Logo PTI Logo FedCSIS

Proceedings of the 16th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 25

On the Representation of Human Motions and Distance-based Retargeting

,

DOI: http://dx.doi.org/10.15439/2021F45

Citation: Proceedings of the 16th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 25, pages 181189 ()

Full text

Abstract. Distance-based motion adaptation (also referred to as ``motion retargeting'') leads to the formulation of a dynamical Distance Geometry Problem (dynDGP) where the involved distances represent at the same time the morphology of the animated character, together with its motion. The use of relative distances becomes fundamental when, because of a modification on the morphology of the character, self contacts (represented in this context with distances having value near to~0) may disappear from the motion, or unwanted new contacts may be introduced. We revisit a recently proposed approach to human motion adaptation that is essentially based on distance information.

References

  1. A. Alfakih, Universal Rigidity of Bar Frameworks in General Position: a Euclidean Distance Matrix Approach. In:
  2. , Springer, 3–22, 2013.
  3. H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov, P. Bourne, The Protein Data Bank, Nucleic Acids Research 28, 235–242, 2000.
  4. A. Bernardin, L. Hoyet, A. Mucherino, D.S. Gonçalves, F. Multon, Normalized Euclidean Distance Matrices for Human Motion Retargeting, ACM Conference Proceedings, Motion in Games 2017 (MIG17), Barcelona, Spain, November 2017.
  5. J. Diebel, Representing Attitude: Euler angles, Unit Quaternions, and Rotation Vectors, Matrix 58(15–16), 1–35, 2006.
  6. R. Featherstone, Rigid Body Dynamics Algorithms, Springer, 279 pages, 2008.
  7. M. Gleicher, Retargetting Motion to New Characters. ACM Proceedings of the 25th annual conference on Computer Graphics and Interactive Techniques, 33–42, 1998.
  8. S. Guo, R. Southern, J. Chang, D. Greer, J. J. Zhang, Adaptive Motion Synthesis for Virtual Characters: a Survey, The Visual Computer 31(5), 497–512. 2015.
  9. E. S. L Ho, T. Komura, C-L. Tai, Spatial Relationship Preserving Character Motion Adaptation, Proceedings of the 37 th International Conference and Exhibition on Computer Graphics and Interactive Techniques, ACM Transactions on Graphics 29(4), 8 pages, 2010.
  10. G. Laman, On Graphs and Rigidity of Plane Skeletal Structures, Journal of Engineering Mathematics 4(4), 331–340, 1970.
  11. L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean Distance Geometry and Applications, SIAM Review 56(1), 3–69, 2014.
  12. T. E. Malliavin, A. Mucherino, M. Nilges, Distance Geometry in Structural Biology: New Perspectives. In:
  13. , Springer, 329–350, 2013.
  14. W. Maurel, D. Thalmann, Human Shoulder Modeling Including Scapulo-Thoracic Constraint and Joint Sinus Cones, Computers & Graphics 24, 203–218, 2000.
  15. M. Meredith, S. Maddock, Motion Capture File Formats Explained, Technical Report 211, Department of Computer Science, University of Sheffield, 36 pages, 2001.
  16. J.-S. Monzani, P. Baerlocher, R. Boulic, D. Thalmann, Using an Intermediate Skeleton and Inverse Kinematics for Motion Retargeting, Computer Graphics Forum 19(3), 11–19, 2000.
  17. A. Mucherino, Introducing the Interaction Distance in the context of Distance Geometry for Human Motions, Chebyshevskii sbornik 20(2), 263–273, 2019.
  18. A. Mucherino, D. S. Gonçalves, An Approach to Dynamical Distance Geometry, Lecture Notes in Computer Science 10589, F. Nielsen, F. Barbaresco (Eds.), Proceedings of Geometric Science of Information (GSI17), Paris, France, 821–829, 2017.
  19. A. Mucherino, D.S. Gonçalves, A. Bernardin, L. Hoyet, F. Multon, A Distance-Based Approach for Human Posture Simulations, IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS17), Workshop on Computational Optimization (WCO17), Prague, Czech Republic, 441–444, 2017.
  20. A. Mucherino, C. Lavor, L. Liberti, N. Maculan (Eds.), Distance Geometry: Theory, Methods and Applications, 410 pages, Springer, 2013.
  21. A. Mucherino, J. Omer, L. Hoyet, P. Robuffo Giordano, F. Multon, An Application-based Characterization of Dynamical Distance Geometry Problems, Optimization Letters 14(2), 493–507, 2020.
  22. G. N. Ramachandran, C. Ramakrishnan, V. Sasisekharan, Stereochemistry of Polypeptide Chain Configurations, Journal of Molecular Biology 7, 95–104, 1963.
  23. J. Saxe, Embeddability of Weighted Graphs in k-Space is Strongly NP-hard, Proceedings of 17th Allerton Conference in Communications, Control and Computing, 480–489, 1979.
  24. G.G. Slabaugh, Computing Euler Angles from a Rotation Matrix, Technical Report, City University London, 8 pages, 1999.
  25. P. Tabaghi, I. Dokmanić, M. Vetterli, Kinetic Euclidean Distance Matrices, IEEE Transactions on Signal Processing 68, 452–465, 2020.