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Abstract—Knowledge graphs have been shown to play an
important role in recent knowledge mining settings, for example
in the fields of life sciences or bioinformatics. Contextual infor-
mation is widely used for NLP and knowledge discovery tasks,
since it highly influences the exact meaning of expressions and
also queries on data.

The contributions of this paper are (1) an efficient approach
towards interoperable data, (2) a runtime analysis of 14 real-
world use cases represented by graph queries and (3) a unique
view on clinical data and its application, combining methods of
algorithmic optimisation, graph theory and data science.

I. INTRODUCTION

Personalized, or more precisely, stratified medicine aims

for matching certain risk groups and possibly yet unknown

subgroups to treatments, ultimately optimizing patients’ re-

sponses, mainly to available drugs. This explicitly includes

strategies beyond guidelines and off-label usage of substances

in order to increase the effect and/or to decrease undesired

side effects. For this purpose, collected primary data of the

examined persons have to be linked with data from sec-

ondary sources like publications or databases in an application-

oriented way. [1]

Considering both amount and complexity of input data, at

least early steps of data processing require computer methods

and thus machine-readable data. While these early steps are

highly automated and deeply influence subsequent analyses,

proper modeling of data and derived knowledge is key for

each input, analysis and output layers of a system supporting

decisions by human expert users. Considering data of interest

to be highly heterogeneous as well as evolving and growing

over time, the abstraction to semantic entities and relations

appears favorable. Thus, graphs appear as a feasible basis

for modeling both data and metadata. Moreover, external

resources could be linked to such a knowledge graph. Finally,

for querying contents modeled in such way, highly generic and

powerful graph algorithms are available.

But how can clinical patient data from a database be

efficiently stored as a knowledge graph using a suitable data

schema? And how can queries be generated afterwards using

the data linked in this way? What is the runtime of an

application-related query for suitable literature for a given

patient?

In this work, building on the already stored PubMed data

from [2], a model will be presented that efficiently embeds

the collected primary data into structured, domain-specific

environments, in this case ontologies. The thereby generated

knowledge graph will then be used to examine individual

queries in terms of efficiency. See figure 1 for an illustration

schema. For the purpose of illustration of real-world data a

small section of the underlying graph in Neo4j can be seen in

Fig. 2.

The contributions of this paper are an efficient approach

towards interoperable data, a runtime analysis of 14 real world

use cases represented by graph queries and a unique view

on clinical data and its application combining methods of

algorithmic optimisation, graph theory and data science. This

paper is divided into seven sections. After an introduction,

the second section gives a brief overview over the state of

the art and related work. The third section describes the

theoretical and practical background and the methods used

for our novel approach. Therefore, we will refer to both

knowledge graphs and dedicated algorithms. In the fourth

section, we present our optimization approaches to tackle

the interoperability challenges within our use cases. The fifth

section covers applications from real-world use cases like

query finding, with the experimental results on both artificial

and real-world scenarios in the subsequent section. After that,

we present a detailed evaluation in section six. Our conclusions

and outlooks are drawn in the final section. We will propose a
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Fig. 1. Illustration of some knowledge graph layers found in the testing
environment. Here, we can see document data extracted using Text Mining
on PubMed Data with their metadata (e.g. authors, publication venues,
publication date) and named entities from different ontologies. They form the
interoperability layer to the clinical data. In the background we use medical
reports analyzed with the help of text mining methods.
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novel algorithmic approach which presents promising perfor-

mance. The results show a significant improvement for new

algorithms for knowledge discovery on clinical data.

II. RELATED WORK

In scientific research, expert systems provide users with

several methods for knowledge discovery. They are widely

used to find relevant or novel information. A popular example

in biomedical research is to try to find molecular pathways;

controlled reaction mechanisms within biological organisms,

which might be misregulated in pathogenic states. Obviously,

understanding these cascades, their players and relations to

diseases is key to design and apply drugs in a targeted way.

Being confronted with patients’ clinical data and with expert

knowledge in the back of their minds, clinical researchers

usually consider an initial idea and start integrating external

content such as scientific papers. The most common approach

is inquiring with a search engine about some terms to find

closely related information. Effectively, users most frequently

query for additional documents or patient files to adjust the

search query. Similarly, for a given set of documents or

patients the question might be on commonalities considering

a certain topic. Both approaches are heavily related to the

context of data points, see for example [3] for PubMed data.

Topic labelling – or cluster labelling – is constantly being

explored in several research fields.

In principle, the way external data sources and manually

curated data are integrated is key. Although several commer-

cial solutions exist, Fakhry et al. state that the “adoption

and extension of such methods in the academic community

has been hampered by the lack of freely available, efficient

algorithms and an accompanying demonstration of their ap-

plicability using current public networks.” [4]. This and the

emerging improvements on large-scale Knowledge Graphs

and machine learning approaches are the motivation for our

novel approach on semantic Knowledge Graph embeddings

for biomedical research utilising data integration with linked

open data. Several similar approaches (often in the context

of drug-repurposing) such as Bio2RDF [5], hetionet [6], or

OpenPHACTS [7] have already been described. Our approach

is more focussed on integrating the literature itself in a FAIR
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Fig. 2. Example illustration of the proposed knowledge graph centered
around "Alzheimer’s disease". We find different patients (blue nodes), values
(red nodes) and ApoE allele combinations (orange nodes). The light brown
nodes refer to entities, for example from Disease Ontology. These are highly
important for the interoperability of the knowledge graph.

[10] and open knowledge graph, which is also accessible as a

public resource.

In recent decades the field of natural language processing

(NLP) and knowledge discovery as well as data mining and

the management of information systems as the related fields

are emerging. It is not exactly the focus of this paper, but

since we are relying on data obtained from biomedical texts,

we should note that several authors like Manning et al. [8] or

Clarc et al. [9] give an overview about the algorithmic part

of computational linguistics and NLP. In addition there is a

constant interest in using graphs for these problems, see [10].

III. BACKGROUND

Using graph structures to house data carries several ad-

vantages for the integration of knowledge and its targeted

re-extraction. According to their generic character such inte-

grative knowledge graphs are important for the life sciences,

medical research and associated fields, not least supporting

their interconnection on a formal level. Considering systems

medicine applications, knowledge graphs provide grounds for

holistic approaches unraveling disease mechanisms. In these

and other common settings pathway databases play an impor-

tant role. As a basis, biomedical literature and text mining are

used to build knowledge graphs, see [11]. As part of the studies

on integrative data semantics within clinical research, data on

patients suffering from certain diseases have been collected

by various institutions. In our case, the data was available in

the form of a NoSQL Mongo database. In addition, several

databases and ontologies can implicitly form a knowledge

graph. For example Gene Ontology, see [12], DrugBank, see

[13] or [14] cover large amounts of relations and references

which other fields can refer to.

In [2] we collected 27 real world questions and queries

in scientific projects to test the performance and output of

the knowledge graph. We could show that the performance of

several queries was very poor and some of them even did not

terminate. In order to identify limitations and understand the

underlying problems, we carried on with our work. The testing

system is based on Neo4j and holds a dense large-scale labeled

property graph with more than 71M nodes and 850M edges.

They are based on biomedical knowledge graphs as described

in [11].

The more specific data model for clinical research used in

this work initially contains general variables about a patient,

e.g., site of measurement (site), sex (sex), and genotypes

(ApoE). Additionally, a variety of neuropsychological testing

results (NPT), recorded disorders (disturbances), laboratory

measurements (LAB), liquid biopsy markers (LIQ), spinocere-

bellar ataxia characterisations (SCA) and diagnoses (both

ICD10-encoded and free text) are given as variables.

Due to the sensitivity of personal clinical data, a sample

of artificial data is used within this work. They do not cover

the full data schema presented later (see Fig. 6). However, the

simplified model is sufficient to present the principle of the

work, and can be easily transferred or extended to a full data

set using the data schema.
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Fig. 3. Formal data schema of the knowledge graph of the PubMed database.

This work is also based on the Paper Towards context in

large scale biomedical knowledge graphs [2], in which an

efficient polyglot persistence design for storing and querying

a knowledge graph based on the documents contained in

the PubMed database is presented on the basis of a created

data schema. There, based on questions from the biomedical

domain, a knowledge graph is created by resorting to the data

schema given in Fig. 3. [2]

Data schema and practical implementation are based on

clinical questions, which are the result of several interviews

with employees from the biomedical field. They form the basis

for the knowledge graph requirements.

IV. OPTIMIZATION APPROACHES

A. Data Schema and Knowledge Graph Foundations

Based on the given data, we need to tackle the challenge of

how to arrange data points in a suitable schema and thus store

them efficiently in a knowledge graph so that the clinical ques-

tions can be answered using graph queries. Simultaneously,

the later connection to the graph of the PubMed database in

[2] needs to be solved. For this purpose, we use the schema

represented in Fig. 3. Extended with data from clinical studies

an enrichment with context data is also possible, applying a

mapping between the entities and several ontologies. Here, a

mapping means a function M : E(D) → E(O), where E(D)
describes the entities of the given data and E(O) the entities of

the used ontologies. Thus, the mapping consists of edges that

create a logical relation between biomedical data and lexicons

in the knowledge graph, see [2].

First, the used classes of the model presented in Fig. 6

should be introduced. The initial and central class is the patient

itself. It does not contain any other attributes except for an ID,

as those are outsourced for the reasons mentioned above.

The next class to be considered is the patients’ gender

which is represented by the node sex. Another class is

the ApoE risk type. It describes a genetic condition that is

closely associated with risks for Alzheimer’s disease. For each

patient, either a 2-tuple (ǫi, ǫj), i, j ∈ {1, 2, 3, 4} or two 2-

tuples (rs429358, rs7412) of SNPs, which in turn form a

ǫi, i ∈ {1, 2, 3, 4}, are given. The individual alleles in this

case again consist of a tuple of SNPs, which can be either of

type C or T. For illustration, the small model is shown in Fig.

4.

This construction results in the class of the risk group, which

can have different patient-specific expressions. These expres-

sions are implicitly given by the risk types. Three different

categories are distinguished with the following designations:

• low-risk: patients whose risk type corresponds to a tuple

(ǫi, ǫj), i, j ∈ {1, 2, 3}.

• medium-risk: patients whose risk type corresponds to

a tuple (ǫi, ǫj) with i = 4, j ∈ {1, 2, 3} or i ∈
{1, 2, 3}, j = 4.

• high-risk: patients whose risk type corresponds to the

tuple (ǫ4, ǫ4).

isrs

SNP

hasCombinationOf

hasCombinationOf

Patient hasRsCombination

containsSNPεi

Fig. 4. Structure of ǫi-tuples and rs-codes. For further explanaition regarding
the biology behind this concept, see [15]

In our case, the ǫ tuple is used for the artificial data. However,

the model can of course be applied to the alleles as well, since

there is a unique bijective mapping between the set of alleles

relevant to the ApoE and the ǫ-tuples. [15]

Next, we consider measurements of clinical trials and stud-

ies. These include, as already mentioned in. section III, LAB,

LIQ, NPT, ApoE, SCA, and diagnoses. They are collected in

the class of attributes and belong to a parent category,

topic stored under unstructured. Values are assigned

to the attributes as part of the patient examinations.

Like the topics, these are created as separate objects of

the Unstructured class and linked to the attributes

class via relations. The values themselves are not initially

associated with any entity. Another class unit is created,

which stores the associated unit for each measured value. This,

as mentioned above, again allows for a wider range of viewing

and interrogation options for the graph. In addition, one can

connect the units to a suitable ontology, for example UCUM

(Unified Code for Units of Measure, [16]), using appropriate

relations.

Furthermore, one or more diagnoses can be assigned to a

patient. These are also defined as a separate class and are

stored as a diagnosis code. This matches the diagnosis codes
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Fig. 5. Formal data schema of the knowledge graph combining clinical data
and document data.

of the Disease Ontology in its descriptive usage, so it is also

used by default in subject-related literature. [17]

In addition, we use the class time. Every measurement and

every examination is provided with a timestamp. Thus, a tem-

poral hierarchy can be determined for any subset of the total

data and, under certain circumstances, even trends regarding

the course of the disease can be identified. Commonly, the

time stamps describe the date of an examination, but might

also retroactively refer to the date of the first occurrence of a

symptom or an event.

The last classes used are source and sourceAll. Here,

source serves as the source of a dataset of a specific clinical

institute of the DZNE. The location where the data was

collected is also stored. This enables to locally delineate the

data from each other and allows for combining datasets of

different origins in one graph without losing their affiliation.

The class sourceAll, inheriting from source, is almost

identical to the latter, but has the additional attribute prove-

nance. This makes it possible to unambiguously define and

record the relationships between different instances of classes

within a given data set. The classes mentioned above have in

different relations to one another. However, the outsourcing

of attributes and the resulting increase in the number of

nodes also increases the number of edges. In a directed graph

G = (V,E) with a number of nodes n = |V |, the number of

edges in the worst case is |E| = n · (n− 1), since each node

v ∈ V can have an edge to any other node u ∈ V, u 6= v.

The naming of the edges follows the Dublin Core standards,

see [18]. These are simple standards of the Dublin Core

Metadata Initiative for data formats of documents or objects.

The vocabulary listed there has partially been replaced by

more domain-specific expressions, while preserving the basic

structure. As an example the term hasFormat is replaced by

the more adequate hasSex which keeps the original structure

and represents the patient-sex relationship.

In addition to the name or label of an edge, further infor-

mation is required. Each relation of two classes receives a

timestamp, which is stored in the attribute time. This can be

given explicitly by a concrete date or also implicitly by the re-

lationship of the classes and relations to each other. In addition,

the edges receive an attribute provenance. This correlates with

the attribute of the same name of the sourceAll node and

assigns an internal membership to relations between several

classes. Thus, the provenance attribute, whether within a node

class or as an attribute of a relation, prevents data ambiguity.

These considerations yield the schema in Fig. 6. However,

we need to create a more generic schema for the graph

database. Therefore, we extend the schema from [11] by

combining all blue marked entities from Fig. 6. Thus, the

schema in Fig. 5 is obtained.

B. Creating interoperable data

We use the bulk import function of Neo4j to load the data.

For this, we converted the input data into CSV files. This

import consists of the following steps:

Algorithm 1 INTEROPERABLE-DATA

Require: import file f

Ensure: CSV export c

createPathEnvironment(c)

2: createStandardNodes()

impCSVFile(f )

4: writeNodes(f ,c)

writeEdges(f ,c)

6: writeHeaders(c)

return c

The method createPathEnvironment(c)

creates the path environment for the export c,

createStandardNodes() creates the standard nodes

(e.g. for sex). They can be outsourced of the main methods

below as they are static and do not depend on the input

data.These first steps can be done in linear time.

The main method is impCSVFile(f, c). First, it gets the

import file f containing the clinical data. Then, for each entry

all necessary nodes and relations are created while avoiding

duplicates with the help of lists and sets. Regarding the time

complexity of the look-up function, the latter is far superior

to the former: Sets in Python are implemented as hash tables

using keys as indices and therefore provide an average look-

up time of O(1) instead of lists which need O(n) (see [19].
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Fig. 6. Detailed data schema deduced from the IDSN data model. In orange, the node class Unstructured represents unstructured data considered
complementary contextual information provided for entities and patients.

writeNodes(f, c) and writeEdges(f, c) then print the

CSV files from the nodes and edges created beforehand. Both

simply go through a list of stored nodes which takes O(n)
time. Lastly, writeHeaders creates the necessary header

files for the bulk import which happens in O(1) (see [20]).

With out first approach using lists to avoid duplicate nodes

and edges we achieved a total time complexity of O(n2) where

n represents the size of our import data f . When replacing lists

with sets we could lower the total time complexity to O(n).
The explicit runtimes shown in Fig. 11 in section VI-D prove

the theoretical difference.

V. USE-CASES AND GRAPH QUERIES

We obtain our use-cases from clinical questions. These are

ordered and categorized within this section in order to later

analyze their efficiency in VI and to consider comparative

values by means of complexity theory. Preliminary work has

been carried out in [21] and [22]. There, biomedical questions

are examined and optimized as well. For this purpose, six

different literature sources are used, some of which cite

different and some common categories or classes for graph-

based queries. In [2], a hierarchy for the classification of the

queries is created with reference to fitting literature sources

and using the author’s own criteria.

This section focuses on the individual biomedical issues.

They were collected through interviews with clinical and

biomedical professionals. The process is similar to the one

in [2] First the input and output for all questions is described.

Since the graph contains only a subset of the actual intended

data, the original clinical questions have to be replaced.

However, the categories of the queries, assigned as proposed

in [2], shall be maintained. From a biomedical perspective,

these questions may not make sense or might not be of

interest; however, from a computer science perspective they are

isomorphic to the original ones. The questions are numbered

in the listing so that they correlate with the later queries.

In spite of no biological question to base upon, queries 13-

15 have been added to test the algorithms provided within

Neo4j. The associated queries formulated in Cypher can be

found in table I.

VI. EVALUATION

The queries created in V are now to be applied to the graph

and evaluated with respect to their runtimes. For this purpose,

the actual runtime in Neo4j is measured for multiple execu-

tions and related to the time complexity of the algorithms. The

queries are presented according to their categories. Here, the

numbering is done following table I.

A. RPQ

The simplest query in the class of Graph Navigation Queries

is whether a certain path exists in the graph, see [22]. Path

queries specified with regular expressions are commonly re-

ferred to as Regular Path Queries (RPQ), see [23].

Most of the queries are RPQs (Q1, Q2, Q3, Q5, Q7, Q11,

Q12). According to [24], these have a polynomial runtime due

to transformation into a non-deterministic finite automaton.

Query 1 refers to the question For which patients do

complete neuropsychological tests exist?. This question can

be substituted by Which patients have the most distinct HGNC

values?. The corresponding Cypher query is:

JENS D ÈORPINGHAUS ET AL.: AN EFFICIENT APPROACH TOWARDS THE GENERATION AND ANALYSIS OF INTEROPERABLE CLINICAL DATA 63



TABLE I
CLINICAL QUESTIONS, THEIR COMPLEXITY CLASS AND REPLACEMENTS FOR TESTING PURPOSE. HERE DC REFERS TO Degree Centrality, SP TO Shortest

Path AND BC TO Betweenness Centrality.

Class Question Replacement

1 RPQ For which patients do complete neuropsychological tests
exist?

Which patients have the most distinct HGNC values?

2 RPQ Which measurement values are most common in the context
of {diagnosis1}?

Which patients are found most often in the context of a risk
group {RiskGroup1}?

3 RPQ Which measurements are collected at the same time? Which HGNC values are most commonly collected during a
certain visit {visit1}?

4 CRPQ What does the chronological order of the measured values of
entity {entity1} and risk group {RiskGroup2} for a patient
{patient1} look like?

What does the chronological order of the measured HGNC
values {entity1} and risk group {RiskGroup2} for a patient
{patient1} look like?

5 RPQ How many patients received a diagnosis within two days of
their visit?

How many patients received a diagnosis on their first visit?

6 CRPQ Which patients diagnosed with {diagnosos2} underwent neu-
ropsychological testing {number1} days beforehand?

Which patients diagnosed with {diagnosis2} at visit {visit2}
had the HGNC value {HGNC_value} at their previous visit?

7 RPQ Do people of age {age1} come for examination more often
than others?

Do people of sex {sex1} come for examination more often
than others?

8 CRPQ Which entity {entity2} do patients without any diagnosis have
in common?

Which patients are diagnosed with exactly {number} distinct
diagnoses and to which risk groups do they belong?

9 DC How often does an allel tuple {allel tuple} appear amongst
all patients?

Which risk group is most common amongst all patients?

10 ECRPQ What literature {literature1} can be found for patient {pa-
tient2} diagnosed with {diagnosis3}?

Which HGNC values {HGNC_value2} can be found for
patient {patient2} diagnosed with {diagnosis3}?

11 RPQ How many patients underwent neuropsychological test-
ing {npt1} and at the same time have laboratory value
{LAB_value1}?

How many patients are diagnosed with {diagnosis4} and at
the same time have an HGNC value {HGNC_value}?

12 RPQ How many Patients suffer from disturbance {disturbance1}
and what sex are they?

How many patients are diagnosed with {diagnose5} and what
sex are they?

13 SP - What is the shortest path between entity {entity4} and entity
{entity5} and what is on this path?

14 BC - Which patient connects entities most strongly?
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Fig. 7. Runtimes of different RPQ queries (left) and runtimes of (E)CRPQs queries (right) in milliseconds. Mean values are 2558.5 (Q1), 109.8 (Q2), 3990.7
(Q3), 3010.5 (Q5), 160.3 (Q7), 90.9 (Q11) and 154.5 ms (Q12) for RPQ and 53.6 (Q4), 1671.7 (Q6), 8402.6 (Q8) and 52.2 ms (Q10).

(Q1) MATCH (e:Entity {source:’HGNC’})

<- [:hasRelation]-(p:Patients) RETURN

p.patient AS Person, COUNT(DISTINCT e)

AS number ORDER BY number DESC LIMIT 10

As another example query 3 answers the question Which

measurements are collected at the same time?. It can be sub-

stituted by Which HGNC values are most commonly collected

during a certain visit {visit1}?. The corresponding Cypher

query is:

(Q3) MATCH (e:Entity {source:’HGNC’}) <-

[:hasRelation]-(p:Patients)-[:hasValue]

-> (v:Unstructured {value:’2’}) RETURN

e.preferredLabel AS HGNC_Wert, COUNT(e) AS

number ORDER BY number DESC LIMIT 10

The respective average runtimes of each query can be seen

in 7. As we can see, we have slower (Q1, Q3 and Q5) and

faster queries(Q2, Q7, Q11 and Q12).

As discussed in [22], queries become slower with increasing

number of queried attributes and used relations. Here, we first

consider the queried attributes. However, these do not differ

fundamentally for the two groups of fast and slow RPQs.

They vary between one and three, but several attributes are

needed even for the faster running queries. The comparison

of the relations leads to more conspicuousness: Regarding the

number of relations used by the slow (Q3 and Q4) and the fast
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Queries (Q7 and Q12), on first sight, there is no difference.

They all make use of two relations. But when looking at

the nodes used within the queries a notable difference can

be found:One of the nodes used in Q7 and Q12 ist sex

which only has two possible specifications: male and female.

The queries Q3 and Q4 have a similar structure, but instead

of using sex they use the far larger class entity which

holds more than 50,000 nodes. The former class contains only

two distinct nodes (male and female), while the latter class

contains over 50,000 nodes. Thus, many more nodes need to

be checked, which explains the speed difference.

B. CRPQ and ECRPQ

Conjunctive queries and RPQs can be combined in the class

CRPQ, see [23], which then can be extended further by the

extended CRPQs which include the possibility to specify path

variables and even allows the output of a query to be a path.

According to the schema presented in [22] they both are sub-

problems of pattern matching in graphs. We consider both

CRPQs (Q4, Q6, Q8) and ECRPQ (Q10, see Fig. 8) together.

For example, Query 4 is answering the question What

does the chronological order of the measured values of entity

entity1 and risk group RiskGroup2 for a patient patient1 look

like? This question can be substituted with What does the

chronological order of the measured HGNC values entity1 and

risk group RiskGroup2 for a patient patient1 look like? The

Cypher query can be formulated as follows:

(Q4) MATCH (u:Unstructured) <-

[:hasValue]-(p:Patients {patient:

’22504’}) - [:hasRelation] -> (e:Entity

{source: ’HGNC’}) MATCH (r:RiskGroups)

- [:hasPatient] -> (p) RETURN

e.preferredLabel AS HGNC, r.riskgroup AS

RiskGroup, u.value AS VisitNo ORDER BY

u.value DESC

Question 10 (ECRPQ) answers the question What literature

{literature1} can be found for patient {patient2} diagnosed

with {diagnosis3}? In our testing environment we can substi-

tute this query with Which HGNC values {HGNC_value2} can

be found for patient {patient2} diagnosed with {diagnosis3}?.

The Cypher query is expressed as follows:
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Fig. 8. Example output of ECRPQ query Q10.

10: MATCH p=(e1:Entity

{preferredLabel:"Alzheimer’s disease"})

<- [:hasRelation] -(A:Patients {patient:

"12864"}) - [:hasRelation] -> (e2:Entity

{source:"HGNC"}) RETURN p

The results and runtimes can be found in Fig. 7.

According to [25], the class of CRPQ is NP-complete, so

it can probably not be solved efficiently. The figure mentioned

above clearly shows this fact because, besides very good

results for Q4 and Q10, one also finds very poor runtimes

for Q6 and Q8. The last-mentioned query immediately catches

the eye, since, according to I, it covers several of the above-

mentioned aspects. It is the only one of the (E)CRPQs

presented here that works globally, accesses four different

attributes and uses two different relations. Q6 does not search

globally, indeed only locally, but it also has two different edge

types, each of which occurs in both conjugate subquerys, and

even queries four different attributes.

In particular Q4 is interesting. The query only searches

locally, but queries five different attributes and uses three

different relation types. Nevertheless it has quite a low runtime

and the structure of the graph might offer an explanation for

this seeming discrepancy. A directed graph G = (V,E) with

n = |V | nodes can have up to n · (n − 1) edges under the

assumption that there are no duplicate edges, because each

node v can have an edge (v, u) to any other node u ∈ V, v 6= u.

Looking at the source files used here, the low density of

the graph is immediately noticeable. An example of this is

provided by the input CSV file, which contains about 30,000

patients, but at most six visits per patient, which in turn include

fewer than 20 relations. So there are no more than 120 edges

per patient. Looking at the whole graph, this ratio can also

be seen when importing into the database: with half a million

nodes, only slightly more than 2.6 million edges are created.

Thus, it is noticeable in Q4 that the small portion of data that

the query looks at is rather sparse. There is very little data on

a patient, so only a very limited number of possibilities needs

to be considered. This may explain the quick response of the

database.

Lastly, we take a look at the ECRPQ Q10. It uses three

different attributes but only one edge type. Here, we find the

same result as previously discussed for Q4: only a very limited

amount of data is available for the patient, which is likely to

have a significant impact on the speed of the query.

C. Other results

Finally, we take a closer look at the algorithms used. All

three are algorithms integrated into Neo4j and provided via

the Graph Data Science 1.1.3 plug-in (Q9, Q13, see Fig. 9

and Q14). First, we explore Q9 with Degree Centrality.

(Q9) CALL gds.alpha.degree.stream({

nodeProjection: [’Entity’,’Patients’],

relationshipProjection: ’hasPatient’

}) YIELD nodeId, score RETURN

gds.util.asNode(nodeId).identifier AS

name, score AS numberOfPatients ORDER BY
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numberOfPatients DESC LIMIT 3 Since the incident

edges of each node are counted, for a dense graph G = (V,E)
we obtain a complexity of O(|V |2) in the worst case, i.e.

every node v ∈ V is incident to every other u ∈ V, u 6= v. In

[22], it is already shown that the algorithms implemented in

Neo4j have such a high running time on large networks that

they become practically almost useless. However, the runtimes

and the average of query Q9 shown in Fig. 10 initially show

otherwise for Degree Centrality. Once again, the fact that

the graph is very sparse comes into play. The nodes have

only a few direct neighbors and this has a strong effect on

the runtime of the algorithm. Here, we use Degree centrality

for a node with only a few different specifications. Thereby,

the long runtime can be circumvented by constructing three

individual queries for the different risk groups instead of

using the algorithm in the first place.

Similarly, Q14 calculates the betweenness centrality:

(Q14) CALL gds.graph.create

(’myUndirectedGraph’,

["Patients","Entity"], {hasRelation:

{orientation: ’UNDIRECTED’}})

CALL gds.alpha.betweenness.stream

(’myUndirectedGraph’) YIELD

nodeId, centrality RETURN

gds.util.asNode(nodeId).preferredLabel

AS entityLabel, centrality AS number ORDER

BY number DESC LIMIT 10

Q13 computes a shortest path. The Cypher query calls the

function shortestPath:

(Q13) MATCH(entity1:Entity {identifier:

’DOID:0040005’}) MATCH(entity2:Entity

{identifier: ’41022’}) CALL

gds.alpha.shortestPath.stream({startNode:

entity1, endNode: entity2, nodeProjection:

’*’, relationshipProjection:

{all:{type: ’*’, orientation:

’UNDIRECTED’}}}) Yield nodeId, cost RETURN

gds.util.asNode(nodeId), cost

The runtime is shown in Fig. 10. Q13 has a long runtime

which is not surprising, as centrality measures for knowledge

graphs are quite complex. While several efficient algorithms

have been proposed, see [26], and some more specific prob-

lems are known to be NP-hard. Here, good examples are

Group Closeness Maximization (GCM), see [27] or the Max-

imum Betweenness Centrality, see [28].

There are several algorithms to compute shortest paths
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Fig. 9. Example output of shortest path query Q13.
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Fig. 10. Runtimes of different queries (Q9 degree centrality, Q13 betweenness
centrality shortest path and Q14 ) in miliseconds. The mean values are 350.3
(Q9), 14,677,102.6 (Q13) and 1,118.5 ms (Q14).

in graphs. The algorithm used in Neo4j is said to be a

variant of Dijkstra’s algorithm, which has a time complexity of

O(|V | · log|V |+ |E|) [22]. For the given query, the algorithm

runs very fast on the existing graph. However, as shown in the

source above, the runtime grows tremendously with graphs

less favourable to the algorithm, so the result obtained here

should be viewed with caution. Finally, the problem becomes

clear with the third algorithm. According to [29], Betweenness

Centrality has a running time of O(|V |3), but this can be

improved with Brandes’ algorithm to a time complexity of

O(|V | · |E|). According to the documentation of Neo4j, this

is also the algorithm used there (cf. [30]). The query executed

here, as shown by the average and the exact values in Fig.

10, ran for several hours before coming to a result. This

not only stands in stark contrast to the other two algorithms,

especially the one for shortest paths, but also renders them

almost unusable for practical applications.

D. Import

As introduced above, we proposed two different algorithmic

approaches to import the data and generate interoperable data.

For testing purposes, we created three different test sets: Two

small data sets with 1,300 and 36,000 records as well as a

large set with 135,000 data records.

See Fig. 11 for a detailed runtime overview. The optimized

approach using sets is faster and thus more competitive for

large data sets.

VII. CONCLUSION AND OUTLOOK

Here, we presented a novel approach that annotates clinical

research data with contextual information. The result is a

knowledge graph representation of data, the context graph. It

contains computable statement representation. We discuss the

impact of this novel approach using 14 real-world use cases

and graph queries. This graph allows to compare research

data records from different sources as well as the selection

of relevant data sets using graph-theoretical algorithms. See

Fig. 12 for an illustration of Alzheimer’s data points.

This proof of concept of a biomedical knowledge graph

combines several sources of data by relating their contextual
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Fig. 11. Runtime of INTEROPERABLE-DATA, see Algorithm 1, with lists (left) and sets (right) with different import data size (1300–135000 data points).
The speedup factor is between 2 (for small instances) and 13 (for large instances).

data to one another. We processed data from clinical research,

biomedical publications and presented a generic and efficient

approach towards interoperable data.

Furthermore, we discussed the runtime analysis of 14 real-

world use cases represented by graph queries. As stated in

previous works and discussed in our paper, performance for

some semantic queries remains a major problem due to the

massive latency for requesting detailed data points. Thus, the

next step is to integrate the results presented in [22] in our

information systems to improve the practical execution times

for those and similar queries.

Storing and querying a giant knowledge graph as a labeled

property graph is still a technological challenge. Here, we

demonstrate how our data model is able to support the un-

derstanding and interpretation of biomedical data, especially

in the context of clinical trials. We presented several real-world

use cases that utilize our massive, generated knowledge graph.

To date, we restricted our work to some smaller subgraphs. We

plan to integrate these graphs into larger knowledge graphs, for

example interaction networks. That will improve this unique

view on clinical data and its application combining methods

of algorithmic optimisation, graph theory and data science.

Considering the integration of further related biomedi-

cal knowledge resources, a variety of highly specific, field-

dependent databases appears available at hand. For example,

imaging techniques such as DICOM files from radiology

reports are a promising extension for the future. Files of

this format offer far more than just the image data, but

contain a variety of additional (meta-)information concerning

the patient, the applied imaging techniques, the circumstances

of the examination, affiliated publications and much more.

These meta-data could be reorganized in form of a graph

and then added to the already existing model. However, it

is important to find a suitable sequence for importing data,

avoiding node ambiguity, e.g. considering already existing

patient IDs.

While our proof of concept is both functional and generic,

extending the knowledge graph to further fields of research,

e.g. towards genomic and pharmacologic information or de-

mographic background data, is feasible and just a matter of

modelling connectors to the relevant sources. Moreover, these
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Fig. 12. Example nodes with output surrounding
preferredLabel:"Alzheimer’s disease". It describes the
data foundation for novel approach that annotates clinical research data with
contextual information. The result is a knowledge graph representation of
data, the context graph. It contains computable statement representation.

occasionally bulk data might be queryable on the fly through

interfaces dynamically translating graph (sub-)queries into

e.g. SQL. Despite considerable increases in expected running

times, such partially distributed approaches might be favorable

over integrated, warehouse-like solutions provisioning giant,

largely unused graphs. However, efficient generation of remote

queries and the re-integration of their results would obviously

be key.
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