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Abstract—We consider cost-sharing games in which resources’
costs are fairly shared by their users. The total players’ cost
in a Nash Equilibrium profile may be significantly higher than
the social optimum. We compare and analyze several methods
to lead the players to a good Nash Equilibrium by temporal
addition of dummy players. The dummy players create artificial
load on some resources, that encourage other players to change
their strategies.

We show that it is NP-hard to calculate an optimal strategy
for the dummy players. We then focus on symmetric singleton
games for which we suggest several heuristics for the problem. We
analyze their performance distinguishing between several classes
of instances and several performance measures.

I. INTRODUCTION

I
N resource allocation applications, a centralized authority

is assigning the clients to different resources. For example,

in job-scheduling applications, jobs are assigned to servers to

be processed; in communication or transportation networks,

traffic is assigned to network links to be routed. The central-

ized utility is aware of all clients’ requests and determine the

assignment. Classical computational optimization problems

study how to utilize the system in the best possible way.

In practice, many resource-allocation services lack a central

authority, and are often managed by multiple strategic users,

whose individual payoff is affected by the assignment of

other users. As a result, game theory has become an essential

tool in the analysis of resource-allocation services. In the

corresponding game, every client corresponds to a selfish

player who aims at maximizing its own utilization. Naturally,

suboptimal players will keep changing their strategy, and the

dynamic continues as long as the profile is not stable. Pure

Nash equilibrium (NE) is the most popular solution concept in

games. A strategy profile is a NE if no player has a beneficial

deviation.

It is well known that decentralized decision-making may

lead to sub-optimal solutions from the point of view of the

society as a whole. On the other hand, the system cannot

control the decisions made by the players. In this work

we propose to analyze the power of adding dummy players

controlled by the system. The goal of the dummy players is to

direct the players to a high quality solution, while still keeping

their freedom to act selfishly and select their own strategy.

The addition of dummy players is temporal, that is, the

final configuration consists of the initial set of players. Since

the final configuration must be stable, the goal is to lead the

players to a good Nash Equilibrium.

Many real life applications can benefit from adapting this

approach. For example, navigation apps users receive informa-

tion about the current status of the traffic and act accordingly,

the provider can adjust the information presented to the

users in favor of improving the balancing done on cars and

roads (and by that avoid creation of traffic jams). Similarly,

in communication networks, the delay of using a link can

be artificially increased in order to encourage users to use

alternative links.

A. Notation and Problem Statement

For an integer n ∈ N, let [n] = {1, . . . , n}. A

network-formation game (NFG, for short) [1] is N =
〈N,G, 〈sj , tj〉j∈[n]〉, where N is a set of n players, G =
〈V,E, c〉 is a weighted graph, and for each j ∈ [n], the pair

〈sj , tj〉 describes the objective of Player j, namely forming a

path from its source vertex sj ∈ V to its target vertex tj ∈ V .

A pure strategy of a player j ∈ N is a path from si to

ti. A profile in N is a tuple p = 〈p1, . . . , pn〉 of strategies

for the players, that is, pj is a path from sj to tj . Consider a

profile p. Recall that c maps each edge to a cost, intuitively

standing for the cost of its formation. The cost of an edge is

shared equally by the players that uses it. The players aim at

fulfilling their objective with minimal cost.

For a profile p, let ne(p) denote the load on edge e in p,

that is, the number of players that include e in their path. The

cost of player j in profile p is defined to be

costj(p) =
∑

e∈pj

ce/ne(p).

The cost of a profile p is the total players’ cost, that is

cost(p) =
∑

j∈N costj(p).
For a profile p and a strategy pj of player j ∈ [n],

let [p−j , p
′
j ] denote the profile obtained from p by replac-

ing the strategy for Player j by p′j . Given a strategy pro-

file p, the best response (BR) of player j is BRj(p) =
argminp′

j
∈Pj

costj(p
′
j , p−j); i.e., the set of strategies that

minimize player j’s cost, fixing the strategies of all other

players. Player j is said to be suboptimal in p if it can reduce

its cost by a unilateral deviation, i.e., if pj 6∈ BRj(p). If no

player is suboptimal in p, then p is a Nash equilibrium (NE).
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Given an initial strategy profile p0, a BR-sequence from

p0 is a sequence 〈p0, p1, . . .〉 in which for every T = 0, 1, . . .
there exists a player j ∈ N such that pT+1 = (p′j , p

T
−j), where

p′j ∈ BRj(p
T
−j). We restrict attention to games in which such

best-response dynamics (BRD) are guaranteed to converge to

a NE.

A game N with k dummy players is an extension of N
into N ′ = 〈N,G, 〈sj , tj〉j∈[n], k〉. The dummies have no

reachability objective of their own, and are controlled by the

system. Every dummy player is assigned on a single edge and

increases the load on it, thus, making it more attractive for the

other players. Practically, a profile of the game N ′ is given by

the strategies of N and the location of the k dummies. The

dummy players are added to a given initial profile p0. Due to

their addition, some of the players will become suboptimal,

and a BR-sequence will be initiated. The system can control

which suboptimal player is selected to perform its BR. After

a finite number of BR-steps, the dummy players leave the

network, and the players may continue the BR-sequence until

convergence to a NE.

It is well known that NE profiles may be sub-optimal. Let

OPT (G) denote the social optimum of a game N , that is,

the minimal possible social cost of a feasible assignment of

N , i.e., OPT (N ) = minp cost(p). The inefficiency incurred

due to self-interested behavior is quantified according to the

price of anarchy (PoA) [11], [15] and price of stability

(PoS) [1] measures. The PoA is the worst-case inefficiency

of a pure Nash equilibrium, while the PoS measures the

best-case inefficiency of a pure Nash equilibrium. Formally,

PoA(N ) = maxp∈NE(N ) cost(p)/OPT (N ), and PoS(N ) =
minS∈NE(N ) cost(p)/OPT (N ).

The goal of the dummy addition is to initiate a BR-sequence

in which the players converge to a NE whose cost is as close

as possible to the cost of the best NE.

Some of our results refer to symmetric singleton games.

These games fit several practical environments such as

scheduling on parallel machines, or routing on parallel

links [11]. A network formation game that corresponds to a

symmetric singleton game is given by m parallel (s− t)-links

(e1, . . . , em) and a vector of positive link costs (c1, . . . , cm),
where ci is the activation cost of link i. All the players have the

same objective – a path from s to t, and thus, the symmetric

strategy space is simply the set of edges. A profile p of the

game is given by a vector of loads (np
1, . . . , n

p
m), where np

i

is the number of players on ei in profile p. Let n =
∑

i n
p
i .

We assume, w.l.o.g., that c1 ≤ c2 ≤ . . . ≤ cm. Clearly, the

social optimum profile of such a game is simply assigning all

the players on the cheapest link e1. On the other hand, it is

well known that the price of anarchy is n even for a simple

network with only two parallel links having costs c1 = 1 and

c2 = n. Indeed, if all the players are assigned on e2, then each

of them pays n/n = 1 and would not benefit from deviating

to e1. Note that for this network, a single dummy assigned on

e1 is sufficient to encourage the players to deviate to e1.

B. Related Work

Many modern systems provide service to multiple strategic

users, whose individual payoff is affected by the decisions

made by other users of the system. As a result, non-cooperative

game theory has become an essential tool in the analysis of

this kind of systems, in particular, routing in networks and job

scheduling systems [11], [19], [3], [8], [2], [1].

The addition of dummy players will make some of the play-

ers suboptimal, and will cause them to change their strategy.

Other player will act in response. Thus, our work is closely

related to the study of best-response dynamics. The analysis

of BR dynamics consists of three main directions: The first

studies whether BR dynamics converge to a NE, if one exists

(e.g., [13], [8] and references therein). It is well known that

BR dynamics does not always converge to a NE, even if one

exists. However, for the class of finite potential games [16],

[14], a pure NE always exists, and BR dynamics is guaranteed

to converge to one. The second direction explores how fast

it takes until BR dynamics converges to a NE, e.g., [1],

[4], [9]. For some games, such as network formation games,

the convergence time may be exponential, while for some

games, such as singleton congestion games, fast convergence

is guaranteed. The third direction studies how the quality of

the resulting NE is affected by the choice of the deviating

player. Specifically, the order in which players are chosen to

perform their best response moves is crucial to the quality of

the equilibrium reached [5].

Other related work deal with games in which some of

the players are not selfish. In Stackelberg games [17], [10],

[6], [7], a centralized authority selects a fraction of players,

denoted leaders, and assigns them to appropriately selected

strategies, this is called the Stackelberg strategy. Each of

the remaining players, denoted followers, selects its strategy

selfishly trying to minimize its cost. The behavior of selfish

players leads to a Stackelberg Nash equilibrium in which none

of the selfish players has a beneficial migration.

The goal is to design Stackelberg strategies that will lead the

players to a high quality NE. In [17], it is shown that finding

an optimal Stackelberg strategy in job scheduling games

is NP-hard, and approximation algorithms are presented. In

congestion games on parallel links network the usage of a

centrally controlled player can lead to the network optimum if

its weight is above certain threshold [10]. In parallel networks,

under some constraints, there are even optimal Stackelberg

strategies [12].

Our model differs from Stackelberg games as we do not

assume that some players obey the system. That is, all the

players act selfishly. The added dummy players are temporal,

and the system should reach a NE after they vanish. The idea

of adding a temporal dummy player in order to change the final

equilibrium was first presented in [18]. The paper analyzes

the potential damage a single dummy player can cause to

the social optimum in job scheduling games with weighted

players.
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C. Our Results

Let p∗ be the cheapest NE profile. By assigning a suffi-

ciently large number of dummies on the paths in p∗, these

paths would become attractive enough, so that the BR of every

player would be to join its path in p∗. Since p∗ is a NE, the

players will remain on these paths after the dummy players

depart. Thus, if the number of dummy players is not limited,

then it is possible to guarantee convergence to the best NE.

We consider two problems:

1) What is the minimal number of dummy players required

to reach the best NE?

2) Given a budget of k dummy players, what is the minimal

cost NE that can be reached?

A solution for each of these problems involves also an

algorithm for utilizing the dummy players. Specifically, for

every profile on the BR-sequence, the algorithm should decide

(i) on which links the dummy players are assigned, and (ii)
which suboptimal player is activated next to perform its best-

response.

In section II we prove NP-hardness of both problems for

general networks. Specifically, we present a game with two

NE profiles, p∗ and p such that cost(p)/cost(p∗) = Θ(n), it

is NP-hard to utilize two dummy players in a way that leads

the players to p∗, while it is straightforward to do it with three

dummy players.

In Section III we define formally the game on m parallel

links and provide several basic observations and properties

of BR-sequences. In Section IV we present our heuristics

for convergence into the social optimum. In section V we

presents our heuristics for a given number of dummies, and

in Section VI we presents our experimental results.

The addition of dummy players is one temporal perturbation

of a game. We conclude in Section VII where we introduce

additional perturbation and suggest some directions for future

work. Due to space constraints, some of the proofs and

experimental results are omitted from this manuscript.

II. HARDNESS PROOF FOR GENERAL NETWORKS

Let p⋆ be a min-cost NE profile. By assigning a large

enough number of dummy players on the edges of p⋆, it is

clearly possible to attract the players to p⋆. We show that

calculating the minimal number of dummies required for this

task is NP-hard. Our hardness proof is based on the hardness

proof in [5] that considers a problem of determining the

order according to which players perform BRD (Best response

dynamics).

Theorem 2.1: The problem of leading the players to the

lowest cost NE using the minimal number of dummies is NP-

hard.

Proof: Given a game, an initial NE strategy profile, and a

value k, the associated decision problem is whether k dummies

are sufficient to lead the players to the lowest cost NE. We

show a reduction from the Partition problem: Given a set

of numbers {a1, a2, ..., an} such that
∑

i∈[n] ai = 2, where

∀i∈[n]ai < 1, the goal is to find a subset I ⊆ [n] such that

∑

i∈I ai =
∑

i∈[n]\I ai = 1. Given an instance of Partition,

consider the network depicted in Figure 1, with the following

initial strategy profile, p0 of 4n+ 2 players:

• 3n partition players, i1, i2, i3 for all i ∈ [n]. The

objective of every triplet iℓ, is a 〈vi−1, vi〉-path. For all

i ∈ [n], the three corresponding partition players has two

strategies: an upper edge of cost 420ai and a lower edge

of cost 300ai. In p0, all the partition players use the upper

edges.

• Players 1′, 2′, . . . , n′: n players whose objective is an

〈s′, t′〉-path. These players have two strategies: the edge

(s′, t′) of cost 300n, and the path through (u1, u2), whose

cost is 1200− ǫ. In p0, they all use the edge (s′, t′).
• Player a whose objective is an 〈sa, ta,b〉-path. Player a

has two strategies: The upper path, and the path through

v0, v1, . . . , vn. In p0, Player a uses the upper path.

• Player b whose objective is an 〈sb, ta,b〉-path. Player b
has three strategies: The upper path, the path through

sa, v0, v1, . . . , vn, and the path through the edge (u1, u2).
In p0, Player b uses the upper path.

Observe that p0 is a NE. Specifically, each of the partition

player has cost 420ai

3 and a deviation to the lower edge will

lead to cost 300ai, Player a’s current cost is 248+ ǫ
2 . Deviating

to the path through v0, would result in cost 420
4 ·2+204 = 414.

Player b’s current cost is 248 + ǫ
2 . Its alternative would cost

154+414 = 568 (through v0) or 1200−ǫ (through u1). Finally,

every player on the lower edge has current cost 300, while its

alternative through u1 costs 1200− ǫ.

The following additional observations limit the possible

BRD sequences of the game:

1) Not only that the initial profile is a NE, but it is also

stable in the presence of a single dummy.

2) In order to initiate a deviation of a partition player iℓ,
two dummies should be placed on the lower (vi−1, vi)-
edge, as 100ai =

300ai

3 ≤ 420ai

3 = 140ai.
3) The n players currently on (s′, t′) would benefit from a

deviation only after the edge (u1, u2) is utilized by three

other player.

The following profile p∗ is the minimal cost NE of this

game and also its social optimum:

• For every i ∈ [n], ℓ ∈ [3], the partition player iℓ uses the

lower (vi−1, vi) edge. of cost 300ai.
• Players 1′, 2′, . . . , n′ are on the path through u1. use the

1200− ǫ edge.

• Player a is on the path through v0 and use the lower

edges uses the lower (vi−1, vi) edges.

• Player b is on the path through u1.

The social optimum cost is 300 · 2 + 204 + 1200 − ε =
2004− ε.

The main claim of the reduction is based on the properties

presented earlier.

Claim 2.2: Two dummies can guarantee convergence to p∗

if and only if a partition of exists.
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…

420𝑎1, (𝟑) 420𝑎𝑛, (𝟑)
300𝑎1 300𝑎2 300𝑎𝑖 300𝑎𝑛

0 204154

𝑡′𝑠′
0

0
0

1200 − 𝜖 0
300𝑛, (𝒏)

420𝑎2, (𝟑) 420𝑎𝑖 , (𝟑)𝑣𝑛−1𝑣2𝑣1𝑣0 𝑣𝑛 𝑡𝑎,𝑏𝑠𝑎𝑠𝑏

𝑢1 𝑢2

Fig. 1. The network constructed for a given Partition instance. Every edge is labeled by its cost, and (in brackets) the number of players using it in p0.

III. COST-SHARING GAMES ON PARALLEL LINKS

In light of the hardness result for general networks, we

consider a network of parallel links. Recall that the network

is given by m parallel links (e1, . . . , em) and a vector of

positive link costs (c1, . . . , cm). A profile p of the game is

given by a vector of loads (np
1, . . . , n

p
m), where np

i is the

number of players on ei in profile p. With fair cost-sharing,

the cost of a player assigned on ei in profile p is ci/n
p
i .

We assume, w.l.o.g., that c1 ≤ c2 ≤ . . . ≤ cm. Denote by

pa+ the profile obtained from p by adding k dummy players

on ea. Given a profile p, the best response of a player on

ei is denoted BRi(p). A link ej ∈ BRi(p) if and only if
cj

nj+1 < ci
ni

and ∀el 6= ei,
cj

nj+1 ≤ cl
nl+1 . In particular,

ea ∈ BRi(pa+) if it is possible to attract a player from ei to

migrate to ea by adding the dummy players on ea.

Let n0
i be the load on ei in the initial profile p0. Let e1

be the cheapest link, were ties are broken in favor of highly

loaded links in p0. That is, for every i > 1, either c1 < ci, or

c1 = ci and n0
1 ≥ n0

i . Since the game is symmetric, the social

optimum cost is c1.

We present heuristics for solving the following problems:

Given a network of parallel links and an initial configuration

p0, (i) what is the minimal number of dummies required to

reach the social optimum, and (ii) what is the social lowest

cost we can achieve with a given number of dummies. For

both problems we assume that the algorithm can move the

dummy players among the links, and can select the deviating

suboptimal player in each step. Players that get the right to

deviate select their best response move.

Performance Measures: Assume that some heuristic is per-

formed on an initial profile p0. The quality of a solution will

be measured by 4 parameters.

1) The Social cost of the final profile.

2) Number of dummies used.

3) Length of BR-sequence till convergence.

4) Number of times the dummy players move.

In our experiments some of these measures are fixed.

For example, we tested the social cost achieved by various

heuristics with a given number of dummies, or the numbers

of dummies required to converge to the social optimum, e1.

A. Preliminaries and Observations

We start by introducing some notation and stating few

important observations and claims.

For a profile p, let Ep
min = argmini∈E

ci
n
p

i
+1

, be the set of

all most attractive links. Let epmin be a link in Ep
min with a

highest cost, breaking ties arbitrarily. Let pricepmin =
c
e
p
min

n
p

e
p
min

+1

be the cost to be paid by a player that joins the most attractive

link.

Observation 3.1: In every NE profile, all the players are

assigned on the same link.

Claim 3.2: If ea ∈ BReb(p) for some link eb, then we can

guarantee convergence of BRD to ea.

Proof: We show that ea is the BR as long as the dummy

players do not change their location. ea ∈ BReb(p) if and

only if ca
n
p
a+1

< cb
n
p

b

and ca
n
p
a+1

≤ ci
n
p

i
+1

, for every i 6= b. After

one player moves from eb to ea, the load on ea is np
a + 1.

Now, ea ∈ BReb(p
+1) for every i 6= a, since

ca

np+1

a + 1
=

ca
np
a + 2

<
ca

np
a + 1

≤
ci

np
i + 1

=
ci

np+1

i + 1

ca

np+1

a + 1
=

ca
np
a + 2

<
ca

np
a + 1

<
cb
np
b

<
cb

np
b − 1

=
cb

np+1

b

Thus, independent of the order the players are activated, as

long as dummy players are not changing their location, every

BR sequence converges to ea.

Observation 3.3: For any a, b, x, y, k > 0, if a ≤ x and
a
b
≤ x

y
then a

b+k
≤ x

y+k
.

Observation 3.3 implies that if a link is less attractive than

e1, then it will never get players during a sequence that

converges to e1, since it requires at least the same number

of dummies as making e1 the BR of some link directly.
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Our next claim states that if a link, eb, is a best-response

of some player, then it is also a best-response of the players

on epmin. Note that if the link epmin is empty then it must be

that epmin = e1 and convergence to e1 is possible even without

dummy players.

Claim 3.4: For a given profile p and a link eb 6= epmin, if

∃ea s.t eb ∈ BRa(p) then eb ∈ BRe
p

min
(p).

In addition, if ea is the BR of some link in Ep
min it is the BR

of every link in Ep
min.

Claim 3.5: If ea ∈ BRe
p

min
(p) then for every ei ∈ Ep

min,

it holds that ea ∈ BRei(p).
Proof: If |Ep

min| = 1 then it is clearly true. Else |Ep
min| > 1

and let eu, ev ∈ Ep
min, assume ea ∈ BReu(p). It must be that

ca
na+1 < cu

nu
and ca

na+1 ≤ cv
nv+1 < cv

nv
. Since cu

nu+1 = cv
nv+1 ,

we conclude ea ∈ BRev (p) for any other link in Ep
min.

B. The Naive Solution

Before presenting the more complicated heuristics, we

present a naive solution that is based on directly making e1
the best-response of some player. By Claim 3.2, once e1 is the

BR of some link, we can guarantee convergences to e1, and

based on Claim 3.4, we can calculate the number of dummies

required to directly make e1 the BR of epmin.

Recall that e1 ∈ BRe
p

min
(p1+) if and only if c1

n
p
1
+k+1

<
c
e
p
min

n
p

e
p
min

, and c1
n
p
1
+k+1

≤ ci
n
p

i
+1

, for every i 6= epmin. Therefore,

the minimal integer k satisfying

c1
n1 + k + 1

<
cep

min

np

e
p

min

and
c1

n1 + k + 1
≤ min

i 6=e
p

min

ci
ni + 1

is the minimal number of dummies required to directly make

e1 a BR of some player. We get that k is the minimal integer

satisfying

k > c1·
np

e
p

min

cep
min

−(n1+1) and k ≥ c1· max
i 6=e

p

min

(
ni + 1

ci
)−(n1+1)

(1)

Denote by knaive(p) the minimal k satisfying 1. Specifi-

cally, knaive(p
0) is the number of dummies required by the

naive solution.

Table I presents an instance demonstrating that the naive

solution is suboptimal. Moreover, the number of dummies it

needs is higher by factor of about 1.5 from the optimum. The

network consists of 8 links whose costs are listed in the first

row. The loads in the initial profile p0 are listed in the second

row. The additional rows specify for each link the cost per

player in p0 – given by ce
n0
e

, and cost per player if one player

joins e, given by ce
n0
e+1 .

Links e2 − e7 all have the same cost and initial load.

We can easily see that without dummies, regardless of the

activation order, the players will converge into e8, which

is the most expensive link. Using the naive solution, the

required number of dummies needed to converge into e1 is

knaive(p
0) = 300. We show that convergence to e1 can be

achieved using k = 220 dummies.

Link e1 e2 − e7 e8

Cost 3000 3100 6000

Load 0 200 600
ce

n0
e

- - 15.5 10
ce

n0
e+1

3000 15.42 9.98

TABLE I
INITIAL PROFILE p0 OF INSTANCE I1

By assigning 220 dummies on e2 and activating a player

on e8, a migration from e8 to e2 will be performed, then we

assign the dummies on e3 and activate a player on e8 which

creates a migration from e8 to e3, we then continue in a round

robin fashion on links e2 − e7 until 159 players leave e8 and

the following profile is reached:

Link e1 e2 − e4 e5 − e7 e8

Cost 3000 3100 3100 6000

Load 0 227 226 441
ce

n
p
e

- - 13.65 13.71 13.60
ce

n
p
e+1

3000 13.59 13.65 13.57

TABLE II
THE PROFILE ACHIEVED AFTER PHASE 1

The BR-sequence proceed after the 220 dummies are moved

to e1 and a player on e8 is activated. Since the cost of a

player who would join e1 is 3000
0+220+1 = 13.57, a player on

e8 will choose e1 as its BR and by Claim 3.2 convergence

to e1 is guaranteed. We conclude that convergence to e1 can

be achieved with only 220 dummy players, while the naive

solution requires 300 dummies.

IV. CONVERGENCE TO THE SOCIAL OPTIMUM

In this section we present our heuristics for convergence

into the best NE. In a network of parallel links, the best NE is

also the social optimum and is simply e1, the cheapest edge

in the network.

In Observation 3.3 we showed that making links that are

less attractive than e1 the BR of some link is at least as

demanding as making e1 the BR of the same link, therefore,

in all our heuristics we do not use such links as BR of any

link. Furthermore, for a given instance I , let I ′ be an instance

with the same set of links and load vector in which n′
i ≥ ni

for links fulfilling ei ∈ BRe
p

min
(pi+). Intuitively, I ′ is more

challenging than I since the links that are more attractive than

e1 become even more attractive. Such links will also not be

used in the heuristics we present.

The heuristics we present consists of two phases. In the

first phase, players are encouraged to migrate such that the

players’ cost on the links that are more attractive than e1
is more balanced compared to p0, and then apply the naive

solution on the more balanced profile. The goal is to use fewer

than knaive(p
0) dummies for the balancing phase, as well as

to reach a profile p where knaive(p) < knaive(p
0).
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A. Max Cost-reduction Heuristic

The first heuristic we present balances the players costs on

links that are more attractive than e1 by migrating players out

of the most attractive link, epmin, into a link that will gain a

maximal cost-reduction by an addition of one player. Formally,

a link for which ci
ni

− ci
ni+1 is maximal. Intuitively, we want

the migration to be as significant as possible.

The algorithm gets as input a profile, p0, and the number, k,

of dummies, and returns a binary indicator stating whether the

max cost-reduction heuristic can be used to lead the players to

e1. The minimal number of required dummies, can therefore

be computed by binary search in the range [0, knaive(p
0)].

Let epmcr be a link for which max( ci
ni

− ci
ni+1 ) is maximal

out of the links that can attract players from epmin. In every

iteration the algorithm moves a player from the current epmin

profile to the current epmcr until the profile is balanced enough

to enable a migration to e1 (step 3), or identifying that k
dummies are not sufficient as a naive solution from the most

balanced prnced profile (this is detected in step 11 - by having

a loop in the balanced prncing phase).

Algorithm 1 Max Cost-reduction Heuristic (decision version)

1: repeat

2: Calculate Ep
min. Let epmin ∈ Ep

min be a link with max

cost.

3: if e1 ∈ Ep
min or e1 ∈ BRe

p

min
(p1+) then

4: return true
5: else

6: Let epmcr be a link such that emcr ∈ BRe
p

min
(pe+mcr

)
for which ( ci

ni
− ci

ni+1 ) is maximal.

7: place k dummies on epmcr.

8: activate a player from epmin (creates a migration from

epmin to epmcr).

9: remove k dummies from epmcr.

10: end if

11: until loop has been detected (profile p = p−2)

12: return false

When the max cost-reduction heuristic is applied on the

instance I1 presented in Table I and k = 220, it is able to

reach the social optimum. In fact, the BR-sequence performed

is exactly the one described in Table II.

B. balanced prncing Heuristic

The second heuristic we present calculates a target load

vector in which the marginal cost on the links are balanced.

The dummy players are used to achieve this load vector. The

naive algorithm is then performed on the balanced profile. The

load vector is a one that maximizes the marginal cost on the

most attractive link and the second most attractive link. This

way the attractiveness of the competitors of e1 is as low as

possible.

For a profile p, let cpmin1 = mini∈E
p

min

ci
n
p

i

, and let

epmin1 be a link determining cpmin1. Also, let cpmin2 =
mini∈E\{ep

min1
}

ci
n
p

i
+1

.

The idea is to balance the load on the links such that the

minimal among these two values are maximal. Intuitively, this

way, by activating a player on epmin1, the attractiveness of

the competitors of e1 is as low as possible. Calculating the

exact load vector achieving maximal min{cpmin1, c
p
min2} is

computationally hard. In order to simplify the calculations,

we calculate instead pbal - a load vector that approximates

the optimal one. pbal is defined in the following way: Let

n1̄ =
∑

i>1 n
0
i be the number of players that are not assighed

on e1 in p0 and let c1̄ =
∑

i>1 ci be the total cost of edges

except e1. In pbal we determine the assignment of the n1̄

players that are not on e1. We first determine load
⌊

ci
c1̄

· n1̄

⌋

on every link ei for i > 1, we then add the remaining players

iteratively, each time adding a player on a link with maximal
ci

n
p

i
+1

.

For example, the profile ppal of the instance I1 introduced

in Table I is the following.

Link e1 e2 − e5 e6 − e7 e8

Cost 3000 3100 3100 6000

Load 0 227 226 440
ce

n
p
e

- - 13.65 13.71 13.63
ce

n
p
e+1

3000 13.59 13.65 13.60

TABLE III
PROFILE pbal OF INSTANCE I1

Once pbal is calculated, we would like to reach this profile

from p0 using the lowest possible number of dummies. Given

p and pbal, let Ep
drop = {ei|n

p
i > npbal

i } be the set of

edges whose load is higher than their load in pbal and let

Ep
gain = {ei|n

p
i < npbal

i } be the set of edges whose load

is lower than their load in pbal. Given p,Ep
drop and Ep

gain,

let kmigration be the minimal number of dummies required

to achieve a migration from a link ea ∈ Ep
drop to a link

eb ∈ Ep
gain, and let the source and target links be edrop and

egain, respectively. The algorithm iteratively calculates edrop
and egain and perform the corresponding migrations. The

number of dummies required may increase during the algo-

rithm, and k is updated accordingly. When k is large enough to

enable a migration to e1, that is, when kmigration ≥ knaive(p),
convergence to e1 is guaranteed.

C. Exhaustive Heuristic

The third heuristic we consider balances the links that are

more attractive than e1 by migrating players outside of the

most attractive link epmin into the least attractive possible link

while making sure pricemin is not getting lower. Formally for

a profile p, let Ep
t = {ea|ea ∈ BRe

p

min
(pa+) and ca

n
p
a+2

>

pricepmin} be the group of target links, meaning they are BR
of epmin if the dummy player are added on them and do not

lower pricemin if a migration from epmin to that link occurs.

Let ept be the link in Ep
t with maximal ca

n
p
a+2

. Our algorithm

is based on moving players out of epmin into ept .

The algorithm gets as input a profile, p0, and the number,

k, of dummies, and returns a binary indicator stating whether

the exhaustive heuristic leads the players to e1. The minimal
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Algorithm 2 Balancing Heuristic (min k version)

1: Calculate pbal
2: set k = 0
3: repeat

4: Calculate kmigration, egain, edrop.

5: if kmigration ≥ knaive(p) then

6: return max{k, knaive(p)}.

7: end if

8: k = max{k, kmigration} .

9: place k dummies on egain
10: while npb

i − np
i > 0 do

11: activate a player from some e ∈ Ep
drop (creates a

migration into egain).

12: end while

13: until Ep
gain = ∅

14: return max{k, knaive(p)}

number of required dummies, can therefore be computed by

binary search in the range [0, knaive(p
0)].

Algorithm 3 Exhaustive Heuristic (decision version)

1: repeat

2: Calculate Ep
min, let epmin ∈ Ep

min be a link with max

cost and let pricepmin =
c
e
p
min

n
p

e
p
min

+1
.

3: if e1 ∈ Ep
min or e1 ∈ BRe

p

min
(p1+) then

4: return true
5: else if Ep

t 6= ∅ then

6: place k dummies on ept .

7: activate a player from epmin (creates a migration from

epmin to ept ).

8: remove k dummies from ept .

9: end if

10: until no player has being activated

11: return false

D. Performance Measure Comparison

Recall that in Section III the performance measures accord-

ing to which the quality of our heuristics is evaluated is listed.

Table IV describe an initial profile of instance I2 with 8
links. It is easy to see that BRD would converge into e6 if

no dummies are used. Table V summarizes the strengths and

weaknesses of the different heuristics when applied on I2.

Clearly, the naive solution is most efficient in terms of BR-

steps and dummy moves, on the other hand, the number of

dummies required to reach e1 is significantly higher. The max

cost-reduction needs more dummies than the other algorithms

but dominates the number of steps. The balancing algorithm

moves the dummies only once for every link in Egain, so the

number of dummy moves is very low. The number of dum-

mies is lower than the naive solution. Finally, the exhaustive

heuristic achieves the social optimum using the least number

of dummies.

V. EXPLOIT A GIVEN NUMBER OF DUMMY PLAYERS

In this section we present our heuristics for finding the

lowest achievable social cost, using a limited budget of k
dummies. Notice that if we know that e1 cannot become the

BR of any link using a given K, then, as explained in the

previous section, migrating players out of e1 cannot be helpful.

We modify the algorithms presented in Section IV for

the new goal. As we elaborate below, the Naive approach

and the balancing heuristic are slightly modified, only their

destination link may be more expensive than e1. The two other

heuristics, specifically, max cost-reduction and exhaustive,

have a different version for the new goal.

Recall that in the naive solution (see Section III-B) the

algorithm locates the dummies on the target link. When

the number of dummies is limited, we simply calculate the

minimal ℓ such that

cℓ
nℓ + k + 1

<
cep

min

np

e
p

min

and
cℓ

nℓ + k + 1
≤ min

i 6=e
p

min

ci
ni + 1

.

The corresponding link eℓ, is the solution of the naive algo-

rithm with a budget of k dummies.

Next, we describe how the balancing heuristic is tuned

for the budged problem: recall that the idea is to calculate

a target load vector and lead the players on {e2, . . . , en}
to the corresponding configuration. With a given number of

dummies, we calculate the minimal ℓ such that it is possible to

balance the players on {eℓ+1, . . . , en}, thus leading the players

to eℓ. That is, the original algorithm is applied only on subset

of the links. Recall that once eℓ is a BR of some link, then

all other players would benefit from joining it, in particular,

those on e1, . . . , eℓ−1.

A. Max Cost-reduction Heuristic

Recall that in this heuristic, players are migrated out of epmin

into a link in BRe
p

min
. With a given budget of k dummies we

run the same algorithm, and keep track of the lowers-cost link

that was a target of some migration during the run.

Therefore, the algorithm differs from the decision version,

only in the return statements. In line 4, instead of True it

returns e1 and in line 12, instead of False it returns the minimal

i s.t ei ∈ Ep
min or ei ∈ BRe

p

min
(pi+)in any seen p.

B. Exhaustive Heuristic

In its decision version (Algorithm 3), the Exhaustive heuris-

tic is used to decide whether convergence to e1 is possible with

k dummies. We now show that without changing the algorithm

we can answer the optimization question, namely, what is the

lowest-cost link we can converge to using k dummies.

The algorithm differs from the decision version, only in

the return statements. In line 4, instead of True it returns e1
and in line 11, instead of False it returns the minimal i s.t

ei ∈ Ep
min or ei ∈ BRe

p

min
(pi+).

Based on Claim 3.2, when the algorithm returns i such that

ei ∈ Ep
min or ei ∈ BRe

p

min
(pi+), then we can converge to

ei. We show that links that were the BR of some link, will

always be able to attract a player from some link, and that
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Link e1 e2 e3 e4 e5 e6 e7 e8

Cost 3000 3100 3100 3100 3100 6000 6000 10000

Load 0 188 180 179 175 700 620 600
ce

n
p
e

- - 16.48 17.22 17.127 17.71 8.57 9.67 16.66
ce

n
p
e+1

3000 16.40 17.127 17.22 17.61 8.55 9.66 16.63

TABLE IV
INITIAL PROFILE OF INSTANCE I2 .

algorithm Naive Max CR Balancing Exhaustive

# of dummies 350 251 310 240

# of steps 2,642 2,956 2,874 3,043

# of dummy moves 1 312 5 312

TABLE V
RESULTS FOR PROFILE I2

links that were not the BR of any link until we exhausted our

effort to make e1 the BR of some link, will not be able to

be the BR of any link. This implies that the returned link is

indeed the best achievable link.

The following claims and observations will be used in

the analysis of the Exhaustive Heuristic. The first claim

shows that pricemin is monotonically increasing during the

algorithm.

Claim 5.1: pricep
+1

min ≥ pricemin

The next claim shows that the load on any link em ∈ Ep
min

monotonically decreases.

Claim 5.2: For a profile p and em ∈ Ep
min, np

a monotoni-

cally decreases after profile p.

We now combine Claims 5.1 and 5.2 to show that, pricemin

strictly increases every |Ep
min| iterations and at the worst case

after n− 1 iterations.

Observation 5.3: For a given profile p, price
p+|Ep

min
|

min >
pricepmin

The next claim shows that if ea can attract players in some

profile p, then it can attract additional players in any profile

p′ that succeeds p.

Claim 5.4: For a profile p and profile p+i (where i >
0) reached in a later stage of our algorithm. If ea ∈
BRe

p

min
(pa+), then either ea ∈ BR

e
p+i

min

(p+i
a+) or ea =

ep
+i

min.

We turn to show that if a link was not the BR of any link

at no point of the algorithm it cannot become the BR using k
dummies.

Claim 5.5: For a profile p+i (i ≥ 0) where not e1 ∈
Ep

min or e1 ∈ BRe
p

min
(p1+) or Ep

t 6= ∅. If ea /∈
Ep

min and ea ∈ BRe
p

min
(pa+) then we cannot converge

into ea
Proof: Assume by contradiction that for some profile

p, ea ∈ BRe
p

min
(pa+) but a profile p+i can be reached

where ea /∈ BR
e
p+i

min

(p+i
a+) and ea 6= ep

+i

min. Using Claims

5.1 and 5.2, np+i

e
p

min

< np

e
p

min

and pricep
+i

min ≥ pricepmin.

Furthermore, if np+i

a ≥ np
a, meaning he only gained play-

ers, then ea ∈ BRe
p

min
(p+i

a+) and using Claim 5.3 ea ∈

BR
e
p+i

min

(p+i
a+) or ea = ep

+i

min.

Else np+i

a < np
a, then for some profile p+j , where 0 < j <

i reached between p and p+i ep
+j

min = ea. If ea is still the

minimum then clearly ea = ep
+i

min, else it is not the minimum

and as seen in Claim 5.2 ca

n
p+i+k+1
a

< pricep
+i

min meaning

ea ∈ BR
e
p+i

min

(p+i
a+).

VI. EXPERIMENTAL RESULTS

In this section we present some experimental results,

achieved by simulating the heuristics presented in Sections IV

and V. The heuristics were performed on random instances in

random initial profiles.

We created a test-base consisting of four classes. The

first class, denoted random includes instances with a random

number of links (between 6 and 20), for each link there was

a randomly generated cost between 2, 000 − 100, 000 and

load between 0 and 10, 000. All values were drawn assuming

uniform distribution in their range. Figure 2 shows that in the

majority of the random profiles the heuristics are redundant,

but there exist a significant amount of profiles in which they

are helpful, in those cases the needed number of dummies

decrease significantly.

Fig. 2. Percentage of random profiles in which the addition of dummy players
is beneficial, and the heuristics are more efficient than the naive solution.

In order to emphasis the differences between the different

heuristics, we included in our test-base only instances for

which, in at least two heuristics, the required number of

dummies is lower than the number of dummies required by

the naive solution.

The second class of instances is the most challenging one.

It is denoted "Beat The Competitor". In the initial profiles of

this class, e2 has the highest initial load, therefore, the social

optimum, e1, has an attractive competitor.
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The third class of instances is denoted "Beat The Giants".

In the initial profiles of this class, the initial load on e1 is very

low. There are a few heavily loaded links which cost several

times the cost of e1. Without the use of dummies, any BRD
will converge to one of them. In addition there is a larger

number of contender links with a lower cost than the heavy

links and less attractive than them, but they can attract players

from the heavy links with less dummies than e1.

The last class of instances is denoted "Beat The Median",

it is a generalization of the above class. It is similar to Beat

The Giants with an addition of few links that are even heavier

than the heavy links of Beat The Giants and the players on

those links pay around the same cost as the players on the

contender links.

We first present our results for the problem considered

in Section IV: what is the number of dummies required

to converge to the social optimum. Thus, we fix the social

cost of the final profile, and measure the 3 other parameters

characterizing the quality of a solution.

Figure 3 shows the number of dummies required to converge

to the social optimum scaled compared to the naive solution,

and averaged on all instances in the test-base. As shown

in the figure, the heuristics can achieve the social optimum

with significantly less dummies than the naive solution. In

particular, the exhaustive heuristic is always the solution that

uses the least number of dummies.

Only In 1% out of the random profiles the balancing

algorithm was better than the naive solution. On the other

hand, for the classes Beat The Giants / Median, the balancing

phase is essential.

Fig. 3. Number of dummies required in order to converge to the social
optimum, compared to the naive solution.

Figure 4 compares the length of the BR-sequence till con-

vergence to e1, scaled by n1̄, which is the number of players

that need to migrate to e1. That is, how many times each player

is activated on average. Recall that in the naive solution, every

player, except for the players that are assigned on e1 in p0,

migrates exactly once. Clearly, this is our lower bound. We

can see that all the heuristics perform well with respect to this

measure. Specifically, even in the longest sequences, players

migrate on average at most 1.125 times, but we can clearly see

that in the more specific profiles Beat The Giants / Median the

length of BR-sequence is larger than the naive solution while

Random and Beat The Competitor lengths on all heuristics

are close to the optimal solution.

Fig. 4. Length of BR-sequence, measured by the average number of
migrations performed by each player that is not on e1 in p0.

The next measure we consider is the number of times

the dummy players are moved. Again, the naive heuristic

provides the lower bound, as the dummy players are assigned

exactly once – on e1. Figure 5 presents the results for this

measure, scaled by the number of links in the network. The

naive solution assigns the dummy players only once, and the

balancing heuristic move the dummies at most |Egain| times.

In contrast, the exhaustive and max cost-reduction heuristics

may migrate the dummies many times.

Fig. 5. Number of dummy moves scaled by the number of links

We turn to present our results for the problem considered

in Section V: what is the lowest cost achievable link, given

a limited budget k of dummy players. Thus, the interesting

measure of a heuristic is the resulting social cost.

Figure 6 presents the social costs achieved by each Heuristic

where the given k is a parameter which is a percentage of

knaive(p
0).(naive is the minimal i we can achieve using one

assignment of dummies on some link)

In the chart, the Social cost is divided by the Social Opti-

mum showing how far is the result from the Social optimum.

We can see that in the Random and "Beat The Competitor",

the separation from the naive solution is shown in the higher

percentage of dummies but in Beat The Giants / Median there

is a difference even in the lower percentages.

VII. CONCLUSIONS AND OPEN PROBLEMS

In this work we demonstrated the power of a temporal

addition of dummy players to a game. The dummy players
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Fig. 6. "Beat The Giants" social cost by algorithm and percentage of
dummies from the naive solution, divided by social optimum

initiate a dynamic in which the players are encouraged to reach

a Nash Equilibrium profile of better quality. We suggested

several heuristics for operating the dummies, and analyzed

their quality distinguishing between the number of dummy

players, the value of the final solution, and the convergence

time. Our main message is that the use of dummy players may

significantly improve the equilibrium inefficiency. In general,

finding an optimal algorithm for exploiting the dummies is

NP-hard. However, as we show, even simple heuristics may

need significantly less dummies than a naive solution, and the

quality of the final solution can improve further by extending

the length of the BR-sequence by a factor of 1.15, and if

the dummy players can be migrated intensively. Practically,

in real-world application such as routing, the possibility of

creating a controlled fake load or by temporarily disable the

use of some resources, can help migrate the players to routes

that improve the global system’s performance.

The addition of dummy player is only one possible pertur-

bation of a stable solution. It would be interesting to study

the power of additional temporal perturbation in resource

allocation games, that refer not only to the set of participating

clients, but to set of of resources, e.g., temporal closure

or addition of resources or temporal change in resources’

activation cost.
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