1016/j.ejor.2004.09.020
  22. J. Wojtuziak, T. Warden, O. Herzog: “Machine learning in agent based stochastic simulation: Inferential theory and evaluation in transportation logistics”; Computer and Mathematics with Applications 64, p 3658-3665, (2012). https://doi.org/10.1016/j.camwa.2012.01.079
  23. M. Zhang, R. Batta, R. Nagi R (2008): “Modeling of workflow congestion and optimization of flow routing in a manufacturing/warehouse facility”. Management Sciences 55:267–280, (2008). http://dx.doi.org/10.1287/mnsc.1080.0916