
Worst-Case Analysis of an Approximation

Algorithm for Single Machine Scheduling Problem

Natalia Grigoreva

St.Petersburg State University

Universitetskay nab. 7/9, St.Petersburg, Russia

Email: n.s.grig@gmail.com

Abstract—The problem of minimizing the maximum delivery
times while scheduling jobs on the single processor is a classical
combinatorial optimization problem. This problem is denoted
by 1|rj , qj |Cmax, has many applications, and it is NP-hard in
strong sense. The goal of this paper is to propose a new 3/2-
approximation algorithm, which runs in O(n log n) time. We
proved that the bound of 3/2 is tight. To check the efficiency of
the algorithm we tested it on random generated problems of up
to 5000 jobs.

Keywords: single-machine scheduling problem, release and
delivery times, approximation algorithm, worst-case performance
ratio

I. INTRODUCTION

W
E CONSIDER a set of jobs U = {1, 2, . . . , n}. Each

job i must be processed without interruption for ti > 0
time units on the processor, which can process at most one

job at time. Each job i has a release time ri ≥ 0, when

the job is ready for processing, and a delivery time qi ≥ 0.

The delivery of each job begins immediately after processing

has been completed.The objective is to minimize the time, by

which all jobs are delivered. In the notation of Graham et

al.[5] this problem is denoted by 1|rj , qj |Cmax, and has many

applications.

It is required to construct a schedule, that is, to find for each

job i ∈ U the start time τi, provided that ri ≤ τi. The goal

is to construct a schedule that minimizes Cmax = max{τi +
ti + qi|i ∈ U}, which is the delivery time of the last job.

In [11] it is shown that the problem is NP -hard in the

strong sense, but there are exact polynomial algorithms for

some special cases. Some authors considered an equivalent

formulation of the problem, in which instead of the delivery

time for each job, the due date Di = K− qi, is known, where

K is a constant, and the objective function is the maximum

lateness Lmax = max{τi + ti −Di|i ∈ U}. This formulation

of the problem is denoted as 1|ri|Lmax. The advantage of the

model with delivery times is that the value of the objective

function is always positive, while the maximum lateness can

be negative or equal to zero.

If we swap the delivery times and the release times, we get

an inverse problem with the property that the solution of the

direct problem S = (i1, i2, . . . , in) is optimal if and only if the

permutation Sinv = (in, in−1, . . . , i1) is the optimal solution

of the inverse problem.

The 1|rj , qj |Cmax is the main subproblem in many impor-

tant models of scheduling theory, such as flowshop and job-

shop problems, multiprocessor scheduling and online single-

machine scheduling [12].The study of this problem is of theo-

retical interest and is useful in practical industrial application

[1], [4], [18].

Several approximation algorithms are known for solving the

problem 1|ri, qi|Cmax.

The first algorithm for constructing an approximation sched-

ule is the Schrage heuristic [17] - an extended Jackson rule,

which is formulated as follows: each time the processor is

free, a ready job with the maximum delivery time is assigned

to it. Computational complexity of the Schrage heuristic is

O(n log n), the algorithm is a 2-approximation algorithm [10].

K. Potts [16] proposed an algorithm in which the extended

Jackson’s rule algorithm repeats n times. Computational com-

plexity of the Potts algorithm is O(n2 log n). The worst-case

performance ratio is equal 3/2.

L. Hall and D. Schmois [8] have developed the method

in which the Potts algorithm is applied to the direct and

inverse problem. In total, the algorithm builds 4n schedules

and chooses the best one. Computational complexity of the

algorithm is O(n2 log n). The worst-case performance ratio is

equal 4/3.

E. Novitsky and K. Smutnitsky [14] proposed an 3/2-

approximation algorithm, which creates only two permuta-

tions. For the first time, the Jackson rule is applied, then

the interference job is determined and the set of jobs is

divided into two sets: jobs that should be performed before the

interference job in the order of their release times, and after it

that should be performed after it in non-increasing delivery

times. The best schedule is selected from two schedules.

Computational complexity is O(n log n).
All the mentioned algorithms use the list greedy Schrage

algorithm as a basic heuristic.

The works of [2], [3], [13], [15] developed branch and

bound algorithms for single processor scheduling problem

using different branching rules and bounding techniques. The

first efficient algorithm is Carlier algorithm [3], which op-

timally solves instances with up to thousand of jobs. This

algorithm constructs a full solution by extended Jackson’s rule

in each node of the search tree.

One way to improve the performance of the branch and

bound method is to use approximation efficient algorithms

to obtain upper bounds. Such algorithms should have a good

approximation ratio and the low computational complexity.

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 221±225

DOI: 10.15439/2021F66

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 221

One of the popular scheduling tools are list algorithms that

build non-delayed schedules. In the list algorithm, at each step,

the job with the highest priority is selected from the set of

ready jobs. But the optimal schedule may not belong to the

class of non-delayed schedules.

IIT schedules (IIT - inserted idle time) were defined in [9]

as feasible schedules in which the processor can be idle when

there are jobs ready to run.

The author considered the IIT 2-approximation algorithm

[6] and developed the branch and bound algorithm for single-

machine scheduling problem with receive and delivery times

[7]. The main idea of greedy algorithms for solving this

problem is the choice at each step of the highest priority job,

before the execution of which the processor could be idle.

In this paper, we propose an approximation algorithm ICA

for solving the problem, which creates two permutations, one

by the Schrage method, and the second by an algorithm

with inserted idle time. The construction of each permutation

requires O(n log n) action.

The article is organized as follows: Section 2 presents a

new approximate algorithm scheduling IJR and the combined

ICA algorithm, which builds two permutations and chooses

the best one. We prove that the worst-case performance ratio

of the ICA algorithm is equal 3/2 and this bound is tight in

section 3. The results of the computational experiment, which

showed the speed and practical accuracy of the algorithm, are

given in Section 4. In conclusion, the main results obtained in

the article are formulated.

II. IJR AND ICA SCHEDULING ALGORITHMS.

First, we describe the IJR scheduling algorithm.

The main idea of the IJR algorithm is that sometimes it is

better to place a priority job on service, even if it leads to

some idle time of the processor.

In the IJR algorithm two jobs are selected: the highest

priority job and the highest priority from ready jobs. The paper

has established special conditions in which it is advantageous

to organize the unforced idle time of the processor. These

conditions allow to choose between two jobs.

The algorithm IJR is a greedy algorithm, but not a list

algorithm and can be used as a basic heuristic for various

scheduling models and constructing a branch and bound

method.

We introduce the following notation: Sk = (i1, i2, . . . , ik)
is the partial schedule, time = max{τi + ti|i ∈ Sk−1} is

the time to release the processor after the execution of already

scheduled jobs. We store ready jobs in the queue with priorities

Q1, the priority of a job is it’s delivery time.

A. Algorithm IJR

1) Sort all jobs in non-descending order of release times:

rj1 ≤ rj2 ≤ . . . ≤ rjn .

2) Define the lower bound of the objective function

LB1 = min{ri| i ∈ U}+
∑n

i=1
ti +min{qi | i ∈ U}.

LB2 = max{ri + ti + qi | i ∈ U}.
LB = max{LB1, LB2}.

Algorithm 1 IJR algorithm (the main loop)

1: Initialize: S0 = ∅; Q1 = ∅; l← 1;
2: for k ← 1 to n do

3: if Q1 = ∅; then

4: time← rjl ;
5: end if

6: while rjl ≤ time do

7: Add ready job jl to the Q1 queue; l← l + 1;
8: end while

9: Select the ready job u ∈ Q1 with the maximum delivery

time qu = max{qi|i ∈ Q1};
10: rup ← time+ tu;

11: while rjl < rup do

12: if (qjl ≥ LB/2)&(qjl − qu ≤ rjl − time) then

13: Set job jl on the processor: Sk ← Sk−1 ∪ {jl};
τ(jl)← r(jl); time← τ(jl) + t(jl);
l← l + 1; break;

14: else

15: jl is added to the queue Q1; l← l + 1;
16: end if

17: end while

18: Set job u on the processor: Sk ← Sk−1 ∪ {u};
τ(u)← time; time← τ(u) + t(u);
delete u from Q1;

19: end for

20: The schedule Sn and its makespan is equal Cmax(Sn).

B. Combined scheduling algorithm ICA

1. Construct the schedule SJR by the Schrage algorithm,

denote the makespan of the schedule Cmax(SJR).

2. Construct the schedule S by the IJR algorithm, denote

the makespan of the schedule Cmax(S).

3. Choose the schedule SA with a smaller value of the

objective function: Cmax(SA) = min{Cmax(S), Cmax(SJR)}.
Computational complexity of the algorithm is O(n log n).

The algorithm ICA constructs two permutations: one by the

Schrage algorithm, the computational complexity of which is

O(n log n), and one by the IJR algorithm.

Let’s show that for the IJR algorithm the computational

complexity is equal O(n log n). First, we sorts all jobs in

non-descending order of it’s release times, this step requires

O(n log n) actions.

The main operation is to select a job from a set of ready

jobs. We store the ready jobs as a priority queue Q1, which

can be organized as a binary heap, the priority of job j is the

delivery time qj . At the steps 6-8 of the algorithm, we add

new ready jobs to the queue Q1 such that rji ≤ time, adding

each job requires O(log n) actions. The job u with the highest

priority is selected for O(1) actions (step 9).

At steps 11-17 we add new jobs ji to the queue Q1, for

which rji < time + tu. If there is a job jl for which all

conditions (step 12) are met, then we map jl on the processor

and go to the beginning of the main cycle (step 2). Otherwise,

we look through all candidates by placing them in the queue

222 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

Q1, and map the job u on the processor on the step 18. Then

the job u is deleted from queue Q1, which requires O(log n)
actions.

Each job can be added to the queue at most once: building

the binary heap requires O(n log n) actions. The total compu-

tational complexity is equal O(n log n).

III. PROPERTIES OF THE SCHEDULE CONSTRUCTED BY

THE ALGORITHM ICA

The properties of the schedule created by the combined

algorithm ICA proposed in Section 2 are formulated and

proved in the following lemmas.

Let the IJR algorithm constructs a schedule S, the makespan

is equal to Cmax(S), and the schedule SJR is constructed

by the JR algorithm, the makespan is equal to Cmax(SJR).
Consider some definitions that were introduced in [16] for

schedules constructed according to Jackson’s rule, and which

are important characteristics for IIT schedules.

Definition 3.1: [16] A critical job is a job jc such that

Cmax(S) = τjc + tjc + qjc . If there are several such jobs,

then we choose the earliest one in the schedule S.

Definition 3.2: [16] A critical sequence in a schedule S is a

sequence of jobs J(S) = (ja, ja+1, . . . , jc) such that jc is the

critical job and there is no processor idle time in the schedule,

starting from the start of the job ja until the job jc ends.

The job ja is either the first job in the schedule, or the

processor is idle before it.

Definition 3.3: [16] A job ju in a critical sequence is called

interference job if qju < qjc and qji ≥ qjc , for i > u.

Proposition 3.4: [16] If for all jobs of the critical sequence

it is true that rji ≥ rja and qji ≥ qjc , then the schedule is

optimal.

Let us introduce a definition of delayed job that can be

encountered in IIT schedules.

Definition 3.5: A job jv from a critical sequence J(S) =
(ja, ja+1, . . . , jc) is called a delayed job if rjv < rja .

An interference job can be a delayed job.

Let us formulate two properties of the IJR schedule, similar

to the properties of JR schedules [16].

Lemma 3.6: If there is the interference job ju in a critical

sequence, then Cmax(S)− Cmax(Sopt) < tju
Lemma 3.7: If there is no any delayed jobs in the critical

sequence, then Cmax(S)− Cmax(Sopt) ≤ qjc .

The proof of the lemmas is similar to [16], in Lemma 3.7 it is

necessary to add the condition that there are no delayed jobs.

Let us introduce the following notation: if J is some

sequence of jobs, then T (J) =
∑

i∈J ti and rmin(J) =
min{ri|i ∈ J}.

Lemma 3.8: If the interference job ju in the critical se-

quence J(S) = (S1, ju, S2) is executed after the sequence

S2 in an optimal schedule or between ja and jc, then

Cmax(S)/Cmax(Sopt) ≤ 3/2.

Proof: If tju ≤ Cmax(Sopt)/2, then the lemma 3.8 is true

by lemma 3.6.

Let tju > Cmax(Sopt)/2. If the interference job ju is

executed after all jobs of the sequence S2 in an optimal

schedule, then Cmax(Sopt) ≥ rmin(S2) + T (S2) + tju + qju .

Then

Cmax(S)− Cmax(Sopt) ≤ rja + T (S1) + tju + T (S2)+

+qjc − rmin(S2)− T (S2)− tju − qju =

= rja + T (S1)− rmin(S2) + qjc − qju =

= −idle+ qjc − qju .

Where idle = −rja −T (S1)+ rmin(S2) > 0. If qjc < LB/2,

then the lemma has proven. Let qjc ≥ LB/2. Choose a job

v ∈ S2 such that rv = rmin(S2). Then qv ≥ LB/2, and

idle = rv − time > qv − qju ≥ qjc − qju .
Then Cmax(S)− Cmax(Sopt) < LB/2.

If in the optimal schedule, the job ju is performed between

jobs ja and jc, then

Cmax(Sopt) ≥ rja + tju + T (S2) + qjc .

Therefore Cmax(S) − Cmax(Sopt) ≤ rja + T (S1) + tju +
T (S2) + qjc − rja − tju − T (S2)− qjc = T (S1) < LB/2.

Lemma 3.9: Let the schedule SJR is constructed by the

JR algorithm. There is the interference job ju in the critical

sequence J(SJR) = (F1, ju, F2).
If the interference job ju is executed before all

jobs of the sequence F2 in an optimal schedule, then

Cmax(SJR)/Cmax(Sopt) ≤ 3/2.

Proof: If tju ≤ Cmax(Sopt)/2, then the lemma 3.9 is true

by lemma 3.6. If the job ju is executed before all jobs of the

sequence F2 in an optimal schedule Sopt, then

Cmax(Sopt) ≥ rza + tju + T (F2) + qzc .

Then Cmax(SJR)− Cmax(Sopt) ≤ T (F1) < LB/2.

Theorem 3.10: The algorithm ICA constructs a schedule SA

for which Cmax(SA)/Cmax(Sopt) ≤ 3/2.

Proof: Let the schedule S be constructed using the

IJR algorithm and the schedule SJR be constructed by

the JR algorithm. There are the critical sequence J(S) =
(ja, ja+1, . . . , jc) in S, and the critical sequence J(SJR) =
(za, za+1, . . . , zc) in SJR.

We consider all the possible cases.

Case 1. There are no interference and delayed jobs in J(S)
or no interference job in J(SJR) critical sequences.

In this case, the corresponding algorithm has constructed an

optimal schedule.

Case 2. There are interference jobs in each critical sequence.

It is required to consider the case in which two interference

jobs is the same large job such that tju > Cmax(Sopt)/2.
The makespan of the schedule SJR is equal to

Cmax(SJR) = rza + T (J(SJR)) + qzc .
If delivery time of the critical job zc does not exceed

Cmax(Sopt)/2, then by Lemma 3.7 the theorem is true. Let

qzc > Cmax(Sopt)/2.

By virtue of the proved Lemmas 3.8 and 3.9, it suffices to

consider the case in which in the optimal schedule, the job

ju should be carried out after all jobs of the sequence F2 and

before the job ja.

NATALIA GRIGOREVA: WORST-CASE ANALYSIS OF AN APPROXIMATION ALGORITHM FOR SINGLE MACHINE SCHEDULING PROBLEM 223

TABLE I
RELEASE, PROCESSING AND DELIVERY TIMES OF JOBS FROM U

Job ri ti qi
x ε ε M − 2 ∗ ε
a M/2− ε ε M/2
u 0 M/2 + ε 0

c M/2 + ε ε M/2− 2 ∗ ε

According to the properties of the IJR algorithm, the pro-

cessor is idle until the time rja and qja > LB/2.

Then Cmax(Sopt) ≥ rmin(F2) + T (F2) + tju + tja + qja .
Hence,

Cmax(SJR)− Cmax(Sopt) ≤ rza + T (J(SJR)) + qzc−

−rmin(F2)− T (F2)− tju − tja − qja =

= rza + T (F1) + qzc − rmin(F2)− tja − qja <

< qzc − qja < LB/2.

This is true because qzc < LB and qja > LB/2. In this

case, the Schrage algorithm constructs a 3/2 approximation

schedule.

Case 3. There is the interference job in the critical sequence

J(SJR) and there are some delayed jobs in J(S).

If there is no an interference job in the critical sequence

J(S), then qi ≥ qjc for all jobs from the critical sequence

i ∈ J(S). But in the critical sequence there are jobs that can

be started before the job ja.

Then Cmax(Sopt) ≥ r(J(S)) + T (J(S)) + qjc . Hence

Cmax(S)− Cmax(Sopt) ≤ rja + T (J(S)) + qjc − r(J(S))−

−T (J(S))− qjc = rja − r(J(S)) < LB/2.

We have proven that the worst-case performance ratio of ICA

algorithm is equal 3/2.

Lemma 3.11: There is an example for which the ratio

Cmax(SA)/Cmax(Sopt) tends to 3/2.

Proof: Consider a system of four jobs U = {x, a, u, c}.
The data for the system of jobs are given in Table 1, where

M is a constant. The lower bound for the objective function

is LB = M.
The IJR algorithm constructs the schedule S = (x, a, u, c).
The processor is idle M/2 − ε time units before starting the

job a. The objective function is equal Cmax(S) = 3/2M. The

JR algorithm constructs the schedule SJR = (u, x, a, c). The

objective function is equal Cmax(SJR) = 3/2M − ε.

The optimal schedule is Sopt = (x, u, a, c), the value of

the objective function is equal Cmax(Sopt) = M + ε. When

ε tends to zero, the ratio Cmax(SA)/Cmax(Sopt) tends to 3/2.

IV. COMPUTATIONAL EXPERIMENT

To find out the practical efficiency of the algorithm, a

computational experiment was carried out. The goals of the

computational experiment were comparison of the accuracy

of the IJR algorithm and of the JR Schrage algorithm and

comparison of the accuracy of the combined ICA algorithm

with the accuracy of the NS algorithm of Novitsky and

Smutnitsky using random test examples.

The initial data was generated by the method described

by Carlier [3], the same method generating of test examples

were used by Novitsky and Smutnitsky when they compared

their proposed algorithms with Hall and Schmois and Schrage

algorithms. For each job i, three integer values were chosen

with uniform distribution : qi and ri between 1 and nK. There

were chosen the values for K from 10 to 25, which were

noted by Carlier as the most difficult for the problem under

consideration. For each value of n and K, we considered 100

instances. Three groups of examples were considered. The

processing times for each of the groups were selected from

the following intervals (tmax = 50):

1) Type A: tj from [1, tmax],
2) Type B: tj from [1, tmax/2], for j ∈ 1 : n− 1 and

tn from [ntmax/8, 3ntmax/8],
3) Type C: tj from [1, tmax/3], for j ∈ 1 : n − 2 and

tn−1, tn from [ntmax/12, 3ntmax/12].

Groups of type B contains instances with one long job and

groups of type C contains instances with two long jobs.

The value of the objective function Cmax was compared

with the optimal value of the objective function Copt, which

was obtained by the branch and bound method [7]. In all

tables, n is the number of jobs in the instance.

For tests of type A, n were changed from 50 to 5000 and

for all tests the value K = 20 was chosen. For tests of type A,

the IJR algorithm generates more optimal solutions than the

NS and JR algorithms. The JR algorithm very rarely receives

optimal solution. The average relative error of the solution is

small for all algorithms and decreases with increasing n.The

average relative error is 0.03 percent for the IJR algorithm,

0.97 percent for the JR algorithm and 0.2 percent for the NS

algorithm (for n = 50). For n = 5000 the average relative

error is 0.001 percent for the IJR algorithm, 0.01 percent for

the JR algorithm and 0.002 percent for the NS algorithm.

The results of experiments in which we change the constant

K, from 10 to 22 does not significantly affect the results of

the algorithms for instances of Type A.

The theoretical analysis of the algorithms shows that the

most difficult examples take place when there are one or two

long jobs. Such tests were generated in groups of type B and

type C.

Tables 2 and 3 show the results of comparison of algorithms

for tests of type B. For these groups of tests, we considered

the combined ICA, in which the best solution was chosen of

the two solutions, obtained by the JR and IJR algorithms.

224 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

TABLE II
TYPE B. THE NUMBER OF OPTIMAL SOLUTIONS.

n K NIJR NJR NNS NICA

100 10 51 23 25 58

100 14 29 47 48 62

100 15 25 48 49 59

100 16 53 21 34 69

100 18 46 46 49 71

100 20 24 15 16 33

100 22 44 29 33 57

TABLE III
TYPE B. THE AVERAGE RELATIVE ERROR OF ALGORITHMS.

n K RIJR RJR RNS RICA

100 10 1.02 1.05 1.04 1.005

100 14 1.06 1.03 1.03 1.004

100 15 1.05 1.04 1.04 1.007

100 16 1.01 1.04 1.01 1.004

100 18 1.05 1.04 1.03 1.005

100 20 1.05 1.06 1.03 1.007

100 22 1.02 1.03 1.03 1.006

Columns 3—6 of Table 2 show the number of tests (in

percent) for which optimal solutions were generated by algo-

rithms IJR, JR, NS and ICA, respectively.

Table 2 show that for tests of type B the number of optimal

solutions for the ICA algorithm is greater then the number of

optimal solutions for the NS algorithm.

The value of the average relative error of algorithms for

tests of type B are given in the Table 3. Columns 3-6

of Table 3 show the value of the average relative error

RA = Cmax(SA)/Copt of algorithms IJR, JR , NS and ICA,

respectively.

The relative error of the solution increases for all algorithms

JR, IJR, NS and it is from 1 to 6 percent on average. The

author’s ICA algorithm has significantly more advantages. It

combines the advantages of the Schrage algorithm, which does

not allow unforced idle time and IJR algorithm, which allows

them. The relative error of the solution for ICA algorithm is

from 1.004 to 1.007 on average, but the relative error of NS

algorithm is from 1.01 to 1.04.

The worst solutions for the JR algorithm had a relative

error of 23 percent, for the IJR algorithm - 19 percent but

for the combined ICA algorithm had only 7 percent. No

test was received during testing, for which both JR and IJR

algorithms have constructed a solution with large relative error.

The combined algorithm generates two permutations just like

the NS algorithm, but its average relative error is significantly

less, and the number of optimal solutions obtained is greater.

V. CONCLUSION

The paper considers the problem of scheduling for single

processor with release and delivery times. The paper proposes

a new 3/2 approximation algorithm with computational com-

plexity O(n log n), in which the priority of the job is taken into

account first and processor can be idle, when certain conditions

are met. The example is given, which shows that the bound
of 3/2 is tight. The computational experiment has confirmed

the practical efficiency of the algorithm.

REFERENCES

[1] C. Artigues and D.Feillet, "A branch and bound method for the job-shop
problem with sequence-dependent setup times," Ann. of Oper. Res., vol.
159, 2008, pp. 135–159, http://dx.doi.org/10,1287/opre.49.6.854.10014.

[2] K.R. Baker, Introduction to Sequencing and Scheduling. John Wiley &
Son, New York, 1974.

[3] J. Carlier, "The one machine sequencing problem," European

Journal of Operational Research, vol.11, 1982, pp.42—47,
http://dx.doi.org/10.1016/s0377-2217(82)80007-6.

[4] C. Chandra, Z. Liu, J. He, T. Ruohonen, "A binary branch and bound
algorithm to minimize maximum scheduling cost," Omega , vol. 42,
2014, pp. 9–15, http://dx.doi.org/10.1016/j.omega2013.02.005.

[5] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, "Opti-
mization and approximation in deterministic sequencing and scheduling:
A survey," Ann. of Disc. Math. ,vol. 5, no. 10, 1979, pp. 287–326,
http://dx.doi.org/10.1016/S0167-5060(08)70356-X.

[6] N. Grigoreva, "Single Machine Inserted Idle Time Scheduling with
Release Times and Due Dates," Proc. DOOR2016. Vladivostoc. Russia.

Sep.19-23.2016. Ceur-WS, vol. 1623, 2016, pp. 336–343.
[7] N.S Grigoreva, "Single Machine Scheduling with Precedence Con-

strains, Release and Delivery times", in Proceedings of 40th Anniver-

sary International Conference on Information Systems Architecture and

Technology–ISAT 2019- Part III. (Advances in Intelligent Systems and
Computing, v. 1052), pp. 188 –198, http://dx.doi.org/10.1007/978-3-030-
30443-0-17.

[8] L.A. Hall and D.B. Shmoys, "Jackson’s rule for single-machine schedul-
ing: making a good heuristic better," Mathematics of Operations Re-

search, 17 (1) , 1992, pp. 22–35.
[9] J. J. Kanet and V.Sridharan, "Scheduling with inserted idle time: problem

taxonomy and literature review", Operations Research, vol. 48, 2000, no.
1, pp. 99–110, http: //dx.doi.org/10.1287/opre.48.1.111.12453.

[10] H. Kise, T. Ibaraki and H. Mine, "Performance analysis of six approx-
imation algorithms for the one-machine maximum lateness scheduling
problem with ready times", Journal of the Operations Research Society

of Japan, vol. 22, 1979, pp. 205–224.
[11] J.K. Lenstra, A.H.G. Rinnooy Kan and P.Brucker, "Complexity of

machine scheduling problems," Ann. of Disc. Math., 1, 1977, pp. 343–
362, http://dx.doi.org/10.1016/s0167-5060(08)707-43-X.

[12] Y. Li, E. Fadda, D. Manerba, R.Tadei and O. Terzo, "Reinforcement
Learning Algorithms for Online Single-Machine Scheduling", Proceed-

ings of the 2020 Federated Conference on Computer Science and Infor-

mation Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds), ACSIS,
vol. 21, 2020, pp. 277–283, http://dx.doi.org/10.15439/2020F100

[13] Z. Liu, "Single machine scheduling to minimize maximum late-
ness subject to release dates and precedence constraints," Com-

puters & Operations Research, vol. 37, 2010, pp. 1537–1543,
http://dx.doi.org/10.1016/j.cor.2009.11.008.

[14] E. Nowicki and C. Smutnicki, "An approximation algorithm for
a single-machine scheduling problem with release times and de-
livery times", Discrete Applied Mathematics, 48, 1994, pp. 69–79,
http://dx.doi.org/10.1016/0166-218X(92)00110-8.

[15] Y. Pan, L. Shi, "Branch and bound algorithm for solving
hard instances of the one-machine sequencing problem",European

Journal of Operational Research, 168, 2006, pp. 1030–1039,
http://dx.doi.org/10.1016/j.ejor.2004.07.050.

[16] C.N. Potts, "Analysis of a heuristic for one machine sequencing with
release dates and delivery times", Operations Research, 28, 1980, pp.
1436–1441, http://dx.doi.org/10.1287/opre.28.6.1436.

[17] L. Schrage, "Optimal Solutions to Resource Constrained Network
Scheduling Problems", (unpublished) 1971.

[18] K. Sourirajan and R. Uzsoy, "Hybrid decomposition heuristics for solv-
ing large-scale scheduling problems in semiconductor wafer fabrication,"
J. Sched. 10, 2007, pp. 41–65, http://dx.doi.org/10.1007/s10951-006-
0325-5.

NATALIA GRIGOREVA: WORST-CASE ANALYSIS OF AN APPROXIMATION ALGORITHM FOR SINGLE MACHINE SCHEDULING PROBLEM 225

