
A Practical Solution to Handling Randomness and

Imperfect Information in Monte Carlo Tree Search

Maciej Świechowski

QED Software, Warsaw, Poland

Email: maciej.swiechowski@qed.pl

Tomasz Tajmajer

Institute of Informatics

University of Warsaw, Poland

and QED Software, Warsaw, Poland

Abstract—This paper provides practical guidelines for devel-
oping strong AI agents based on the Monte Carlo Tree Search
algorithm in a game with imperfect information and/or random-
ness. These guidelines are backed up by series of experiments
carried out in the very popular game - Hearthstone. Despite
the focus on Hearthstone, the paper is written with reusability
and universal applications in mind. For MCTS algorithm, we
introduced a few novel ideas such as complete elimination of the
so-called nature moves, separation of decision and simulation
states as well as a multi-layered transposition table. These have
helped to create a strong Hearthstone agent.

I. INTRODUCTION

Games of various kinds and forms have been challenging

human minds since the ancient times [1]. Many games encode

abstract problems, solving which requires high intelligence and

well-developed reasoning ability. It is natural that people have

started using them for more than just pure entertainment. With

the inception of modern computers and artificial intelligence

(AI), games have been often employed as testing environ-

ments [2], [3], [4], [5]. As of now, artificial intelligence in

games is still a hot and growing research topic.

One of the recent trends in AI in games revolves around

creating universal game-playing agents. Such an approach is

believed to be closer to the roots of the AI and it is perceived as

a step towards general intelligence. The most active research

projects in this area are General Game Playing (GGP) [6],

[7], [8] and General Video Game Playing (GVGP) [9]. Both

projects include annual competitions open for the strongest

programs. Both in GGP and GVGP, MCTS has become the

state-of-the-art method. Since 2007, all winners of the GGP

competition have used this algorithm. A particular reason for

its success in general domains is the fact that MCTS requires

only the rules of a game. Although it can take advantage

of domain knowledge, as shown in [10], [11], it is fully

operational without it.

Because MCTS is a statistics-based algorithm, it has helped

to tackle non-deterministic hidden-information games, which

had been particularly difficult for other tree search algo-

rithms [12], [13], [14]. Nevertheless, MCTS is also used in

games without non-determinism or hidden-information such

as Go [15], Hex [16], Othello[17] or Havannah [18].

This research was co-funded by the Smart Growth Operational Programme
2014-2020, financed by the European Regional Development Fund under
a GameINN project POIR.01.02.00-00-0207/20, operated by The National
Centre for Research and Development.

We describe a relatively complete approach to using MCTS

in a game with hidden information and random effects [19],

[20]. However, the specific game we have chosen for this study

is Hearthstone: Heroes of Warcraft, developed by Blizzard

Entertainment [21]. Hearthstone is an immensely popular

game having around 70 million active players. It is a video

card game that consists of series of duels. Players prepare

30-card decks of a chosen hero class. There are ten available

hero classes. The goal is to use such a combination of minions,

spells, weapons, secrets and alternative heroes to reduce the

opponent’s life total to zero. Minions can attack or be attacked.

Spells usually deal damage, control the board (e.g., destroy

minions), draw more cards or provide positive buffing/healing

effects.

The paper is organized as follows. The next section is de-

voted to imperfect information, including Hearthstone-specific

aspects of it (Section II-D), and the MCTS algorithm. Tree

management using a multi-layered transposition table is shown

in Section III. Section IV is devoted to the problem of

dealing with randomness. All aspects presented in sections II

to IV make up a complete MCTS-based agent. Based on the

descriptions and pseudocode provided, the reader should be

able to reproduce the agent and adapt it to a new game.

The experiments and results for our MCTS-based agent in

Hearthstone are presented in Section V. Finally, the last section

is devoted to conclusions.

II. IMPERFECT INFORMATION

A. MCTS

This section is a short introduction to the Monte Carlo Tree

Search algorithm (MCTS). We assume some familiarity of

readers with the topic and recommend the survey [22] as a

relatively exhaustive source of knowledge about MCTS.

The MCTS algorithm is the state-of-the-art method of

performing the game tree search. The idea behind MCTS is

to construct game tree iteratively, as depicted in Figure 1,

by adding one node in each iteration. The algorithm uses

simulations to gather statistical evidence about the quality of

actions. The statistics include the average score, the number

of visits to a node (state) and the number of times an action

has been chosen in the iterations so far.

The aim of a selection policy is to maintain a proper

balance between exploration (of not well-tested actions) and

exploitation (of the best actions so far). The most common

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 101±110

DOI: 10.15439/2021F3

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 101



Fig. 1. The schema of the MCTS algorithm.

algorithm, which was also used for the experiments in this

work, is called Upper Confidence Bounds applied for Trees

(UCT) [23], [24].

B. The State-of-the-Art Approach

A game is of imperfect information if participating players

cannot observe the complete state that affects the game. Even

if some portion of the state is hidden only to certain players or

only at certain moments, the game should still be considered

as having imperfect information. Like randomness, imperfect

information increases the combinatorial complexity of game

tree search algorithms because the algorithms do not have

access to the actual state (unless they cheat) and have to

consider many potential states instead. There are two state-of-

the-art methods of tackling hidden information with MCTS:

1) Perfect Information Monte Carlo Tree-Search [25]

(PIMC): which performs determinization of hidden informa-

tion and after that considers the game as a perfect-information

one. Each determinization symbolizes a possible (parallel)

world, in which a regular MCTS algorithm is executed. The

standard PIMC algorithm performs many determinizations at

the root level and combines statistics and decisions from

them. The key problems with this approach are strategy

fusion and nonlocality, both discussed in papers [25], [26].

The strategy fusion is manifested whenever an algorithm

combines strategies determined for various worlds into a single

optimal strategy. This can often lead to weak play, because

the actual (unobservable) state is represented only by one

of these worlds. Another effect of the strategy fusion with

determinizations is manifested when an opponent is to make

a partially observable move. After a determinization, each

move is fully deterministic, so the PIMC algorithm can make

different decisions based on a particular determinization of

the opponent’s partially observable move by the as discussed

in work [26]. This is a problem of overfitting to specific

determinizations. The nonlocality problem stems from the

fact that determinizations might have different likelihoods of

being accurate. In particular, some determinizations may be

extremely unlikely, rendering their solutions irrelevant to the

overall process.

2) Information Set Monte Carlo Tree Search [26]

(ISMCTS): this algorithm introduces so-called information

sets, which cluster states that are indistinguishable from a

particular player’s point of view. The ISMCTS algorithm

greatly reduces the effects of strategy fusion and nonlocality,

which are present in PIMC. However, ISMCTS requires

a much more complex game model, which creates a huge

implementation workload for developers. The authors of

work [26] wrote that in ISMCTS, “the player’s choices of

actions must be predicated on information sets, not on states”.

In other words, the game simulator must allow for making

both fully observable moves (for the sake of the regular game

playing) and partially observable moves (for the sake of AI

agents using ISMCTS). Working with Hearthstone, we have

found out that this approach can be impractical for more

complex games, especially video games with complex moves.

Another method, mentioned in studies [26], [27], is called

Belief Distributions, which consists in modelling the decision

process of players that have different access to information

(typically, the mutual opponents). The history of observed

actions forms an input for calculating the probability distribu-

tions of possible states. Such a method requires a good model,

which is usually hand-crafted by experts. It has been applied

in games such as Poker [28], in which one of the main aspects

of the game is to guess what cards the opponent is holding.

C. Our Approach

Our solution combines determinizations and information

sets. We introduce two distinct interfaces for representing the

game state:

1) Game simulation state (GS-state): this interface allows

performing all of the game’s logic, such as determining legal

moves, applying moves and updating states, checking if the

game is in a terminal state, who won the game etc. It can only

be used with complete information – either by some kind of

game server / game-master that maintains the complete state

(knows the correct one) or by a player after performing a

determinization (guessing the state).

2) Information Set state (IS-state): this interface represents

all information about the state of the game that is available to a

particular player and is used by him or her to make decisions.

The second property is very important - the information set

may ignore, i.e., not contain, some information that is visible

to the player if it is not that important from a decision

process perspective. For example, let us assume that a health

property of a player is a number from 0 to 100. The game

AI designer may decide not to represent the health of a

player as a numerical value, but rather a set of buckets

[0, 0], [1, 20], ..., [81, 100]. Therefore, the maximum number of

unique values of the health property is reduced from 101 to 6
in the IS-state. However, the GS-state has to operate on the

maximum resolution to comply with the rules of the game

properly. For the optimization of parameters chosen to be

stored in information sets, machine learning algorithms can

be used. Similarly, the IS-state may contain some redundant

information from the GS-state point of view, e.g., whether a

particular card has already been played in the game. The main

102 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021



consequence is that the proposed method allows for complete

separation of the state used for decisions (and gathering

statistics of actions) and the state that is required for

simulations.

We believe that such a distinction has universal applicability

and makes it easy to apply the ISMCTS algorithm in various

games, no matter how the game simulator is written. In

particular, the AI component based on the MCTS algorithm

can be added after the game logic engine is written because the

AI component will not put any constraints on the engine. This

approach allows creating a game simulator separately from the

AI module (a good software engineering practice), without

making any sacrifices required for the AI. This property

has been invaluable during development of the simulator for

Hearthstone, especially in terms of how actions are represented

and applied to a state. The IS-state is a static snapshot of

transformed game state data, so there is no concept of applying

actions to IS-states. The IS-state can be viewed as a so-called

plain data object. As it will be shown in Section III, devoted

to the storage of knowledge, the only functionality apart from

storing data IS-state provides is the equality comparison. The

relatively exhaustive pseudocode of the proposed approach is

shown in Algorithm 1. The procedures which are not explained

in detail in Algorithm 1 are discussed below:

• updateRoot - this procedure changes the root node in the

tree when the current state of the game is changed. The

procedure is explained in detail in Section III-A.

• determinize - this procedure guesses the hidden informa-

tion in the game based on naive sampling among possible

realizations with a uniform probability.

• propagate - the standard back-propagation phase of the

MCTS.

• simulate - the standard simulation phase of the MCTS.

This procedure starts with a given state, simulates till the

end and gets players’ scores.

• tt.findOrCreate - the procedure that finds a tree node

that corresponds to the information set. It is explained in

detail in Section III-B.

D. Information Sets in Hearthstone

We constructed the information sets in Hearthstone that

consist of: (1) global publicly available information about the

game such as the active player, game stage (e.g., mulligan

or choose target), (2) data about Player1 and (3) data about

Player2. The data about a player is modeled as a polymorphic

structure with two possible types: the base ISAnyPlayer or

ISObservedPlayer that inherits from ISAnyPlayer. The former

type represents the perfect information portion of a player, i.e.,

everything that is visible about the player to all players. This

includes such properties as the HP, armor, current crystals,

maximum crystals, minions on board etc. However, to simplify

the model and reduce the combinatorial complexity of states,

we first sort minions by their ID numbers when doing the

comparison of IS-state objects. As long as the two states

contain the same set of minions (with the same attack values,

health and ID numbers), their information sets are considered

Algorithm 1 The pseudocode of the proposed MCTS imple-

mentation.

1: procedure ITERATE(gs_state)

2: rootNode← updateRoot(gs_state)

3: node← rootNode ⊲ current node

4: while elapsedT ime < allotedT ime do

5: gs_movingState← determinize(gs_state)

6: GLOBALS::SELECTION ← RUNNING

7: while GLOBALS::SELECTION is RUNNING do

8: if gs_movingState.terminal 6= true then

9: node← node.select(gs_movingState)
10: end if

11: propagate(simulate(gs_movingState))

12: end while

13: end while

14: end procedure

15:

16: procedure NODE.SELECT(gs_movingState)

17: moves← gs_movingState.getMoves()
18: curEdges← []
19: for each move in moves do

20: edge← allEdges[move]
21: if edge not found then

22: edge← new edge(move)
23: allEdges[move]← edge

24: end if

25: edge.N ← +1 ⊲ increment observed count

26: curEdges.push(edge)
27: end for

28: chosenEdge← selection(curEdges) ⊲ Using UCT

formula

29: chosenMove← chosenEdge.getMove()
30: chosenEdge.V ← +1 ⊲ increment visit count

31: if chosenEdge.V == 1 then

32: GLOBALS::SELECTION ← FINISHED

33: end if

34: gs_movingState.apply(chosenMove)
35: is_state← createInformationSet(gs_movingState)
36: tt← mcts.getTranspositionTable()
37: chosenEdge.nextNode ←

tt.findOrCreate(is_state)
38: return chosenEdge.nextNode

39: end procedure

equal, even if positioning of the minions is different. The

position of minions only matters when it affects attack or

health. The ID is a number encoding a card’s name, e.g., each

“Prince Keleseth” card has the same ID. We also include a

few specific properties of a player that could be theoretically

derived from previous actions and states, such as whether a

player has played an elemental card last turn (some cards gain

extra effects based on this) or whether the “Prince Keleseth”

buff has been applied in this game, which is a very unique

effect that increases attributes of all minions in a player’s deck.

The ISObservedPlayer comes with additional data about

MACIEJ ÂSWIECHOWSKI, TOMASZ TAJMAJER: A PRACTICAL SOLUTION TO HANDLING RANDOMNESS AND IMPERFECT INFORMATION 103



the hidden information in the game: the hand and the secret

zone. In an IS-state, we use a simpler model of a hand than

the one used in a simulator. The hand is just a multi-set of

cards’ ID numbers, and any other properties of cards in the

hand, such as effective mana cost, are ignored. The order of

cards in hand is irrelevant. The secret zone is a set of secrets’

ID numbers, because it is not possible to have more than

one secret of a kind at the same time. Such a representation

makes it possible to compare various approaches to modeling

imperfect information:

1) Both players are modeled as ISObservedPlayer - this

variant makes the assumption that the agent, which the

tree is constructed for (the tree owner), determinizes

the opponent and treats different determinizations as

different states. This variant has the biggest granularity

of states. An exemplar consequence: the sets of cards

in both players’ hands affect state comparisons.

2) Only the tree owner is modeled as ISObservedPlayer

- here, we (i.e., the agent that is constructing the tree)

do not differentiate between the states that differ with

information we cannot see. An exemplar consequence:

only the set of cards in the tree owner player’s hand

affects state comparison.

3) Only the currently active player is modeled as ISOb-

servedPlayer - the idea is similar to (2), in (3), the tree

owner hides the information about itself when simulating

the opponent. This variant can be regarded as a symmet-

ric version of (2). An exemplar consequence: the set of

cards in a player’s hands affects state comparison only if

this player is to make a move in the state that is currently

considered.

We have measured that both variants (2) and (3) work

similarly without any significant difference in the playing

strength of the resulting agent. The first variant, however, leads

to significantly weaker bot because of the higher combinatorial

complexity. In this variant, there are many more unique

nodes in the transposition tables and therefore each node has

less statistics. The strategy fusion problem arises with this

approach as well.

III. TRANSPOSITION TABLES

Transposition tables [29], [30] were originally proposed as

an enhancement to the alpha-beta algorithm, which reduces the

size of minmax trees. As shown in paper [29], within the same

computational budget, the enhanced algorithm significantly

outperforms the basic one without the transposition tables.

The term “transposition” refers to a state in the game that

can be achieved in different ways.For simpler management,

the MCTS tree is often modeled in such a way, that each

unique sequence of actions leads to a state with a unique

node in the tree. This leads to duplication of nodes, even

for indistinguishable states. However, one of the benefits of

such a duplication, is the fact that, whenever an actual action

in the game is performed, the tree can be safely pruned into

the sub-tree defined by the state the action lead to. All nodes

that are either above the current one or on an alternative

branch cannot be visited anymore, so there is no need to

store them anymore. The problem is more complicated when

transpositions are taken into account, and there is no longer

one-to-one mapping between states and nodes. In such a case,

the structure is no longer a tree per se, but a directed acyclic

graph (DAG). When an action is played in the game, it is non-

trivial to decide which nodes can be deallocated and which

cannot because they might be visited again. In general, it

would require a prediction model that can decide whether a

particular state is possible to be encountered again. Storing

all nodes, without deallocation, is detrimental not only for

performance, but also the memory usage, which can become

too high very quickly. Therefore, a worthwhile idea is to

consider a probability a state will be encountered again and

some threshold value based on which the nodes are pruned.

Such an approach is suitable for a game-specific scenario but

not for a universal case because there has not been proposed

a general way of computing such a probability or setting the

threshold. Therefore, we propose a solution based on reference

counting described in the following subsection.

A. The Update Root Procedure

When an action is played in the actual game (not in a

simulation), the algorithm first resets reference counts of

all nodes. The node that corresponds to the state after the

played action is the new root candidate. Next, the algorithm

recursively traverses the nodes starting from the root candidate,

increments the reference count in the currently visited node

and proceeds through edges that lead to nodes with reference

count equal to 0. After the recursive process terminates, all

nodes with zero reference count are marked to be deallocated.

The above procedure is designed to be executed only once

per action made in the game, so it does not bring high

CPU overhead compared to the time required for simulations.

We have measured this in Hearthstone. The profiling session

consisted of 4 complete games with a one second clock for

the moves. The average number of actions was 70 per game,

what gives 280 executions of the update root procedure. The

Monte Carlo simulations took 62% of the total time, whereas

the update root procedure, described in the previous paragraph,

took only 3.2% of the total time. However, because its only

purpose is to reduce the memory usage, in the case of games,

in which the memory footprint is low anyway, the procedure

can be executed less frequently (e.g. every k actions or even

once per game) to save some time. In Hearthstone, however,

this procedure is required, because turning it off results in

an out of memory exception after running for enough time

(typically after a minute) with the setting of 20000 simulations

(or more) per action.

B. Original Two-Layered Design

The proposed solution to storing the game tree is based on

a two-layered structure of hash lookup tables (hashmaps). In

many programming languages, the built-in hashmaps require

keys to be integer values, so we decided to comply with

this requirement. The whole idea is to find a node, if such

104 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021



exists, given an information set as the input. Our approach

requires developers to implement two things. The first one

is a boolean method equals(otherIS), that checks whether

two information sets are equal or not and returns true or

false, respectively. Usually, the equals() method is used with

the accompanying hash() method to speed up the retrieval

of elements from a collection. Our approach is based on a

more complex structure of two, preferably but not necessarily

orthogonal, ways of computing hash values. Therefore, we

introduce a two-dimensional hash function (or, equivalently, a

pair of functions, one per dimension) that returns two values,

each being an integer number, that represent distinct hashes

of a state represented by an information set:

Let A and B be two information sets. The critical constraint

on their two hash values is as follows:

(A = B)⇒ (A.h
′

= B.h
′

) ∧ (A.h
′′

= B.h′′) (1)

Such a two-level structure has been proposed based on analysis

of complex games such as Hearthstone. For simple enough

games, the hash function can return the same value in both

dimensions, i.e., by setting h
′

= h
′′

. In Hearthstone, any hash-

ing function we tested that produced one number led to many

collisions and therefore had a huge negative impact on the

performance of searching nodes. Extending the hash into two

dimensions allows for using independent measures without the

need of dimension reduction and combining them within one

equation. As a result, we managed to decrease the average

time of finding nodes by an order of magnitude in comparison

with a single-dimensional hash. The hash functions, we used

in Hearthstone are as follows:

h’ = ActivePlayerID +

sum(for_each(P in Players):

{

4*P.MaxCrystals + 41*StageType +

90*(P.HP + P.Armor +

40*P.MinionsCount

+ 581*P.HandSize))

}

h’’ = sum(for_each(P in Players)

{

P.WeaponDurability +

for_each(M in P.Minions):

M.HP + 170*M.ID +

21*(M.Attack+1)

}

where ActiveP layerID is the index of the player, encoded

as 0 or 1 for Player 1 and Player 2, respectively; StageType

is 0, 1, 2, 3, or 4 for BasicAction, ChooseTarget, ChooseOne,

Discover, or Mulligan, respectively.

C. Using Transposition Tables in the Game

In our approach, transposition tables are used with the idea

of separating the simulation game state and the decision game

state. The decision game state is represented as an information

set (IS-state). Firstly, we make a one-to-one mapping between

information sets and nodes, so each IS-state has exactly

one corresponding node. Information sets have already been

defined in the previous sections as game state abstractions. A

node is a functional structure that contains data required by the

MCTS algorithm to operate. We managed to simplify nodes to

only store a collection of edges. Because the MCTS version

presented in this paper works with non-deterministic effects

of actions, the edges cannot be stored as a fixed-sized array

populated when a node is created. Instead, we store edges

as a hashmap to satisfy the requirement that different sets of

actions might be possible in consecutive visits by the MCTS

algorithm to the same information set:

edges = hashmap<key: action, value: edge>

edge is composed of:

{

stats: mcts_statistics

(observedCount,

visitCount,

totalScore)

current_next_node: node

}

Only the simulation game state is allowed to compute the

legal moves, and it is possible that different simulation game

states are mapped to the same information set. For example,

there can be two simulation game states that differ with hidden

information (indistinguishable from one player’s perspective).

Another example might be, when the AI designer/developer

purposefully wants to simplify information sets and cluster

more states together by ignoring some information available

in the game. Therefore, we always look at the possible moves

at the moment (by using the simulation game state) and then

find the appropriate edge dynamically that corresponds to each

specific move. An amortized cost of searching with hashmaps

is O(1). When a move is chosen, it is applied to the current

GS-state and, based on the resulting GS-state, the IS-state

(information set) is created. This information set is then used

to retrieve the corresponding node.

IV. RANDOMNESS

Randomness is defined as a property of a game that some

actions can have more than one outcome, i.e., that actions can

lead to more than one distinct state, based on some arbitrary

probability distributions. Players that participate in the game

are not supposed to know the actual outcomes of the random

effects before they materialize. They, however, may know

the probability distributions underpinning random actions. In

computer games, the game logic engine that is responsible

for running the game (often referred to as the game server or

game master) performs randomization in secrecy and informs

the players when the effects of random actions become visible.

A few examples of actions with nondeterministic outcomes

are: shuffling a deck of cards, drawing a random card from a

deck or rolling a die. Examples of games with randomness are

Backgammon, Bridge, Poker, Settlers of Catan, Dungeons and

Dragons, Magic the Gathering, and naturally, Hearthstone.

MACIEJ ÂSWIECHOWSKI, TOMASZ TAJMAJER: A PRACTICAL SOLUTION TO HANDLING RANDOMNESS AND IMPERFECT INFORMATION 105



Fig. 2. Examples of cards including non-deterministic effects: drawing
unknown cards (on the left) and random damage assignment (on the right).

Figure 2 shows two examples of cards with randomness in

Hearthstone. Whether drawing a card is a random effect is a

matter of interpretation and needs some further clarification.

The rules of this game can be implemented in two ways.

One way is to shuffle the deck of cards once and then each

consecutive card is drawn from the top. In this case, drawing

a card is not really a random effect but rather unveiling hidden

information. The second way is not to shuffle the deck at all

and give a random card to a player each time a card needs to

be drawn. Both approaches are equivalent, because the deck

is always supposed to be in a random order, and there are no

effects in the game such as putting cards in a specific place

in the deck.

Randomness raises the combinatorial complexity of a game.

Let’s consider a fully deterministic game with a branching

factor of N . Now, if we make a change that each action on

average has R possible random outcomes, the branching factor

increases to N multiplied by R. Randomness is especially

prevalent in card games. For instance, there are 52! ways a

deck of 52 cards can be shuffled. Moreover, non-determinism

of actions increases the difficulty of implementing the game

engine to conform to the requirements of tree search algo-

rithms such as MCTS. Consider the following problems:

• The MCTS algorithm stores statistics of players’ actions:

average score, total number of the action being observed,

total number of the action being chosen. Let us now

consider an action of playing the Arcane Missiles card

shown in Fig. 2. In a given state, this action’s average

score should not be affected by how the damage will

be split among the enemies, because the player could

not know this outcome at the moment of playing the

card. This suggests storing only one edge for this action.

However, in the MCTS tree, there must be different nodes

(states) that correspond to various outcomes of this action,

which suggests having a separate edge for each result.

• The original Information Set Monte Carlo Tree Search

algorithm requires the following property to be held. Let

S be a state without perfect information. If identical

sequences of actions (a1, ..., ak) are applied from this

state, then each one must end up with the same player

active having the same set of available actions.

To tackle both mentioned problems, non-deterministic actions

are split into a rational player’s part and the so-called nature

player’s part. Continuing with the example of Arcane Missiles,

the action would be split into:

PLAYER-1: Play Arcane Missiles

NATURE-P: Split 3 dmg among all enemies

or

PLAYER_1: Play Arcane Missiles

NATURE_P: Deal 1 dmg to a random enemy

NATURE_P: Deal 1 dmg to a random enemy

NATURE_P: Deal 1 dmg to a random enemy

The nature player is an artificial player that does not choose

actions intentionally but rather performs them according to

rules defined by the game (e.g., a probability distribution).

The rational player observes such moves as random. A nature

move determines the result of random calculations (it is

one of the possible concrete realizations), therefore, after the

move is generated, its outcome is deterministic. However,

such a separation of player and nature moves as well as

encoding determinations of random outcomes in the nature

moves can be extremely difficult and time-consuming from the

implementation point of view, that it might even be completely

inapplicable in practice. In particular, video games are not

designed in such a way to comply with the above mentioned

model, so, if this model is used, one cannot necessarily

separate the development of the actual game engine and the

game AI.

Our goal was to make the development of the game engine

maintainable for various games, so we decided to propose a

model, in which actions can include any number of nondeter-

ministic effects. The solution works in an integrated fashion

with the information sets stored in transposition tables. Each

time an action is made, the information set corresponding

to the current state of simulation is searched for in the

transposition table. Please refer to lines 34–37 in Algorithm

1 (pseudocode) for a possible implementation. Such an ap-

proach allows us not to introduce any explicit comparison

operator for actions. In the proposed approach, two actions

are different if they lead to different information sets, and

they are equal otherwise. We keep only one edge for an

action no matter how many resulting states it may have, so

it represents a player’s choice. The result of an action may

vary in each MCTS iteration and because information sets

and nodes correspond to each other, the same action might

lead to different nodes in subsequent iterations. The UCT

statistics gathered for the action are aggregated, so without

any need for special treatment, the probability of random

effects is taken into account. States which are more probable

to occur will be visited more frequently by the MCTS, because

it applies actions with their built-in randomness. At the same

time, strong actions by means of the expected score (weighted

106 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021



by the probability of occurrence) will be chosen more often

in the selection phase.

V. RESULTS

A. Foreword

Before proceeding to the actual experiments results aimed

at measuring efficiency of players, we wanted to first verify

whether algorithms developed specifically to tackle the prob-

lems of randomness and incomplete information work in the

game of Hearthstone.

The first test consisted in running 1,000,000 random simu-

lations of the game. Each simulation had several unit tests

to ensure the rules of Hearthstone are not violated. The

second test consisted in running 100,000 matches between

players that use the MCTS algorithm as defined in the paper.

At this point, we were only interested whether there were

no run-time errors at any point or problems with obtaining

unequal states after applying the same sequence of actions

from the same (stored and loaded) starting state. Both tests

were successful. As a result, we can comment that that our

way of implementing MCTS with dedicated algorithms for

randomness and imperfect information is effectively error-

free and does not put many constraints on how the simulator

(forward-model) for a game is implemented. It is worthwhile

noticing that our Hearthstone simulator was not specifically

prepared to work with MCTS, yet the method is still easy to

integrate with it.

B. Experimental setup

Our experimental setup consisted of the following AI play-

ers (controllers):

1) Random - an agent that performs actions according to

the uniform random distribution among the currently

available actions. The main purpose of including this

agent is to make it serve as a baseline. A random

controller can be also useful as a comparative benchmark

in games, in which agents generally do not win against

this agent 100% of the time; the relative difference of

win-rates can be useful as a measure.

2) EnhMCTS - employs the MCTS algorithm as described

in this paper. It is essentially a combination of the plain

MCTS + our enhancement for randomness, incomplete

information and transposition tables. We expected this

player to consistently beat the Random player and not

fall too much behind the “cheating” players described

below.

3) Hand Cheater - is a EnhMCTS in which the player

has perfect knowledge about the cards in the opponent’s

hand (hence, the cheater) but does not have access to

the ordering of cards in decks.

4) Full Cheater - is a player that has perfect knowledge

both about the opponent’s hand and the ordering of cards

in both players’ decks. Such a player does not need to

perform determinizations.

Both cheating controllers are used to find the upper bound

on the performance of handling randomness and imperfect

information.

The performance of players in Hearthstone is influenced by

the decks they are using. For the experiments, we included

four various types of decks that have also been used in the

Hearthstone-based data mining competition [31]:

1) Randomness - this deck is made of cards with random

effects exclusively. Examples of such cards are: Arcane

Missiles, Primordial Glyph or Animal Companion. The

idea of this deck was to increase the need of hav-

ing a proper algorithm to handle randomness. This is

also a deck that in theory gives the random player

more chances to play better than more sophisticated

approaches. The chosen hero for this deck was Mage.

2) Minions - this Hunter-based deck contains minion cards

only. The goal was to have a relatively easy and stream-

lined deck to play.

3) Control - a “Cube Warlock” deck, which is very

complex in terms of tactics. This deck allows agents

to display their full potential as it requires long-term

planning and tactical mastery.

4) Aggro - an average difficulty Paladin deck that is very

fast and strong.

Each combination of decks and players was tested using 400
matches, which is above average in these kind of experiments.

C. Results with AI players

Let us start with baseline tests, which are depicted in Figure

3. Each grid corresponds to an experiment played between two

players: P1 and P2. The actual players used for the experiment

are given in the top-most caption in each figure. Rows’ labels

are decks used by P1 (the starting player), whereas columns

are labeled by decks used by P2. The values in cells (i.e., on

the intersections) contain the win ratio from the perspective

of P1. A value of 1.0 means that P1 has won all the games, a

value of 0.5 represents a tie, and 0.0 is a perfect win for P2. If

P1 is equal to P2, then the main diagonal shows experiments

played between identical players (so-called mirror matches);

therefore, the results denote the first-player biases, i.e., how

much more likely the player that goes first is to win in a

particular setup.

The first test uses the weakest – Random – controllers. The

main diagonal represents first move advantage, whereas other

cells show biases between particular decks. For example, the

Aggro deck has a clear advantage over the Randomness deck

if it plays as first, whereas the Minions deck raises an upper

hand against the Control when going first.

The next experiment, which is in the middle grid in Fig.

3, shows the same information for a pair of Full Cheaters,

which are the strongest bots. It is interesting to note that these

biases differ from those for the Random bots. The right-most

part of Fig. 3 depicts those differences for each cell. In

the experiment with Full Cheaters, P1 playing as Aggro

significantly wins against any other deck. In comparison with

Random vs. Random matches, Full Cheater is able to have

a score higher by 0.20. The baseline results show that there

MACIEJ ÂSWIECHOWSKI, TOMASZ TAJMAJER: A PRACTICAL SOLUTION TO HANDLING RANDOMNESS AND IMPERFECT INFORMATION 107



Fig. 3. The baseline scores. From the left: (1) Random Player vs Random Player, (2) Full Cheater vs Full Cheater and (3) the average score bias of Full
Cheater compared to Random player

TABLE I
THIS TABLE CONTAINS THE AVERAGE SCORES OVER ALL MATCHES PLAYED BETWEEN THREE PAIRS PLAYERS THAT ARE DESCRIBED IN SECTION V-B.

EACH TRIPLET OF COLUMNS IS DEVOTED TO ONE PARING OF PLAYERS. PLEASE NOTE THAT THE SCORES (P1 VS P2) AND (P2 VS. P1) ARE SHOWN FROM

THE PERSPECTIVE OF THE PLAYER DENOTED BY P1.
THE THIRD COLUMN IN EACH TRIPLET DENOTES THE ADVANTAGE OF P2, WHICH IS CALCULATED ACCORDING TO THE FORMULA SHOWN IN

EQUATION 2. THIS IS A DIFFERENCE IN TOTALSCORE(P2) - TOTALSCORE(P1).

Hand Cheater (P1) vs. Full Cheater (P2) EnhMCTS (P1) vs Full Cheater (P2) EnhMCTS (P1) vs Hand Cheater (P2)

Score of P1 Advantage Score of P1 Advantage Score of P1 Advantage

P1 Deck P2 Deck P1 vs P2 P2 vs P1 of P2 P1 vs P2 P2 vs P1 of P2 P1 vs P2 P2 vs P1 of P2

Rnd Rnd 0.35 0.58 0.07 0.39 0.54 0.07 0.47 0.53 0.00
Rnd Minions 0.23 0.73 0.04 0.21 0.74 0.05 0.24 0.75 0.01
Rnd Control 0.38 0.61 0.01 0.34 0.59 0.07 0.45 0.57 -0.02
Rnd Aggro 0.05 0.94 0.01 0.07 0.91 0.02 0.08 0.93 -0.01
Minions Rnd 0.62 0.4 -0.02 0.59 0.27 0.14 0.58 0.29 0.13
Minions Minions 0.40 0.42 0.18 0.41 0.34 0.25 0.5 0.36 0.14
Minions Control 0.62 0.26 0.12 0.57 0.17 0.26 0.73 0.19 0.08
Minions Aggro 0.13 0.83 0.04 0.1 0.72 0.18 0.12 0.75 0.13
Control Rnd 0.58 0.37 0.05 0.53 0.35 0.12 0.48 0.46 0.06
Control Minions 0.48 0.39 0.13 0.39 0.34 0.27 0.42 0.46 0.12
Control Control 0.45 0.49 0.06 0.38 0.34 0.28 0.46 0.36 0.18
Control Aggro 0.24 0.6 0.16 0.24 0.47 0.29 0.28 0.54 0.18
Aggro Rnd 0.94 0.06 0.00 0.93 0.04 0.03 0.94 0.06 0.00
Aggro Minions 0.84 0.08 0.08 0.84 0.04 0.12 0.9 0.06 0.04
Aggro Control 0.70 0.17 0.13 0.67 0.15 0.18 0.71 0.16 0.13
Aggro Aggro 0.50 0.34 0.16 0.46 0.3 0.24 0.54 0.36 0.10

Column reference I II III IV V VI VII VIII IX

are fundamental biases of decks and positions, which can be

exploited by a good player – this is a general statement for

Hearthstone.

One of the reasons we included the Random controller was

to compare it to other agents. However, it turned out that

each of our MCTS-based agents, i.e, Enhanced Vanilla MCTS,

Hand Cheater and Full Cheater, achieves a 100% winrate over

the random player. We can compare this result to 93% winrate

reported in a literature [32], where the developed agent was

also pitted against a (uniform) random player. This proves that

our implementation and setup of the MCTS algorithm

itself is already very strong.

Another experiment is aimed at measuring the impact of

having full knowledge (Full Cheater), partial knowledge (Hand

Cheater) or relying only on fair algorithms for incomplete

knowledge (EnhMCTS). The baseline for the experiment is

Full Cheater vs Full Cheater. All the results are presented in

Table I. Please note that each experiment involves two players

that switch sides after half of matches to avoid the starting

role bias. However, to avoid confusion, the scores are always

presented from the perspective of the first player, i.e., P1. The

score of P2 can be calculated by 1 − Score(P1). Each third

column contains an adjusted advantage in scores for P2. It is

calculated as the total score of P2 minus the total score of

P1. The total scores can be computed as follows:

108 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021



Fig. 4. Comparison of average win-rates for decks and bots. Scores are averaged for matches for any given deck-bot pair against all other decks and bots.

Score(P1) = Score(P1 vs P2) + Score(P2 vs P1)
Score(P2) = 1− Score(P1 vs P2) + 1− Score(P2 vs P1)

The advantage of P2 expressed as a difference in scores

reduces to:

advantage(P2) = Score(P2)− Score(P1) =
= 2− 2 ∗ Score(P1 vs P2)− 2 ∗ Score(P2 vs P1) =
= 1− Score(P1 vs P2)− Score(P2 vs P1)

(2)

Let us show that Hand Cheater is not much worse than Full

Cheater. The results of this experiment are shown in columns

I-III of Table I (please see the last row for the columns

references). The third column shows the advantage of Full

Cheater over Hand Cheater, and most of the values are not

far from 0.00, which would denote equal performance. Only

in three matchups is the total Full Cheater’s score over 0.15
higher than the total score of Hand Cheater. In one of the

16 tested cases, i.e., Minions vs Rnd, Hand Cheater achieved

better score.

Compared to the baseline scores in Fig 3, when Hand

Cheater is playing as the first player, the biggest drop in

performance is with Minions vs Minions, Control vs Aggro

and Aggro vs Aggro. When Hand cheater is playing as the

second player, the biggest drop in performance is for Aggro

vs Control.

EnhMCTS is indeed a weaker player than Full Cheater, but

the total score advantage of the latter was not greater than

0.29 in all cases. Please note that the theoretical maximum

possible advantage is equal to 2.00, which would happen if

one player wins all the games when playing both sides (the

first and second to go). Such a case occurs when either of

the three presented players – Full Cheater, Hand Cheater or

EnhMCTS, faces the Random controller. With this in mind,

the results achieved by EnhMCTS are promising.

When comparing the scores to the Cheater vs. Cheater

baseline in Fig. 3, the worst cases for EnhMCTS playing

as the first player are Control vs Minions, Control vs

Randomness and Aggro vs Aggro. When EnhMCTS is the

second to go, the worst cases are Control vs Control, Control

vs Aggro and Minions vs Aggro.

Finally, EnhMCTS is slightly weaker than Hand Cheater

as shown in column IX in Table I. It is worth noticing that,

in overall, the advantage of Hand Cheater over EnhMCTS is

similar to the advantage of Full Cheater over Hand Cheater.

Figure 4 shows the scores of each player averaged over each

performed experiment using Random controller, EnhMCTS,

Hand Cheater and Full Cheater with respect to the deck used.

Unsurprisingly, Full Cheater is the strongest player. However,

all of the MCTS-based players are relatively close to each

other. The results show great potential of the methods for

tackling incomplete information and randomness applied in

EnhMCTS.

VI. CONCLUSIONS

The MCTS algorithm is the state-of-the-art method for

searching the space of combinatorial games to find a good ac-

tion to play in the current state. However, while the algorithm

is clearly established for deterministic perfect-information

games, it does not transfer directly onto games with random-

ness and imperfect information. Such games pose many chal-

lenges, and it is often unclear how to adapt MCTS for them. In

this paper, we showed a very practical solution to this problem

that is generic enough to be applied to any combinatorial game

with randomness and incomplete information. The solution is

based on three main pillars. The first one is a new approach to

Information Set Monte Carlo Tree Search that operates on two

levels of granularity. Information sets are used together with

determinizations. The second pillar is dynamic resolution of

randomness by matching states that result from random moves

on-the-fly. The third pillar is a two-layered Transposition Table

that is very fast to query and works particularly well with both

MACIEJ ÂSWIECHOWSKI, TOMASZ TAJMAJER: A PRACTICAL SOLUTION TO HANDLING RANDOMNESS AND IMPERFECT INFORMATION 109



the dynamic randomness resolution and information sets. Our

approach does not enforce special constraints on how the game

forward-model (simulator) is implemented, which is a huge

advantage in a practical scenario, especially for commercial

games.

To prove the method’s efficacy, we have chosen the very

complex game Hearthstone. The obtained results are very

promising. Not only does the proposed algorithm work as

intended, but also, as summarized in Figure 4, our methods

for handling randomness and imperfect information fall only

slightly behind a “cheating” agent that has full information

about the game state.

For future work, we plan to perform further tests with

different complex games with random effects and imperfect

information. Next, we want to focus on the realm of non-card

video-games, which feature huge combinatorial complexity

and new challenges to overcome.

REFERENCES

[1] L. Kurke, “Ancient Greek Board Games and How to Play Them,”
Classical Philology, vol. 94, no. 3, pp. 247–267, 1999.

[2] J. McCarthy, “Chess as the Drosophila of AI,” in Computers, chess, and

cognition. Springer, 1990, pp. 227–237.
[3] A. L. Samuel, “Some Studies in Machine Learning Using the Game of

Checkers,” IBM Journal of research and development, vol. 3, no. 3, pp.
210–229, 1959.

[4] C. E. Shannon, “XXII. Programming a Computer for Playing Chess,”
The London, Edinburgh, and Dublin Philosophical Magazine and Jour-

nal of Science, vol. 41, no. 314, pp. 256–275, 1950.
[5] M. Buro and T. Furtak, “RTS Games as Test-Bed for Real-Time AI

Research,” in Proceedings of the 7th Joint Conference on Information

Science (JCIS 2003), 2003, pp. 481–484.
[6] M. R. Genesereth, N. Love, and B. Pell, “General Game Playing:

Overview of the AAAI Competition,” AI Magazine, vol. 26, no. 2, pp.
62–72, 2005.

[7] M. Świechowski and J. Mańdziuk, “Self-Adaptation of Playing Strate-
gies in General Game Playing,” IEEE Transactions on Computational

Intelligence and AI in Games, vol. 6, no. 4, pp. 367–381, Dec 2014.
[8] M. Świechowski, H. Park, J. Mańdziuk, and K.-J. Kim, “Recent Ad-

vances in General Game Playing,” The Scientific World Journal, vol.
2015, 2015.

[9] J. Levine, C. B. Congdon, M. Ebner, G. Kendall, S. M. Lucas, R. Mi-
ikkulainen, T. Schaul, and T. Thompson, “General Video Game Playing,”
Dagstuhl Follow-Ups, vol. 6, 2013.

[10] S. Sharma, Z. Kobti, and S. Goodwin, “Knowledge Generation for Im-
proving Simulations in UCT for General Game Playing,” in Australasian

Joint Conference on Artificial Intelligence. Springer, 2008, pp. 49–55.
[11] S. Haufe, D. Michulke, S. Schiffel, and M. Thielscher, “Knowledge-

Based General Game Playing,” KI-Künstliche Intelligenz, vol. 25, no. 1,
pp. 25–33, 2011.

[12] I. Szita, G. Chaslot, and P. Spronck, “Monte-Carlo Tree Search in
Settlers of Catan,” in Advances in Computer Games. Springer, 2009,
pp. 21–32.

[13] P. I. Cowling, C. D. Ward, and E. J. Powley, “Ensemble Determinization
in Monte Carlo Tree Search for the Imperfect Information Card Game
Magic: The Gathering,” IEEE Transactions on Computational Intelli-

gence and AI in Games, vol. 4, no. 4, pp. 241–257, 2012.
[14] G. Van den Broeck, K. Driessens, and J. Ramon, “Monte-Carlo Tree

Search in Poker Using Expected Reward Distributions,” in Asian Con-

ference on Machine Learning. Springer, 2009, pp. 367–381.
[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the Game of Go with Deep Neural
Networks and Tree Search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016.

[16] B. Arneson, R. B. Hayward, and P. Henderson, “Monte Carlo Tree
Search in Hex,” IEEE Transactions on Computational Intelligence and

AI in Games, vol. 2, no. 4, pp. 251–258, 2010.

[17] D. Robles, P. Rohlfshagen, and S. M. Lucas, “Learning Non-Random
Moves for Playing Othello: Improving Monte Carlo Tree Search,”
in 2011 IEEE Conference on Computational Intelligence and Games

(CIG’11). IEEE, 2011, pp. 305–312.
[18] F. Teytaud and O. Teytaud, “Creating an Upper-Confidence-Tree Pro-

gram for Havannah,” in Advances in Computer Games. Springer, 2009,
pp. 65–74.

[19] M. Swiechowski, T. Tajmajer, and A. Janusz, “Improving Hearthstone
AI by Combining MCTS and Supervised Learning Algorithms,” in 2018

IEEE Conference on Computational Intelligence and Games, CIG 2018,

Maastricht, The Netherlands, August 14-17, 2018, 2018, pp. 445–452.
[Online]. Available: https://doi.org/10.1109/CIG.2018.8490368

[20] A. Janusz, T. Tajmajer, and M. Świechowski, “Helping AI to Play
Hearthstone: AAIA’17 Data Mining Challenge,” in 2017 Federated

Conference on Computer Science and Information Systems (FedCSIS).
IEEE, 2017, pp. 121–125.

[21] A. K. Hoover, J. Togelius, S. Lee, and F. de Mesentier Silva, “The Many
AI Challenges of Hearthstone,” KI-Künstliche Intelligenz, vol. 34, no. 1,
pp. 33–43, 2020.

[22] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk,
“Monte Carlo Tree Search: A Review of Recent Modifications and
Applications,” 2021, submitted to Springer-Nature AI Reviews Journal.
[Online]. Available: https://arxiv.org/abs/2103.04931

[23] L. Kocsis and C. Szepesvári, “Bandit Based Monte-Carlo Planning,” in
Proceedings of the 17th European conference on Machine Learning, ser.
ECML’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 282–293.

[24] S. Gelly and Y. Wang, “Exploration Exploitation in Go: UCT for Monte-
Carlo Go,” in NIPS: Neural Information Processing Systems Conference

On-line trading of Exploration and Exploitation Workshop, Canada, Dec.
2006. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00115330

[25] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the Success of Perfect Information Monte Carlo Sampling in Game Tree
Search.” in AAAI, 2010.

[26] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information Set Monte
Carlo Tree Search,” IEEE Transactions on Computational Intelligence

and AI in Games, vol. 4, no. 2, pp. 120–143, 2012.
[27] I. Frank and D. Basin, “Search in games with incomplete information:

A case study using bridge card play,” Artificial Intelligence, vol. 100,
no. 1-2, pp. 87–123, 1998.

[28] M. J. Ponsen, G. Gerritsen, and G. Chaslot, “Integrating Opponent
Models with Monte-Carlo Tree Search in Poker.” in Interactive Decision

Theory and Game Theory, 2010.
[29] A. Kishimoto and J. Schaeffer, “Transposition Table Driven Work

Scheduling in Distributed Game-Tree Search,” in Proceedings of the

15th Conference of the Canadian Society for Computational Studies of

Intelligence on Advances in Artificial Intelligence, ser. AI ’02. London,
UK, UK: Springer-Verlag, 2002, pp. 56–68.

[30] J. Schaeffer, “The history heuristic and alpha-beta search enhancements
in practice,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 11, no. 11, pp. 1203–1212, 1989.
[31] A. Janusz, T. Tajmajer, M. Świechowski, Ł. Grad, J. Puczniewski,

and D. Ślęzak, “Toward an Intelligent HS Deck Advisor: Lessons
Learned from AAIA’18 Data Mining Competition,” in 2018 Federated

Conference on Computer Science and Information Systems (FedCSIS).
IEEE, 2018, pp. 189–192.

[32] D. Taralla, “Learning Artificial Intelligence in Large-scale Video Games:
A First Case Study with Hearthstone: Heroes of Warcraft,” Ph.D.
dissertation, Université de Liège, Liège, Belgique, 2015.

110 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021


