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Abstract—In recent years, several cluster ensemble methods
have been developed, but they still have some limitations. They
commonly use different clustering algorithms in both stages of
the clustering ensemble method, such as the ensemble generation
step and the consensus function, resulting in a compatibility issue
in terms of working functionality between different clustering
algorithms. In addition, in a clustering ensemble method, the
accuracy of the final results is a major concern. To deal with
it, we propose a novel cluster ensemble method based on a
single clustering algorithm (CES). In this method, we iterate
a clustering algorithm affinity propagation (AP) ten times in the
ensemble generation step to obtain multiple base partitions with
a high level of diversity in each iteration due to its nature of
producing a random number of clusters. Furthermore, with a
few modifications, the same algorithm AP is used to propose
a novel consensus function for combining these base partitions
into a single partition. The proposed consensus function takes
advantage of little side-information in the form of partial labels
by using pairwise constraints with AP and number of clusters
in a dataset. By employing this information, AP is limited to
produce an actual number of cluster centres in a dataset rather
than a random number of clusters, which considerably enhanced
the accuracy of final outcomes. As a result, CES uses the
same clustering functionality in both stages of proposed cluster
ensemble method and produces the desired number of clusters
in the final partition of a dataset which is significantly improving
accuracy when compared to state-of-the-art cluster ensemble
methods. Furthermore, as a result of these modifications, the
CES outperforms AP in terms of accuracy and execution time.
Experiments on real-world datasets from various sources show
that CES improves accuracy by 5% on average compared
to state-of-the-art cluster ensemble methods and by 55.54%
compared to AP while consuming 44.60% less execution time.

I. INTRODUCTION

C
LUSTERING is an unsupervised learning technique that

seeks to divide a collection of data objects into a set

of related classes [1], [2], [3]. It is a crucial and challenging

subject in data mining and machine learning, and it has been

successfully applied in a wide range of fields, including image

processing [4], recommender systems [5], text mining [6], and

pattern recognition [7]. A variety of methods have been used in

recent years to develop a large number of clustering algorithms

[8]. Different algorithms may lead to very different clustering

performances for a specific dataset. Each clustering algorithm

has its own set of advantages and disadvantages. However, no

single algorithm is appropriate for all datasets or applications.

Even if a specific algorithm is provided, determining the best

parameters for the clustering task can be difficult.

Traditionally, a single clustering algorithm has been used

to generate a single clustering result, which has a high rate

of inaccuracy. Cluster ensemble has recently emerged as

a powerful tool for combining multiple different clustering

results (generated by different clustering algorithms or the

same algorithm with different iterations) into a potentially

better, more robust, and single partition [9]. In detail, a cluster

ensemble has mainly two stages: the first, known as the

ensemble generation step, obtains multiple base partitions,

and the second, known as the consensus function, combines

these base partitions [10]. In theory, a functional clustering

ensemble must produce reconcilable and well-grounded clus-

tering results when compared to discrete clustering algorithms.

However, there were some distinct and demanding issues to

deal with while constructing an ensemble for clustering, and

it was not as simple as this interpretation suggests. Cluster

ensemble is gaining popularity, and several algorithms have

been proposed in recent years [11], [12], [13] and [14]. Cluster

ensembles can achieve more than a single clustering algorithm

in terms of robustness, novelty, stability, and confidence esti-

mation, as well as parallelization and scalability [13]. Despite

its considerable success, the current research still faces major

challenges. They all have the same flaw: the current cluster

ensemble methods use different clustering algorithms in both

stages, to obtain base partitions and a final partition, respec-

tively. Furthermore, the use of different clustering algorithms

in both stages of the current cluster ensemble architecture may

generate compatibility issue related to working functionality.

This has motivated us to use a single clustering algorithm

in both stages of the new cluster ensemble architecture that

significantly improved accuracy of the final outcomes. As a

consequence, we propose a novel cluster ensemble method

that employs the same clustering in both stages. Accordingly,

multiple base partitions are obtained in the its first stage, the

ensemble generation process, by executing an unsupervised

clustering algorithm affinity propagation (AP) ten times, which

provides a high level of diversity among base partitions in

each iteration since it generates a random number of clusters

[15]. In addition, it also captures all possible different infor-
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Fig. 1: 1(A) represents proposed cluster ensemble method, and 1(B) represents proposed consensus function

mation about a data set, which could help improve clustering

efficiency. Following that, a similarity matrix is computed

between these base partitions, which is known as cluster-based

similarity [12]. The computed similarity matrix is then passed

as a parameter in the novel consensus function proposed in

the second stage of the cluster ensemble method, which uses

the same clustering algorithm AP with some modifications.

Furthermore, in proposed consensus function, we take advan-

tage of pairwise constraints [16] that employs the concept

of must-link (two objects must be in the same cluster) and

cannotlink (two objects can not be in the same cluster) with the

same clustering algorithm AP to provide a little supervision

to the computed similarity matrix. The computed similarity

matrix is then updated with this supervised little information,

which aids in improving clustering efficiency. At this stage,

the similarity matrix is again updated with the Gram matrix,

which also enhances clustering efficiency. Furthermore, AP

has a flaw in that it generates random number clusters as

discussed above. As a result, AP is limited to producing a

number of clusters equal to the number of classes in a dataset.

This innovative improvement in AP has helped to dramatically

increase the accuracy of the final outcomes when this proposed

consensus function was used in the proposed cluster ensemble

method. As a result, the proposed novel consensus function

in cluster ensemble method integrates the base partitions into

a single partition. We call our proposed method “A Novel

Cluster Ensemble based on a Single Clustering Algorithm

(CES)”, because we use the same functionality in each stage

of it, as shown in Figure 1(A). CES’s key benefit is that it

eliminates the complication of using two separate clustering

paradigms in both stages, making it compatible, and improving

clustering outcomes such as accuracy over stare-of-the-art

cluster ensemble methods. In addition, when compared to

AP, the innovative change significantly improves accuracy and

execution time.

This paper makes the following key contributions:

• We propose a novel cluster ensemble method based on

a single clustering algorithm , while conventional cluster

ensemble methods use different clustering algorithms in

both stages, resulting in compatibility issue in ensemble

generation and consensus function.

• We propose a novel consensus function based on AP that

integrates pair-wise constraints, Gram matrix, and limits

AP to produce the actual number of clusters present in

the dataset.

• The proposed cluster ensemble method outperforms AP

in terms of accuracy and execution time.

The rest of the paper is organized as follows: Section II

formulates the background of our work and defines consensus

clustering problem. Section III provides details of the proposed

framework with selected clustering algorithm AP. Section

IV presents the experiments carried out for the framework

on different real-world data sets and comparatively explains

results. Finally, Section V concludes the paper and reveals the

limitation of our work and ongoing work to overcome it.

II. RELATED WORK

A clustering ensemble combines multiple base partitions

obtained in ensemble generation step into a robust, accurate

and single partition by using a consensus function [11]. The

advantage of using cluster ensemble is that it increases the

accuracy of the outcomes by taking individual solution biases

into account. [17] was the first to propose three cluster en-

sembles. The first was the cluster-based similarity partitioning

algorithm (CSPA), which was based on data point similarity S,

with S modified according to whether data points are similar
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or dissimilar. The hypergraph partitioning algorithm (HGPA)

was the second, which was based on re-partitioning data using

the given clusters. The final one was the meta-clustering

algorithm (MCLA), which was based on clustering clusters

and rendered each cluster by a hyperedge. [12] proposed

the Adaptive Clustering Ensemble (ACE), which consisted

of three stages: the first was to convert the base clusters

into binary representations. The second stage was to find

similar clusters based on cluster-based similarity, and the third

was to obtain consensus function results by dealing with

uncertain objects in order to achieve better final consensus

clustering partitions of data. Furthermore, many proposed

cluster ensembles has been proposed recently, for example,

quadr mutual information consensus function (QMI), mixture

model (EM) [13]. QMI is a consensus function based on

quadratic mutual information, which is proposed and reduced

to k-means clustering in the space of specially altered cluster

labels. EM is unsupervised decision-making fusion method

based on a probability model of the consensus partition in

the space of contributing clusters. [11] proposed the weighted

spectral cluster ensemble (WSCE) as a new cluster ensemble

focused on group detection arena and graph based clustering

concepts. Multiple base partitions are obtained using a new

version of spectral clustering and combined into a single robust

partition using a proposed consensus function in this method.

[14] proposed a cluster ensemble method based on distri-

bution cluster structure, with final results produced using a

newly proposed distribution-based normalised hypergraph cut

technique. [18] proposed two new cluster ensemble methods:

ensemble clustering by propagating cluster-wise similarities

with hierarchical consensus function (ECPCS HC) and en-

semble clustering by propagating cluster-wise similarities with

meta-cluster based consensus function (ECPCS MC). Some

research has centred on the applications of cluster ensembles

in different areas, for example, time series analysis has become

a popular research topic in the field of pattern recognition,

particularly for detecting manufacturing flaws. As a result, [19]

proposed an automated alternative called control chart pattern

recognition (CCPR) model based on consensus clustering.

Furthermore, [20] proposed a cluster ensemble method for

unsupervised pattern recognition that centred on the growth

of damages in composites under solicitations.

The following notations will be used consistently in this

paper. Table I also contains several important notations with

their definitions that were used in this article. We call a set of

objects D = {x1,x2, ......,xn}, where each object xi ∈ D is rep-

resented by a vector of N attribute values xi = (xi,1 , .....,xi,N ).
Let Γ = {β1,β2, ......,βm} be a cluster ensemble with m base

partitions, where each base partition is an “ensemble member”,

and returns a set of clusters βh = {β h
1 ,β

h
2 , .....β

h
n }, such that

⋃kh
p=1 β h

p = D,where kh is the number of hth clustering. For

each data point xi ∈ D,β h(xi) indicates cluster label in the

gth base partition to which data point xi belongs to, i.e.

β h(xi) = β
p
h , if xi ∈ β

p
h . As a result, the problem is to find a

new partition Γ∗ = β ∗1 ,β
∗
2 , .....β

∗
K , where K is the number of

TABLE I: Important notations used in this paper

Definition Symbol/Notation

Dataset D

Data object xi ∈ D,

1 ≤ i ≤ n

Number of objects n

Number of ensemble members m

Ensemble member βi, 1 ≤ j ≤ m

Similarities between objects Si j, 1 ≤ i ≤ n,

1 ≤ j ≤ n

Distance from similarity matrix Pi j, 1 ≤ i ≤ n,

1 ≤ j ≤ n

euclidean distance deuc

Similarities between ensemble

members

Sm

Preference parameter for ensemble

members

pm

clusters in the final clustering result of the dataset D, which

summarises the details from the cluster ensemble Γ [21].

III. A NOVEL CLUSTER ENSEMBLE BASED ON A SINGLE

CLUSTERING ALGORITHM

Figure 1A depicts the proposed cluster ensemble method

which consists of two steps: (1) an ensemble generation step

in which multiple base partitions are obtained by running

AP ten times; (2) a proposed consensus function using AP

that combines these multiple partitions into a single robust

partition. The proposed cluster ensemble method’s operation

is described in more detail below. Algorithm 1 presents the

pseudo code of CES.

A. First Stage: Ensemble Generation Step

The first step is called ensemble generation, and our main

goal is to generate m base clustering members. In algorithm

1, steps from 2 to 5 represent the ensemble generation step.

Any clustering algorithm can be used to generate ensemble

members as long as it produces as many different members

as possible [12]. At this stage, different partitions of the same

dataset can be created using independent runs of different clus-

tering algorithms or the same clustering algorithm [22][9][18].

Then, in the following stage, a consensus function is used

to obtain a final partition from the base partitions generated

in the previous stage. Accordingly, we use unsupervised AP,

as described in Section III-B1, and run it (iter = 10) times

to create multiple m ensemble members, such that βi ∈ Γ,

where i ∈ (1, ...,n) and n are the number of data objects. The

reason for AP’s adoption is that it generates a random set of

exemplars (clusters) in βh, where βh is an ensemble member,

which provides a high level of diversity among ensemble

members in each iteration and acquires all possible distinct

information about a data set, which may help to increase

clustering performance. In other words, in each iteration, AP

offers distinct clusters, ensuring the foundation of ensemble

TAHSEEN KHAN ET AL.: A NOVEL CLUSTER ENSEMBLE BASED ON A SINGLE CLUSTERING ALGORITHM 129



Algorithm 1: The pseudo code of our proposed cluster

ensemble method CES

Input: data, No. of clusters K

Output: the clustering Outcomes Γ∗

1: no_classes← K, random← [ ], temp← [ ], O← [ ],
s← [ ] Z← [ ], idx← [ ], status← [ ], availability← aik,

responsibility← rik

2: Calculate m base partitions βi by executing AP ten times

3: Sm← Euclidean(βi,βi) /* where Sm is

similarity matrix */

4: pm← min(Sm) /* where pm is preference

parameter */

5: Pass Sm and pm in proposed consensus function

/* Proposed Consensus Function

(modified AP)) */

/* Execute consensus function ten

times */

6: Compute aik and rik

7: s← .15(labels)
8: for i = 1 to length(s) do

for j = i + 1 to length(s) do

if (xi,x j) ∈C then
status← 0

else
status← 1

/* where C denotes

cannot-link constraints */

9: return status

10: Si j & S ji = status /* where i ∈ (1, ...,n),
j ∈ (1, ...,n) */

11: Pi j←
S2

1 j+S2
i1+S2

i j

2
/* where i ∈ (1, ...,n), j ∈ (1, ...,n)

*/

12: Si j← Pi j /* where i ∈ (1, ...,n), j ∈ (1, ...,n) */

13: Z← set of exemplars

14: Z← Sort(Z,descending)
15: if length(Z)< no_classes then

no_classes← length(Z)

16: random← Random(length(Z),no_classes)
17: O← Z[random]
18: for i = 1 to no_classes do

for j =1 to length(Z) do
temp← Z[ j]

if temp = O(i) then
idx← temp

19: return idx

20: Γ∗← idx

clustering, which is that ensemble members should have a high

level of diversity to capture all of a dataset’s information. [12].

Definition 1: Let X = (X1,X2, ...XN) and Y = (Y1,Y2, ...YN)
are two points in euclidean N-space, then Euclidean Distance

deuc from point X to Y and Y to X is given by Equation (1)

from [23]:

deuc(X ,Y ) = deuc(Y,X)

=
√

(Y1−X1)2 +(Y2−X2)2 + ...+(YN −XN)2

=

√

N

∑
i=1

(Xi−Yi)2

(1)

where X and Y represent two vectors in euclidean N-space

that begin at the space’s origin.

Thus, the lower the deuc value between two sets of obser-

vations, the more similar they are and the more likely they

are in the same cluster. As a result, we use this method to

combine the m base partitions found in Section III-A. We use

the Euclidean distance, as discussed above in Equation (1),

to compute similarities between pairs of ensemble members.

The similarities between ensemble members is known as

cluster-based similarity. So, as shown in Equation (2), the Sm

similarities for m ensemble members can be computed:

Sm =

√

m

∑
i=1

(βi−β j)2 (2)

for all i ∈ {1, ...,m} and j ∈ {1, ...,m}. As a consequence, the

base partitions are derived as similarities between m ensemble

members, and these base partitions are then grouped into

a single partition using the proposed consensus function in

Section III-B2. For this, we pass Sm and pm = min(Sm) in

the proposed consensus function parameter, which is proposed

using AP.

B. Second Stage: Consensus Function

The consensus function, which is responsible for achieving

the final partition of the data by using base partitions generated

during the ensemble generation step, is another important

component of the cluster ensemble method. We propose a

very effective and efficient consensus function, as explained

in the sections below, because the consensus function has

a direct impact on the performance of the cluster ensemble

method. In algorithm 1, steps from 6 to 20 represent the

consensus function step. The main idea behind proposing a

new consensus function is to compute cluster-based similar-

ities between pairs of ensemble members or clusters rather

than computing similarities between data objects [12]. The

proposed consensus function’s operation is discussed further

below. In Section III-B1, we describe some information about

the traditional clustering algorithm AP, and then in Section

III-B2, we show how it is improved and used in proposing the

consensus function.

1) Affinity Propagation (AP): Affinity Propagation

(AP)[15] is a clustering algorithm that works on the principle

of message passing between data objects. Unlike other
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clustering algorithms such as k-medoids or k-means, AP does

not seek to determine the number of clusters before running

the algorithm. AP, like k-medoids, seeks "exemplars," or

members of the input set that are representative of clusters. In

other words, rather than taking the number of clusters K as

input, AP takes the collection of real-valued similarities Sik,

which indicate how well data object at index k is suited to be

an exemplar for data object i for two data objects (xi,xk) ∈ D.

In addition, AP accepts real numbers Skk as input, with

the possibility of selecting high similarity data objects as

exemplars (number of clusters), referred to as preference

p. The exemplars are influenced not only by p but also by

message passing. This value can be changed to generate a

different number of clusters. Moreover, this value can be a

median of the input collection of real-valued similarities that

yields a moderate number of clusters or a minimum of these

that yields the fewest clusters. Additionally, two real-valued

messages which are the ‘responsibility’ rik from data object

xi to xk that depicts how well deserved the data object xk is to

serve as the exemplar of data object xi and the ‘availability’

aik from data object xk to xi that depicts how suitable it

would be for data object xi to select xk as its exemplar, are

computed. rik and aik can be considered as log-probability

ratios. Initially, availabilities aik were set to zero: aik = 0. The

responsibilities rik are then computed using Equation (3).

rik ← Sik−max
k′ s.t. k′ 6=k

{aik′ +Sik′} (3)

Because aik is set to 0 in the first iteration, rik has been

assigned the difference of sik and the largest of the similarities

between the data object at index i and the other candidates.

As a result, if some data objects are assigned to exemplars in

subsequent iterations, their availabilities aik fall below zero, as

shown by the Equation (4). And these negative availabilities

will have an effect on the similarities Sik′ in Equation (3),

and the corresponding exemplar will be removed from the

competition. And in the Equation (3), for i = k, the respon-

sibilities become rkk, which is equivalent to input preference

and point at indexed k or i is chosen as an exemplar. This

condition allows other candidate exemplars to compete to be

an exemplar for a data object and updates availabilities using

Equation (4) below.

aik←min
{

0,rkk +∑
i′ s.t. i′ /∈{i,k}

max
{

0,ri′k

}

}

(4)

Thus, in Equation (4), availabilities aik are assigned to the sum

of self-responsibility rkk and positive responsibilities received

by the candidate exemplar at index k from other data objects.

Only positive responsibilities are added here because it is

required for a good exemplar. If self responsibility becomes

negative, the availability of data objects at index k can be

increased, and self-availability akk is updated using Equation

(5).

akk ← ∑
i′ s.t. i′ /∈k

max{0,ri′k} (5)

As a result, these messages are exchanged between two

data objects with pre-computed similarities. At any point,

availabilities and responsibilities can be combined to identify

a potential exemplar. As a result, (aik + rik) should be the

maximum to determine which data object at index i should be

chosen as an exemplar. And knowing i = k leads to knowing

the data object that is an exemplar for the data object at index

i.

2) Proposed Consensus Function: In proposed consensus

function, we take advantage of little side-information such

as pairwise constraints [16], which are made up of two

constraints: must-link and cannot-link. It has helped to increase

the precision in accuracy. We assume that partial class infor-

mation is provided in the form of pairwise constraints showing

whether two objects are members of the same (must − link

constraint) or different (cannot − link constraint) clusters.

The cluster information is expressed via a set Ψ ⊂ D × D

ml = {xi,x j} where Ψ = M ∪ C, and

M = {(xi,x j) ∈ D × D : xi and x j ∈ same cluster}

C = {(xi,x j) ∈ D × D : xi and x j ∈ different clusters}

where i , j ∈ (1,2, ...,n)

(6)

Let us say we have pairwise constraints for some data objects

and want to incorporate this side-information into our model.

The first question is where we can use this side-information.

One approach could be to directly connect the hidden variables

corresponding to data points that must be in the same cluster

via a function that applies the constraints, and to connect

the hidden variables corresponding to cannot-link data objects

via a suitable function [24]. Another approach could be to

manipulate the similarities between the data objects. If two

data objects are in the same cluster, we can maximise their

similarities and minimise them if they are in different clusters.

As a result, we can conclude that clustering performance is

directly related to the similarities between data objects.

Definition 2: Let us suppose there two data objects such

that (xi,x j) ∈ D where i ∈ (1,2, ...,n), j ∈ (1,2, ...,n), the

similarities between these objects Si j or S ji will be adjusted

according to Equation (7) below.

(xi,x j) ∈ M ⇒ Si j = 1 & S ji = 1

and (xi,x j) ∈ C ⇒ Si j = 0 & S ji = 0
(7)

As a result, this adjustment in similarities can increase more

supervision to improve clustering performance because it in-

creases the probability of similar constraints being in the same

cluster as much as possible. As discussed in section III-B1, AP

takes as input a collection of similarities between data objects

and a preference that can be the median or minimum of the

input similarities; unlike other algorithms such as k-means and

k-medoids, it does not take the number of exemplars K as

input. In addition, after exchanging real-valued messages, it

generates a random number of exemplars to compute aik and

rik, which may affect its clustering performance. So, to solve

this problem, we use the number of exemplars K as an input

parameter in AP. After that, real-valued messages aik and rik
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are computed. At this point, we include the concept of pairwise

constraints, and 15% of the actual labels were enforced to

know constraints for each pair of data objects, and similarities

are updated as a result. From Section III-A, we already have

Sm and pm in the AP’s parameter. Therfore, Sm is iteratively

updated with 1 (if they are in the same cluster) or 0 (if they

are not) (if they are in different clusters), for two data objects

(xi,x j) ∈ D, where i ∈ (1,2, ...,n) and j ∈ (1,2, ...,n).

Definition 3: Let Si j comes from distances between data

objects, then there are xi ∈ Rm, then a matrix Pi j from distance

matrix Si j can be defined as:

Pi j =
S2

1 j +S2
i1 +S2

i j

2
(8)

for i ∈ {1, . . . ,n} and j ∈ {1, . . . ,n}. Pi j is a positive semi-

definite matrix of rank at most two which is known as Gram

Matrix.

After adjusting similarities with constraints, new similarities

are again updated with Gram Matrix as shown in Equation (9).

Sm⇐ Pi j (9)

This motive has come with enhancement in clustering accuracy

when this consensus function has been utilized in our proposed

cluster ensemble method CES. Finally, a good set of exemplars

is obtained by using the updated similarities, as shown in

Equation (9). At this point, we solve the previously discussed

unsupervised AP problem, which generates a random number

of exemplars. We use side-information such as the number of

exemplars K passed as input to AP and restrict it to generate

exemplars equivalent to K by iterating the obtained fine set of

exemplars. As a result, AP clustering accuracy and execution

time are dramatically improved. Thus, as shown in Figure 1B,

we present a novel consensus function that is used in our

cluster ensemble method CES, as shown in Figure 1A. Finally,

a single robust dataset partition is produced in Γ∗ equivalent

to the number of clusters in the dataset.

TABLE II: Real-world data sets taken from different sources

S.No Dataset number of

objects

Features Classes

1. aerosol 905 892 3

2. alphabet 814 892 3

3. aquarium 922 892 3

4. banana 840 892 3

5. basket 892 892 3

6. blog 943 892 3

7. book 896 892 3

8. heartdisseaseh 294 13 5

9. glass 214 10 6

10. heap 155 19 2

11. wing 856 899 3

12. water 922 899 3

IV. PERFORMANCE EVALUATION

A. Experimental Design

The proposed clustering ensemble method CES is compared

to several representative clustering ensemble methods on a

variety of real-world data sets using representative assessment

criteria to assess its performance. Our method is tested in

ten separate runs. We choose a standard evaluation criterion,

such as micro-precision, to assess its performance, which

compares real labels to predicted labels to assess clustering

approaches’ accuracy [29]. [25] has evaluated the consensus

cluster’s accuracy in terms of true labels using micro-precision.

This assessment criteria is also taken into account by [26]. As

a result, we have used the only considered evaluation criterion

to compare the CES approach to other clustering approaches

in order to further evaluate its performance. The following are

the remaining paragraphs in this section: The datasets used for

comparisons will be addressed first. Then we will go over the

assessment criteria and the steps of the experiment in detail.

We choose a variety of real-world data sets to implement the

experimental study of the proposed CES approach, which are

described in Table II. The twelve real-world data sets, which

include different samples, features, and classes, were gathered

from various sources, including the UCI repository and the

Microsoft Research Asia Multimedia (MSRA-MM) image

dataset obtained from Microsoft [30]. These data sets are also

used in classification due to the availability of class labels,

but class labels are not used in clustering for the evolutionary

process of clustering [31]. We use micro-precision to assess

the accuracy of the consensus cluster with respect to the true

labels. If a data set has K classes and n objects, the micro-

precision mp is defined as in Equation (10):

mp =
K

∑
i=1

[ai

n

]

(10)

where ai represents the number of items in consensus cluster

i, and 0 ≤ mp ≤ 1 represents the best possible consensus

clustering that is analogous to class labels. As a result, we can

assume that the higher the mp value, the better the clustering

performance.

Matlab R2019a was used to design the experiment. Our

experiment is divided into two phases: generating ensemble

members for these real-world datasets using the clustering

algorithm AP, and obtaining consensus function results using

the proposed consensus function described in Section III-B2.

To begin, a similarity matrix is computed using pairwise

euclidean distance and the number of objects n and features

f in a dataset, yielding a n × n similarity matrix S. The

preference parameter p is then set to p = min(S)/ iter × 0.3,

where iter denotes the iteration number for this step, which

is set to 10 to produce m ensemble members. The value

iter × 0.3 is used to generate various base partitions and has

an impact on clustering performance. The similarity matrix

Sm is computed using these acquired base partitions and the

preference parameter is set to pm = min(Sm))/ iter× .09 after

receiving m base partitions after 10 execution of unsupervised
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TABLE III: Comparison of Accuracy evaluated using micro-precision between CES and other cluster ensemble methods

Dataset CES CSPA HGPA MCLA WSCE EM QMI ECPCS MC ECPCS HC

aerosol 54.03 50.28 50.28 50.28 51.27 39.67 50.61 53.26 51.05

alphabet 51.97 47.30 47.30 47.30 47.30 37.59 48.40 47.91 48.16

aquarium 70.17 70.17 70.17 70.17 69.63 36.23 70.07 65.73 69.96

banana 47.98 42.74 42.74 42.74 44.29 39.40 44.17 43.57 43.21

basket 56.28 56.05 56.05 56.05 56.28 37.89 55.83 52.58 56.28

blog 73.59 73.49 73.49 73.49 72.64 35.42 73.49 66.49 73.49

book 57.70 57.48 57.48 57.48 57.59 36.27 57.48 56.70 57.37

heartdisseaseh 66.33 63.95 63.95 63.95 50.00 30.27 54.08 55.10 57.82

glass 65.42 35.51 35.51 35.51 58.88 45.79 45.79 52.34 52.80

heap 79.35 54.84 54.84 54.84 77.42 59.35 59.35 59.35 58.71

wing 62.03 61.92 61.92 61.92 61.68 37.38 6168 57.59 61.68

water 57.16 56.94 56.94 56.94 56.29 36.66 56.62 55.86 57.05

Avg 61.83 55.89 55.89 55.89 58.61 39.33 56.46 55.54 57.30

TABLE IV: Accuracy and Execution time (seconds) between CES and AP

(a) Comparison of Accuracy between CES and AP

Dataset AP CES

aerosol 20.99 54.03

alphabet 15.36 51.97

aquarium 15.08 70.17

banana 18.21 47.98

basket 27.35 56.28

blog 19.72 73.59

book 22.99 57.70

heartdisseaseh 39.80 66.33

glass 53.74 65.42

heap 59.35 79.35

wing 22.90 62.03

water 14.43 57.16

Avg 27.49 61.83

(b) Comparision of Execution time between CES and AP

Datasets AP(Avg) AP(Max) CES(Avg) CES(Max)

aerosol 5.6822 6.2422 2.6765 2.7853

alphabet 1.9892 2.8138 1.8246 1.8878

aquarium 2.2208 3.1873 2.2521 2.3075

banana 3.5394 4.6083 1.9807 2.0751

basket 5.0143 5.5720 1.9964 2.0163

blog 1.9467 2.9702 2.2170 2.2603

book 1.8947 2.2981 2.1448 2.2040

heartdisseaseh 0.3843 0.6017 0.4923 0.5328

glass 0.3037 0.5951 0.2521 0.2709

heap 0.1677 0.4678 0.1893 0.2066

wing 1.9915 2.8967 1.9963 2.0228

water 4.7009 5.4571 2.2588 2.3218

Avg 2.4863 3.1425 1.6901 1.7409

TABLE V: Comparison of Accuracy between CES and other work
with common datasets and evaluation criteria micro-precision

Study Dataset Accuracy
CES
[25] blog

73.59
71.14

CES
[25] aquarium

70.17
68.56

CES
[26] glass

65.42
61.21

CES
[27] glass

65.42
64.40

CES
[28] glass

65.42
47.20

AP. These parameters, as well as the number of classes K,

are passed as input parameters into the proposed consensus

function for further calculations to determine final partitions

of a dataset in K clusters. The introduced consensus function

is also executed with iter = 10. The primary goal of this ex-

periment is to evaluate the performance of CES and to see how

effective our algorithm is when compared to other traditional

clustering ensemble methods such as (CSPA, HGPA, MCLA

[17]), (EM, QMI [13], WSCE [11], (ECPCS MC, ECPCS HC

[18] by micro-precision. CES also outperforms AP in terms

of accuracy and execution time due to innoative changes.

B. Results and Discussions

The accuracy of CES and other traditional cluster ensemble

techniques are tested on real-world data sets derived from

different sources measured by micro-precision is shown in

Table III. Table IV shows the accuracy and execution time

evaluated between AP and CES. The experimental results are

explained in two parts: (1) comparisons on real-world data

sets for accuracy between CES and other cluster ensemble

methods, and (2) comparison of accuracy and execution time

between AP and CES.

As a result, it is concluded that, when compared to other

clustering ensemble methods, CES has achieved promising

results in accuracy assessment on all datasets, as shown in

Table III. Although CSPA, HGPA, MCLA, and CES achieved

comparable accuracy of 70.17% in the dataset aquarium,

WSCE, ECPCSHC, and CES also achieved comparable accu-

racy of 56.28% in the dataset basket, CES outperformed state-

of-the-art clustering ensemble methods WSCE, ECPCSMC

and ECPCSHC by 5.21%, 6.29% and 4.53% on average

respectively. Furthermore, CES has also outperformed all

cluster ensemble methods by 5% on average. The use of

the same clustering functionality in both cluster ensemble

steps may boost the stability of clustering results, resulting

in a significant improvement in clustering accuracy. We see
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a significant improvement in high-dimensional data sets with

noises, such as aerosol, alphabet, aquarium, banana, basket,

blog, book, wing, and water, because we limit AP to produce

the actual number of clusters in the proposed consensus func-

tion. Furthermore, the clustering accuracy has been compared

to state-of-the-art cluster ensemble methods that use common

data sets and evaluation criterion micro-precision shown in

Table V. The clustering ensemble approach HCEKG by [25]

has achieved approximately 71.14% and 68.56% clustering

accuracy with the blog and aquarium datasets, respectively,

whereas our CES has obtained 73.59% and 70.17% indicating

3.33% and 2.29% improvement respectively. [26] has achieved

61.21% accuracy with glass dataset while CES has achieved

65.42%, indicating a 6.45% improvement. With the glass

dataset, [27] has achieved 64.4% accuracy, while CES has

achieved 65.42%, indicating a 1.56% improvement. [28] has

obtained 47.20% accuracy with basket dataset, while CES has

obtained 65.42% with a 27.85% improvement.

CES has significantly improved in terms of accuracy and

execution time when compared to AP. Table IVa clearly shows

that CES achieved a significant improvement in clustering ac-

curacy and execution time when compared to AP. Furthermore,

CES has achieved an average accuracy of 61.83% across all

twelve datasets, whereas AP has achieved an average accuracy

of 27.49% with a 55.54% improvement. When it comes to

execution time, CES has significantly outperformed AP as

shown in Table IVb. We have measured execution time on

various real-world datasets with low and high dimensions,

including (heartdisseaseh, 13), (glass, 10), (heap, 19), and

(aerosol, 892), (alphabet, 892), (aquarium, 892), (banana, 892),

(basket, 892), (blog, 892), (book, 892), (wing, 899) and (water,

899). When considering the maximum time in 10 iterations,

CES has consumed 3.4569 seconds, 0.926 seconds, 0.8798

seconds, 2.5332 seconds, 3.5332, 3.5557 seconds, 0.79099

seconds, 0.0941 seconds, 0.0689 seconds, 0.3242 seconds,

0.2612 seconds, 0.8739 seconds, and 3.1353 seconds less than

AP. Finally, CES took 1.4016 seconds less than AP on all

real-world datasets; additionally, our method has consumed

44.60% less execution time than AP. When it comes to average

time, AP outperforms on some of the datasets, but only by a

small margin. Nonetheless, when the average performance of

average time consumed on all datasets is considered, CES has

consumed 32.02% less time than AP. The proposed cluster

ensemble method, depicted in Figure 1(A), has quadratic

time complexity, i.e., in O(n2) time, whereas the proposed

consensus function, depicted in 1(B), has time complexity of

order O(n2) i.e., O(n2 +n) time.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new cluster ensemble method

(CES), which is capable of dealing with limitations of tradi-

tional cluster ensemble methods which use different clustering

algorithms to obtain base partitions in the ensemble generation

step and to obtain a single partition in the consensus function

that might create a compatibility issue in terms of working

functionality in cluster ensemble architecture. Furthermore,

the accuracy of the final results was a big worry to cope

with. We tested our proposed framework on ten real-world

benchmark datasets. The results showed that the proposed

clustering ensemble method outperformed state-of-the-art clus-

tering ensemble methods such as the CSPA, HGPA, MCLA,

WSCE, EM, QMI, ECPCS MC, and ECPSCS HC algorithms

on average. There are several strengths to the proposed cluster

ensemble method; firstly, the same clustering functionalities in

both of its stages lead the framework more compatible that sig-

nificantly improves accuracy over state-of-art cluster ensemble

methods. Second, it employs a newly proposed consensus

function to combine base partitions into a single partition that

uses information of cluster centers present in a data set to limit

AP to produce a actual number of clusters rather than random

number of clusters, resulting in a significant improvement in

accuracy and execution time when compared to AP.

The proposed cluster ensemble method has several advan-

tages that researchers can take advantage of. clustering is

useful for extracting useful knowledge from large amounts of

data. Cluster ensemble is the preferred option for reclustering

previously obtained knowledge or hidden patterns from the

clustering algorithm in knowledge reuse. The proposed cluster

ensemble method can be used to reuse clustering algorithm

knowledge and recluster it using the same clustering algorithm.

As a result, it avoids the overheads associated with including

another clustering algorithm for the consensus function.

As part of future work, we will further enhance the accu-

racy of CES and compare it to advanced cluster ensemble

methods and datasets. We will optimise CES such that its

time complexity will be comparable to other cluster ensemble

methods. We will explore other cluster algorithms like AP

features such as density peaks [32] that help in increasing

accuracy significantly.
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