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Abstract—In this paper, an unmanned aerial vehicles (UAVs)
deployment framework based on machine learning is studied. It
aims to maximize the sum of the weights of the ground users
covered by UAVs while UAVs forming a connected communication
graph. We focus on the case where the number of UAVs is not
necessarily enough to cover all ground users.

We develop an UAV Deployment Deep Neural network (UD-

DNNet) as a UAV’s deployment deep network method. Simulation
results demonstrate that UDDNNet can serve as a compu-
tationally inexpensive replacement for traditionally expensive
optimization algorithms in real-time tasks and outperform the
state-of-the-art traditional algorithms.

I. INTRODUCTION

IN THIS work we consider the case where Unmanned Aerial

Vehicles (UAVs) provide coverage to ground users within

the serving area. Thus, each UAV serves as an aerial Base Sta-

tion (BS). Different researchers introduced different objectives

and proposed different aerial BSs deployment algorithms in

order to solve them. The objective function of these algorithms

varied from maximizing the system capacity to minimizing the

required number of aerial BSs.

In the last years, the researchers have focused on de-

ployment optimization algorithms that minimize the required

number of aerial BSs providing wireless coverage to all ground

users. Opposite to most existing work, where the number of

UAVs is assumed to be enough to cover all ground users [13],

[14], [17], in this study, we consider a more realistic scenario:

UAVs are given, and their number is not necessarily enough

to cover all ground users. This assumption is reasonable in

any practical scenario. For example, in emergency cases, the

number of available UAVs is limited, but the number of first

responders (firefighters, medicals, etc.) is larger than the UAVs

can cover.

In this work, we assume that each ground user has a rank

that defines the importance of the user’s coverage. The rank

and location of ground users can be changed from time to

time. Thus, we are facing with the question: ”Who should be

covered and who should not, at any point in time?” For a

given particular time snapshot, this problem is known to be

NP-hard [4]. Additionally, we require the local connectivity

between the UAVs among themselves (see Figure 1) and not

through some global entity that connects between them.

We adopt the model and problems first proposed in [3].

Formally, we consider a set S of n points distributed in the

plane, where each point si ∈ S, i = 1, . . . , n, has a positive

weight w(si). We assume that all UAVs fly at the same fixed

altitude. All UAVs fly at the same fixed altitude, and covering

disks on the ground have the same radius. Denote this radius as

RCOV , and each UAV has a communication radius (RCOM ).

Now, we define the covering problems formally where UAVs

provide connectivity between themselves. Consider a set P of

m disks (represent the covering disks of the UAV’s) of radius

RCOV , where set C contains the centers of these disks.

Connected max(S,m)(Cmax(S,m)): Given a set S and a

parameter RCOM , place the disks from the set P such that:

1) The total weight of points from the set S covered by the

disks is maximized.

2) The undirected graph G = (C,E) imposed on P should

be connected, where an edge (u, v) ∈ E if d(u, v) ≤
RCOM , for d(u, v) being the L2 distance between the

centers v, u ∈ C.

Similarly to the above, the Connected-Dynamic max(S,m)

(CDmax(S,m)) problem aims to maintain the disks from P

under dynamic updates of S.

State-of-the-art solutions often involve exhaustive searches

or the optimization of various heuristics. We tackle our prob-

lem from a different perspective; we leverage recent deep

learning (DL) advances to design a novel deep neural net-

work (DNN) architecture to provide better performance with

reduced runtime. The proposed DNN approach establishes

a connection between the total weight cover maximization

problems under connectivity constraints while minimizing a

loss function during DNN training. Additionally, it relies on

an efficient network training and ensemble mechanism to beat

state-of-the-art solutions.

The main contributions of this work can be summarized as

follows. First, we propose a UAV’s deployment strategy using

a DNN. To this end, we offer a novel DNN structure trained

on the optimal solutions to a target problem. We use a su-

pervised learning approach to solve our problem compared to

another approaches that use the unsupervised or reinforcement

methods. The uniqueness of our study lies in the fact that our

training set is constructed being based on optimal solutions

for this problem. Therefore, the solutions derived by our DNN
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have efficiency close to that of an optimal solution. Second,

the performance of the proposed DNN approach is verified

through extensive evaluation. The simulation results confirm

that the proposed DNN achieves outstanding approximation

solutions to the target problem with shorter than the state-of-

the-art evaluated solutions computation times.

Fig. 1: The UAVs provide connectivity among themselves.

The remainder of this paper is organized as follows. Next

Section II discusses recent related studies. The details of

the proposed Deep Learning architecture are described in

Section III.In section IV we summarized all notation used in

this paper. In Section V we describe all aspects of evaluation

setups. The simulation results are described in Section VI.

Finally, conclusions and suggestions for future research are

presented in Section VII.

II. RELATED WORK

In this section, we first briefly review the typical approaches.

There is a growing number of researches on the topic of UAV-

based stations (aerial-BS) placement. UAV deployment under

different constrains have been widely discussed in recent years

and resulted in the development of various heuristics [13],

[14], [17], [22], [23], [20], [20]. The problem of placing m

disks that cover a maximal weight of given points (without

connectivity requirement) has been given some attention in

the past. The authors of [4] presented the problem of covering

the maximum number of points in the point set S with m

unit disks, without the demand for disks connectivity. They

gave a (1− ε)-approximation algorithm with time complexity

O(nε−4m+4) log2m−1( 1
ε
). The problem to place m rectangles

such that the sum of the weights of the points in S covered

by these rectangles is maximized is considered in [10]. For

any fixed ε > 0, the authors present efficient approximation

schemes that can find a (1− ε)-approximation to the optimal

solution in O(n
ε
log( 1

ε
) +m( 1

ε
)O(min(

√
m, 1

ε
))) runtime. In [6]

the authors presented a PTAS for a more general case different

covering shapes (disks, polygons with O(1) edges), running in

O(n 1
ε

O(1)
+ m

ε
logm +m( 1

ε
)O(min(m, 1

ε
))) time. The authors

of [19] solve the relevant problem to place two disks in the

plane to ensure both maximal covering and full connectivity by

providing two algorithms having O(n4) and O(n3 log n) time

complexity, respectively. Another related problem is presented

in [9], [5]. In these works, the authors formulate the following

problem: given a set of n discs in the plane, select a subset of k

disks that maximize the area of their union, under the constrain

that this union is connected. The authors of [2] consider

the Cmax(S,m). They gave O( 1√
m
) with time complexity

O(β2mn log n), where β · RCOM = dmax and dmax be the

largest L∞ distance defined by a pair of points in S. In [3]

the authors gave O(1) approximation for Cmax(S,m), and

presented an algorithm for CDmax(S,m) using O(m
√
m)

UAVs with the approximation ratio O(1).

We continue with researches that use Machine Learning

techniques. The authors of [8] aim how to maximize the num-

ber of users covered by the system in an emergency scenario.

They proposed the use of RL (Q-learning) to determine the

optimal position of the UAVs. The proposed solution was

compared to different positioning strategies and outperformed

all other methods in all considered metrics. In [16] the authors

considered the problem of the optimal deployment of multiple

UAVs to maximize throughput for ground users with different

requirements. The authors use Reinforcement Learning (RL) to

calculate the locations of the UAVs. Qiu et al. [18] considered

the problem of maximizing the coverage rate of N ground

users by the simultaneous placement of multiple UAVs with a

limited coverage range. They applied the Deep Reinforcement

Learning method to cope with this problem. Liu et al. [11]

proposed a deep RL (DRL), a method for energy-efficient UAV

control to provide communication coverage for ground users.

The control policy considers the UAV movements in each time

slot, and the aim is to optimize the communication coverage,

fairness, energy consumption, and connectivity. Liu et al. [12]

developed a fast positioning algorithm for the deployment of

aerial BSs, where the objective is to maximize the sum of the

downlink rates in the multiple UAV communication network.

They designed a geographical position information (GPI)

learning algorithm. Dai et al. [1] investigated the problem

of the efficient deployment of UAVs in order guarantee the

quality-of-service requirements. The UAV played the role of

a coordinator to provide high-quality communication service

for ground users and maximize the benefits of caching. The

authors proposed an RL-based approach to solving the multi-

objective deployment problem while maintaining an optimal

tradeoff between the power consumption and backhaul saving.

They adopted the RL approach to determine the 3D placement

and minimum transmit power, and cache strategy of each UAV.

In summary, recent studies have used DL to solve aerial BS

(UAVs) deployment under different objectives. We propose a

novel method of using DL to solve the UAVs deployment such

that the UAVs cover a maximal total weight of ground users

under the connectivity requirement between UAVs. We use a

supervised approach to solve our problem compared to other

researches using the unsupervised or reinforcement methods.

The uniqueness of our study lies in the fact that our training

set is constructed basing on optimal solutions for this problem.

Therefore, the solutions derived by our DNN have efficiency
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close to that of an optimal solution.

III. UDDNNet STRUCTURE

In this section, we describe the proposed UDDNNet, includ-

ing the details of the DNN design and a training process based

on supervised learning.

In the following, we detail the proposed DNN architecture

and discuss how training and testing are performed.
1) Network Structure: Our proposed approach uses a fully

connected neural network with two input layers, L = 8 fully

connected hidden layers, and one output layer.

The first input for the proposed network is a matrix with

dimensions of 3× n, where entry i of the matrix represents a

location and a weight of ground user i.

The second input is a binary matrix with dimensions of

2×K, where a number of rows without zero elements equals

the maximal number of UAVs that is possible to use in this

scenario. Note that the K represents the maximum value of m

in our experiments. Denote this matrix as FilMat. We use this

input as a binary filter matrix, meaning a non-zero entry in

the matrix signifies that we can put an UAV in this location.

Therefore, we use this matrix to avoid a scenario in which the

DNN located more UAVs than given in advance.

The first hidden layer reshapes the input matrix into a one-

dimensional vector with a length of 5000. The second hidden

layer reshapes its input into a one-dimensional vector with

a length of 4000. In this manner, the following five hidden

layers perform reshaping until the output has dimensions of

100. The 8−th hidden layer reshapes the one-dimensional

vector with a length of 100 into a matrix with dimensions

of 2 × K. This matrix multiplied by FilMat and the result

of this multiplication is an input of the output layer, where

a activation function Eq. 1 was applied. The output of the

network is the location of m UAV’s.

The ReLU(x) function is used as the activation function for

the hidden layer, where ReLU(x) is the rectified linear unit

function max(x, 0) [15]. Additionally, to enforce the location

constraint we adopt a special activation function from [21] for

the output layer of the DNN, as shown below.

y(x) = min(ReLU(x),
√
A), (1)

We apply this activation function in the output layer to limit

the output location to the range of [0,
√
A], where A is the

square zone of interest area.

We let lk to denote the number of neurons in the k−th layer.

The k−th layer is a hidden layer and its output is calculated

as follows:

ck = ReLU(Wk · ck−1), (2)

where ck−1 and ck are the output vectors of the previous

and current layers with dimensions of lk−1 × 1 and lk × 1,

respectively. Wk is the lk × lk−1 weight matrix.

A detailed explanation of the DNN architecture is provided

in Fig. 2. The motivation of the proposed DNN architecture

is to ”shrink” the inputs (location and weight of the ground

users) into m two dimensional coordinates, the locations of

the UAVs.

IV. NOTATIONS

The notations used in this paper are summarized in Table I

Symbol Meaning

S The set of n ground users

C The set of the centers of the disks

RCOV The covering disk radius in the case of

RCOM The communication radius

m The number of available UAVs

A The area of zone of interest

K The maximum value of m

TABLE I: Summary of notations used in this study.

V. EXPERIMENTAL SETUP

To evaluate the proposed UDDNNet performance, we con-

ducted experiments with a different number of ground users

and the different number of available UAVs. This section

describes the data generation process, splitting of whole data

set to training, validation and testing sets, training details, and

testing process.

1) Data Generation: The UDDNNet was trained using

optimal solutions implemented in the Wolfram Language. Data

was generated in the following manner.

First, we randomly distribute m disks in an area of interest

with dimensions of 5000 × 5000 m2, such that the disk

graph imposed on their centers is connected. We set m to

be m ∼ U [2, . . . ,K], where K = 10. Next, we distributed on

these disks between 10%− 30% of ground users. Finally, we

randomly distributed the ground users in an area of interest.

Also, for each ground user we randomly assign a weight

w(si) ∼ U [0, 1].
We repeated the process described above multiple times to

generate a dataset. The final dataset contained approximately

100000 instances. We randomly split the dataset into three sets

for training, validation and testing, where the sizes of each set

were 70%, 10% and 20% of the entire dataset, respectively.

2) Training Process: We used the entire training dataset

to optimize the weights of the neural network. The loss

function we adopted was the mean absolute error (MAE) as

a loss between the optimal UAV’s location and the network’s

output. We used the ADAM optimizer [7] for optimization.

We analyzed the impact of the batch size and learning rate of

UDDNNet. Based on the results presented in Fig.3 and Fig.4,

we selected a batch size of 256 and the learning rate was set

to 0.0001.

In Fig. 5 we can see the the training error and the validation

error as a function of the training epoch (rounds) with the

parameters chosen in Fig.3 and Fig.4. We can see that a

validation error decreases when the number of rounds is

increased.

3) Testing Process: In the testing stage, we used the testing

dataset, passed each instance through the trained UDDNNet,

and collected the results-location of the UAVs. We then com-

pared the resulting total covering weight by UAVs achieved
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Fig. 2: DNN architecture for UAVs deployment.
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Fig. 3: Batch size selection

by the compression scheme and the solution based on the

locations generated by UDDNNet.

4) Schemes for Comparison: Besides UDDNNet we also

implemented the algorithms presented in [3]. The authors

divide the area of interest into a grid with cell size r. They

represent each cell as a node in the graph with a weight

equal to the total sum of ground users’ weights belong to

this cell. They gave O(1) approximation for Cmax(S,m)and

presented an algorithm for CDmax(S,m) using O(m
√
m)

UAVs to keep the approximation ratio O(1), where each

update takes O(log n) runtime. We compare the performance

of UDDNNet with the algorithms that solve Cmax(S,m) and

CDmax(S,m) from [3].

VI. EVALUATION RESULTS

The proposed DNN approach was implemented in Wolfram

12.3 on a single desktop computer with the hardware specifi-

cations listed below.

M
A
E

0 10 20 30 40 50

50

100

150

200

Learning Rate: 0.1 Learning Rate: 0.01

Learning Rate: 0.001 Learning Rate: 0.0001

Learning Rate: 0.00001

Rounds

Fig. 4: Learning rate selection

1) Intel CPU Core i7-8700K @ 3.70 GHz

2) Nvidia GPU GeForce GTX 1080Ti

The GPU was used in the training stage to reduce training

time but was not used in the testing stage.

A. Numerical Results

We conducted numerical simulations to verify the effec-

tiveness of the UDDNNet and compare it to the heuristic

presented in [3]. Detailed simulations allowed us to study the

performance of the proposed UDDNNet, which is defined as

the total weight of covered users and the runtime required

by UDDNNet. Specifically, we examined the performance ob-

tained by UDDNNet for different numbers of ground users and

available UAVs to solve CDmax(S,m) and CDmax(S,m).
Table II gathers the parameters that, unless otherwise speci-
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Fig. 5: Traning Procces

fied, we have used for the network model, regardless of the

simulation environment.

Heuristic DNN

Fig. 6: Time complexity of UDDNNet v.s. Cmax(S,m)
heuristics from [3].

We start by examining our method’s performance in the

static version Cmax(S,m), for the case where the node

i weight is uniformly distributed wi = U ∼ [0, 1]. The

results of this examination we can see in Fig. 7 and Fig.6

showing the superiority of UDDNNet approach. In particular,

Figure 7 presents the total weight of covered users achieved

by UDDNNet versus the solution from [3]. In this Figure,

one can see that UDDNNet achieves better performance than

the solution from [3] for a problem with different numbers of

nodes and available UAVs. In Figure 6, we present the running

DNN Heuristic

Fig. 7: Weight covered by UDDNNet and Cmax(S,m) heuris-

tics from [3].
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Sec.
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50
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150

200

250

300

Weight

DNN Heuristic

Fig. 8: Maintenance of Dynamic Covering Set. The number

of ground users is 3000 and the number of UAVs is 3.

time of UDDNNet versus that of heuristic solution from
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Fig. 9: Maintenance of Dynamic Covering Set. The number

of ground users is 3500 and the number of UAVs is 4.
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Fig. 10: Maintenance of Dynamic Covering Set. The number

of ground users is 400 and the number of UAVs is 6.

[3]. One can see that UDDNNet’s run-time is approximately

constant and is a magnitude lower than that of the solution

200 400 600 800 1000
# of operations

0.005

0.010

0.015

Sec.

200 400 600 800 1000
# of operations

60

70

80

90

100

Weight

DNN Heuristic

Fig. 11: Maintenance of Dynamic Covering Set. The number

of ground users is 1000 and the number of UAVs is 2.

Parameter Value

Number of ground users 1000− 5000
Ground user’s weights w(si) ∼ U [0, 1]

Number of UAVs (drones) 2− 10
Simulation Playground Size 5000 × 5000 m2

RCOV 100 m
RCOM 200 m

m 2− 10

TABLE II: Simulation Configuration

from [3] that we use as a baseline for a problem with different

numbers of nodes and available UAVs.

Now we deal with the dynamic version CDmax(S,m).
We examined the performance obtained by [3] and UDDNNet

for different configurations, where we allow the use of a

different number of ground users and UAVs. Note that, at each

change of S, we solve the problem from scratch by UDDNNet.

Therefore, UDDNNet solves at each change the static version

of the given set S.

The Figures 8-11 represent the maintenance of set P under

insertions or deletions of a point from set S. Each subfigure of

these figures includes two graphs. The top graph represents the

time complexity of dynamic maintenance of solution from [3]

versus the time complexity of UDDNNet. The bottom graph

represents the total weight covered by UDDNNet and out

scheme for comparison. In both graphics, axis x represents the

trace of 1000 operations on set S, where each operation may
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be insertion or deletion. Additionally, the underneath graph’s

axis y represents the total weight covered by UDDNNet and

solution from [3], and the y axis in the left graph represents the

time required to execute the operation. We again can witness

the better performance of UDDNNet in terms of runtime and

obtained weight of covered ground users.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we considered the connected version of the

covering problem motivated by the coverage of ad-hoc UAVs

swarm. Inspired by recent advances in artificial intelligence,

we proposed the use of Deep Learning to address this problem.

We developed a fully connected multi-layer neural network

that takes a ground user’s location and a number of available

UAVs as inputs and outputs the location of the UAVs. A

supervised learning strategy was adopted to train UDDNNet

by using optimal solutions as a training dataset.

Our results are encouraging in many respects. The time

complexity of the proposed DNN solutions is the most im-

portant factor among our results. Therefore, the key takeaway

from our research is that a DNN can serve as a computation-

ally inexpensive component to replace expensive optimization

algorithms for real-time tasks while providing very good

performance compared to state-of-the-art methods.
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