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Abstract—An optimized Monte Carlo approach (OPTIMIZED
MC) for a Fredholm integral equations of the second kind
is presented and discussed in the present paper. Numerical
examples and results are discussed and MC algorithms with
various initial and transition probabilities are compared.

I. INTRODUCTION

I
NTEGRAL equations are of high importancy in various

areas of applied mathematics [7]. That is why it is important

to construct effective methods to solve integral equations. An

important advantage of Monte Carlo (MC) methods is that they

allow to search an unknown linear functional of the solution

directly [1].

II. FORMULATION OF THE PROBLEM

The Fredholm integral equation of the second kind has been

analyzed:

u (x) =

∫

Ω

k (x, x′)u (x′) dx′ + f (x) or u = Ku+ f, (1)

where

x, x′ ∈ Ω ⊂ R
d, u(x), f(x) ∈ L2(Ω), k(x, x′) ∈ L2(Ω× Ω)

and K is the integral operator. Usually a linear functional from

the solution:

J(u) =

∫

ϕ(x)u(x)dx = (ϕ, u) (2)
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should be evaluated in various problems. A MC algorithm

is described below. Let ϕ(x) ∈ L2(Ω). A set of permissible

densities is defined:

π(x), p(x, x′) : π (x) ≥ 0, p (x, x′) ≥ 0,
∫

Ω

π (x) dx = 1,

∫

Ω

p (x, x′) dx′ = 1, x ∈ Ω ⊂ R
d.

We define a Markov chain Tk : x0 → x1 → · · · → xk

[4] with length k started from the initial state x0. If the

approximate initial solution coincides with the corresponding

right-hand side f(x), a MC algorithm for integral equations

[6] is defined by:

Eθk[ϕ] =
(

ϕ, u(k)
)

, θk[ϕ] =
ϕ (x0)

π (x0)

k
∑

j=0

Wjf (xj),

W0 = 1, Wj = Wj−1
k(xj−1, xj)

p(xj−1, xj)
, j = 1, . . . , k,

(

ϕ, u(k)
)

≈ 1

N

N
∑

n=1

θk[ϕ]n.

III. A PROBABILISTIC ERROR ESTIMATE

The probabilistic error is rN ≤ 0.6745σ (θ)
1√
N

[3], [2],

where N is the number of samples of the random variable θ

and σ (θ) = (Dθ)
1/2

is the standard deviation of the random

variable θ for which Eθk [ϕ] =
(

ϕ, u(k)
)

=
k
∑

j=0

(ϕ,K(j)f),

where for point x = (x0, . . . , xj) ∈ G ≡ Ωj+1 ⊂
R

d(j+1), j = 1, . . . , k :

(ϕ,K(j)f) =

∫

Ω

ϕ(x0)K(j)f(x0)dx0 =

=

∫

G

ϕ(x0)k(x0, x1) . . . k(xk−1, xj)f(xj)dx0dx1 . . . dxj =
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∫

G

F (x)dx,

where

F (x) = ϕ(x0)k(x0, x1) . . . k(xk−1, xj)f(xj), x ∈ G ⊂ R
d(j+1).

Using the inequality D
k
∑

j=0

θ
(j)
k ≤

(

k
∑

j=0

√

Dθ
(j)
k

)2

, and the

variance properties we have the following inequalities [1]:

rN ≤

0.6745√
N

k
∑

j=0

(

∫

G

(

K(j)ϕf
)2

pdx−
(
∫

G

K(j)ϕfpdx

)2
)1/2

≤

≤ 0.6745√
N

k
∑

j=0

(
∫

G

(

K(j)ϕf
)2

pdx

)1/2

=
0.6745√

N
‖ϕ‖L2

‖f‖L2

k
∑

j=0

∥

∥

∥
K(j)

∥

∥

∥

L2

.

The following estimate is obtained:

rN ≤
0.6745‖f‖L2

‖ϕ‖L2√
N
(

1− ‖K‖L2

) .

IV. A SYSTEMATIC ERROR ESTIMATE

The sequence [2] u(1), u(2), . . . is defined by the recursion

formula u(k) = Ku(k−1)+f, k = 1, 2, . . . . The formal solution

of the equation (1) is the truncated Neumann series u(k) = f+
Kf+ · · ·+K(k−1)f+K(k)u(0), k > 0, where the kth iteration

of K is denoted by K(k), and u(k) =
k−1
∑

i=0

K(i)f +K(k)u(0).

We construct the k - residual vector of the systematic error

r(k): r(k) = f − (I −K)u(k) = (I −K)
(

u− u(k)
)

.

By the definition of r(k) : r(k) = f − u(k) + Ku(k) =
u(k+1)−u(k) and r(k+1) = u(k+2)−u(k+1) = Ku(k+1)+f −
Ku(k) − f = K

(

u(k+1) − u(k)
)

= Kr(k).

We have r(0) = u(1) − u(0) = Ku(0) + f − u(0) = Kf ,

r(k+1) = Kr(k) = K(2)r(k−1) = · · · = K(k+1)r(0).

So we obtain u(k+1) = u(k) + r(k) = u(k−1) + r(k−1) +
r(k) = · · · = u(0) + r(0) + · · ·+ r(k) = u(0) + r(0) +Kr(0) +
K(2)r(0) + · · ·+K(k)r(0) = u(0) +

(

I +K + · · ·+K(k)
)

r(0)

[4].

If ‖K‖L2
< 1 then the Neumann series u =

∞
∑

i=0

K(i)f

is convergent and u(k+1) k→∞−−−−→ u therefore from u(k+1) =
u(0) +

(

I +K + · · ·+K(k)
)

r(0) and k → ∞ we have u =

u(0)+(I −K)
−1

r(0). After simple transformations u = Ku+
f = Ku(0) +K(I −K)

−1
r(0) + f = u(1) +K(I −K)

−1
r(0).

Doing this k times we obtain: u = u(k) +
K(k)(I −K)

−1
r(0). The following inequalities are established

applying the Cauchy-Schwarz inequality:

r(k) =
∥

∥

∥
u− u(k)

∥

∥

∥

L2

≤

‖K‖kL2

∥

∥r(0)
∥

∥

L2

1− ‖K‖L2

≤
‖K‖kL2

‖f‖L2
‖K‖L2

1− ‖K‖L2

=

‖K‖k+1
L2

‖f‖L2

1− ‖K‖L2

.

The systematic error is estimated in following way:

∣

∣

∣
(ϕ, u)−

(

ϕ, u(k)
)
∣

∣

∣
≤ ‖ϕ‖L2

∥

∥

∥
u− u(k)

∥

∥

∥

L2

≤

‖ϕ‖L2
‖f‖L2

‖K‖k+1
L2

1− ‖K‖L2

.

V. THE OPTIMIZED STOCHASTIC APPROACH

Let us denote by δ an accuracy to solve the task under

consideration (2). This means that:

rN ≤
0.6745‖ϕ‖L2

‖f‖L2√
N
(

1− ‖K‖L2

) ≤ δ

2
,

rk ≤
‖ϕ‖L2

‖f‖L2
‖K‖k+1

L2

1− ‖K‖L2

≤ δ

2
.

For a Fredholm integral equation (1) the lower bounds for N

and k for the OPTIMIZED MC algorithm are:

N ≥
(

1.349‖ϕ‖L2
‖f‖L2

δ
(

1− ‖K‖L2

)

)2

, k ≥
ln

δ(1−‖K‖
L2
)

2‖ϕ‖
L2

‖f‖
L2

‖K‖
L2

ln ‖K‖L2

.

We have also obtained an optimal ratio between k and N : For

a Fredholm integral equation (1) the lower bounds for N and

k for the OPTIMIZED MC algorithm are:

N ≥
(

1.349‖ϕ‖L2
‖f‖L2

δ
(

1− ‖K‖L2

)

)2

, k ≥
ln

0.6745

‖K‖L2

√
N

ln ‖K‖L2

.

VI. NUMERICAL EXAMPLES AND RESULTS

A. Example 1

The first example is:

u (x) =

∫

Ω

k (x, x′)u (x′) dx′ + f (x) ,

Ω ≡ [0, 1], k (x, x′) =
1

6
ex+x′

, f (x) = 6x − ex. ϕ(x) is

the delta function (∆(x)). The exact solution is u(x) = 6x.

We are interested in the value of the solution at the middle of

the interval. Firstly, the L2 norms are computed: ‖ϕ‖L2
= 1,

‖K‖L2
= 0.5324, ‖f‖L2

= 1.7873. For this example the exact

solution is 3 and π (x) = ∆(x). We make 20 algorithm runs

on Intel Core i5-2410M @ 2.3 GHz.
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TABLE I
RESULTS FOR THE FIRST EXAMPLE.

δ N k expected BASIC time OPTIMIZED time

rel. error rel. error (sec.) rel. error (sec.)

0.1 2659 6 0.0333 0.0137 11 0.0132 5

0.03 29542 8 0.01 0.0039 62 0.0036 42

0.02 66468 9 0.0067 0.0022 140 0.0020 70

0.0075 472659 10 0.0025 0.001 1167 9.3671e-04 529

0.007 542593 11 0.00233 6.9639e-04 1562 6.3582e-04 614

0.005 1063482 11 0.00167 6.4221e-04 4412 6.2479e-04 2202

Fig. 1. Experimental and expected relative error.

B. Numerical results for the first example

The first two columns with the expected relative error

(RE) and the computational time (CPU time) measured in

seconds are for the case when the transition probabilities are

constant functions (this is the standard MC method and we

use the notation BASIC) and the last two columns are for

the case when OPTIMIZED is used (this is also called the

almost optimal MC algorithm). From the Tables it leads that

the OPTIMIZED method gives better results (smaller relative

errors and significantly smaller computational times).

We can see the comparison between the expected and

experimental relative error on Figure 1 which shows that

experimental RE confirms the expected RE.

The OPTIMIZED MC algorithm has a higher computational

efficiency than the BASIC MC algorithm because its CPU time

is smaller.

C. Example 2

The next example is a biology analytically tractable model

[5]:

TABLE II
RESULTS FOR THE SECOND EXAMPLE.

δ N k expected BASIC time OPTIMIZED time

rel. error rel. error sec. rel. error sec.

0.23 132 3 0.1395 0.0123 0.5 0.0121 0.2

0.037 5101 4 0.0224 0.0041 11 0.0040 7

0.025 11172 5 0.0152 0.0014 16 0.0012 9

0.014 35623 6 0.0085 4.5725e-04 56 4.0010e-04 34

0.0055 230809 7 0.0033 1.5242e-04 424 9.8811e-05 346

0.0045 344788 7 0.0027 1.5242e-04 605 1.4893e-04 592

u (x) =

∫

Ω

k (x, x′)u (x′) dx′ + f (x) ,

Ω ≡ [0, 1], k (x, x′) = 1
3e

x, f (x) = 2
3e

x. ϕ(x) is the delta

function. The exact solution is u(x) = ex. We are interested

in the value of the solution at the middle point of the interval.

The L2 norms are evaluated as follows: ‖ϕ‖L2
= 1, ‖K‖L2

=
0.3917, ‖f‖L2

= 1.1915. Here the exact solution is 1.6487
and π (x) = ∆(x). We make 20 algorithm runs on the same

computational unit.

D. Numerical results for the second example

One can see that the OPTIMIZED method gives slightly

better results than the BASIC MC and the results are closer

when the initial probability is the delta function. However

again the OPTIMIZED MC algorithm has a higher compu-

tational efficiency than the BASIC algorithm because its CPU

time is shorter.

E. Example 3

We study the following example describes the procedure of

teaching of neural networks [4], [5]:

u (x) =

∫

Ω

k (x, x′)u (x′) dx′ + f (x) ,

Ω ≡ [−2, 2], k (x, x′) = 0.055
1+e−3x + 0.07, f (x) =

0.02
(

3x2 + e−0.35x
)

, ϕ(x) = 0.7((x+ 1)2 cos(5x) + 20).
Here ϕ(x) = 0.7((x+ 1)2 cos 5x+ 20). The exact solution

is 8.98635750518 [2]. We calculate: ‖ϕ‖L2
= 27.7782,

‖K‖L2
= 0.2001, ‖f‖L2

= 0.2510.

We make 20 algorithm runs on the same processor.

F. Numerical results for the third example

The results presented in Table III demonstrates that the

OPTIMIZED MC method gives much smaller relative errors

than the BASIC MC algorithm for larger values of N and k.

In the case of smaller values of these quantities the BASIC

MC gives smaller relative errors, but the RE obtained with

OPTIMIZED method are closer to the expected RE. Using

the OPTIMIZED approach we see that the experimental RE

confirms the expected RE. We also see that in the OPTIMIZED

algorithm is a little bit slower because we use the acceptance-

rejection method for modeling the initial probabilities.
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TABLE III
RESULTS FOR THE THIRD EXAMPLE.

δ N k expected BASIC time OPTIMIZED time

rel. error rel. error sec. rel. error sec.

0.4 865 3 0.0445 0.0052 3 0.0239 5

0.2 3457 4 0.0223 0.0094 9 0.0121 23

0.1 13827 4 0.0111 0.0113 28 0.0086 46

0.05 55306 5 0.00556 0.0177 132 0.0032 222

0.028 176357 5 0.00312 0.0176 448 0.0031 540

0.02 345659 6 0.00233 0.0202 901 0.0013 1090

VII. CONCLUSION

In this paper we present an optimized stochastic algorithm

for solving the Fredholm integral equation of the second kind.

Two main cases are taken into account - the initial probability

coincides with the delta function, and the second case when

the initial probability is different from the delta function. The

results from the numerical tests in the first case show that

the OPTIMIZED MC reaches much smaller computational

times than the BASIC MC with constant probabilities and

comparable relative errors respectively. The results from the

numerical tests in the second case show that the OPTIMIZED

MC reaches much smaller relative errors than the BASIC

MC with constant probabilities and comparable computational

times respectively. the OPTIMIZED MC has a higher compu-

tational efficiency than the BASIC MC. The main conclusion

here is that the OPTIMIZED MC approach is characterized by

a higher computational efficiency (proportional to relative error

and compuatational time) in both cases under consideration.
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