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Abstract—Deep learning techniques have shown significant
contributions to several fields, including medical image anal-
ysis. For supervised learning tasks, the performance of these
techniques depends on a large amount of training data as well
as labeled data. However, labeling is an expensive and time-
consuming process. With this limitation, we introduce a new
approach based on Deep Reinforcement Learning (DRL) to cost-
effective annotation in a set of medical data. Our approach
consists of a virtual agent to automatically label training data,
and a human-in-the-loop to assist in the training of the agent.
We implemented the Deep Q-Network algorithm to create the
virtual agent and adopted the method mentioned above, which
employs human advice to the virtual agent. Our approach was
evaluated on a set of medical X-ray data in different use cases,
where the agent was required to create new annotations in the
form of bounding boxes from unlabeled data. Results show that
an agent training with advice positively impacts obtaining new
annotations from a data set with scarce labels. This result opens
up new possibilities for advancing the study and implementing
autonomous approaches with human advice to create a cost-
effective annotation in data sets for computer-aided medical
image analysis.

I. INTRODUCTION

A
RTIFICIAL Intelligence (AI) techniques, mainly those

based on supervised learning, require a large amount of

annotated data for training a model. In intelligent systems for

the health field, the use of these techniques has contributed

to the processing and analysis of medical images [1] [2];

however, the absence of labeled data has been a limitation

for the implementation of those solutions.

Annotated data is necessary to enable the network to learn

the relationship between a desired input and output during

a machine learning model training. With sufficient data and

annotation, the accuracy of a model often corresponds to

or exceeds the level of expert physicians in classifying and

detecting diseases [3]. However, obtaining new annotations is

an expensive and time-consuming task. That labeling process

is often performed manually by human experts. To reduce

efforts at annotations, researchers have explored approaches

of cost-effective data annotation [4]. An example of this

approach are Active Learning algorithms. These algorithms

aim to reduce the cost of labeling, selecting only the images

to be labeled by the human, which are informative to improve

the accuracy of a model [5].

However, the active learning algorithm still needs the human

to make annotations of data. This aspect motivates the devel-

opment of this study, contributing to creating an approach to

automatically label data.

We present an approach that aims to contribute to scarce

annotations based on a cost-effective data annotation approach.

In particular, we focus on creating new annotations automati-

cally on medical examinations, reducing the time and cost of

the annotations. To meet the proposal, we use two objectives:

1) use of the Reinforcement Learning (RL) algorithms [6]:

for creating an autonomous virtual agent. 2) insertion of the

human in the training process: to teach the autonomous agent

to perform its task correctly even with scarce annotations.

Reinforcement Learning (RL) is a machine learning

paradigm that consists of how a virtual agent (we will adopt

the term RL agent) finds a solution to a given problem, explor-

ing interactions in the environment. Mnih et al [7] proposed

Deep Reinforcement Learning (DRL) that combines RL and

Convolutional Neural Network (CNN). This model is a CNN

trained with a variant of the RL algorithm called Q-Learning.

This method aims to enable the connection between an RL

algorithm and deep neural network algorithms, operating on

images with raw pixels.

In recent years, DRL models have achieved advances that

surpass human performance in games such as Atari [8], has

also demonstrated promise in enabling physical robots to

learn complex skills in the real world [9] and in real world

deployment of autonomous driving [10]. Traditionally, DRL

has employed one type of algorithm that is Deep Q-Network

(DQN) [7] [11].

Some authors, such as Son and Gong [12], and Liu, et

al.[13] have proposed resolving the problem of scarce an-

notations using DQN algorithm to automate the selection

process of unlabeled data. With this, an RL agent learns a data

selection criterion; however, they still require the participation

of a human for the labeling process. Our study shows an RL
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agent for automatic labeling, where we include the human in

the training loop of the RL algorithm. This inclusion is due

to the human’s ability to teach tasks, evaluate performance,

intervene at certain times to avoid unwanted actions, and

increase the RL agent’s learning efficiency.

In summary, this study presents the following contributions:

1) A new approach to reduce efforts to acquire new anno-

tated data.

2) Integration of the human to speed up the learning of

RL agent contributing to efficiency in creating new

annotations.

The rest of this paper is organized as follows. In Section 2,

we present the related work. In Section 3, we detail the pro-

posed approach, which includes a description of reinforcement

learning, the steps for understanding the Deep Q-Network

(DQN), followed by the implementation of algorithms and the

methods of advice. The evaluation and experimental results are

described in Section 4 and 5. Finally, Section 6 shows some

concluding remarks and future research perspectives.

II. RELATED WORK

In this section, we describe some related studies that use

RL algorithms to solve the scarce annotations problem through

a cost-effective annotation approach. Also, we present some

studies that integrate the human in the training process of these

algorithms.

A. Cost-Effective Annotation

Currently, a considerable amount of medical data is avail-

able, however, the use of those data without sufficient labels

or annotations is a problem when applications use supervised

learning methods. Cost-effective annotation approaches are an

important strategy to obtain additional annotations in a quick

way, and avoiding high costs.

Saripalli et al.[14] present an approach to contribute with the

labeling process where data from health monitoring devices

need to be interpreted. The authors used RL algorithms to

create an RL agent capable of annotating alarm data based on

the annotations made by a specialist. As a result, the approach

presented by the authors has created mock medical domain

experts with high sensitivity, while still catching a notable

number of false alarms.

Wang et al. [15] present the Deep Reinforcement Learning

Active (DRLA), a new method for medical image classifica-

tion. This method uses the DQN algorithm applied with the

actor-critic paradigm to create an agent capable of learning a

more informative image selection policy to be annotated by a

human. The method presented a practical approach to relieve

human efforts in making annotations.

Zimo et al.[13] proposed another approach using active

learning called Deep Reinforcement Active Learning (DRAL).

The objective of the study is to minimize human efforts to

obtain annotation. Applied in the case of re-identification, the

RL agent learns to select the best pair of images for the human

annotator, which will give binary feedback to label the image

as right or wrong. With each input from the human, a reward

is given to the agent.

Sun and Gong [12] also present a new framework that uses

active learning to annotate images. They proposed a structure

that uses DRL as a data selection strategy. Instead of choosing

which image to annotate using heuristic algorithms, the RL

algorithm learns a selection policy. The authors evaluated the

method with other studies of state of the art, which obtained

superior results in a set of popular data.

Other studies address the making of automatic annotations,

as a method based only on active learning [16] where the

proposed method improved the classification performance

compared to the baselines, in a tangent vector of the contour of

the image [17]. In the present paper, the proposed method can

greatly reduce the annotation time while obtaining the same

or a higher annotation quality and through interaction [17].

B. Human-in-the-loop Reinforcement Learning

The inclusion of human-in-the-loop for the training of an

RL agent is influenced by the human’s ability to teach tasks,

evaluate performance, and intervene at certain times to avoid

destructive actions. This inclusion can increase the speed of

the RL agent, making it confident to make quick and accurate

decisions, as highlighted by Liang et al [18].

Torrey and Taylor [19] proposed an advice approach called

action advice, where a human teacher suggests the student

agent’s actions to achieve its goal. With a fixed number

of times that the human can advise, the authors present

algorithms for different moments of counseling, which they

call early advising, importance advising, mistake correcting,

and predictive advising.

Lin et al. [20] present a method to analyze the performance

of action advice in a DRL algorithm. They use human feed-

back to improve the performance of the RL agent through

advice. This method uses an arbiter, which decides when to

use actions generated by the policy of the DRL algorithm or

actions advised by the human subject.

Krening [21] presents a study investigating whether human

insertion as a teacher brings benefits to the student agent.

As a contribution of that study, two algorithms for human

interaction that promote positive experiences are presented,

the Newtonian Action Advice and Object-Focused advice.

Another alternative presented in the literature to human-in-

the-loop is modeling the reward that the RL agent will receive

after performing actions. Denominated reward shaping, this

method uses human feedback as a reward function. We find

studies by Knox [22] and Arakawa [23], which show methods

to train RL agents with humans as a reward function.

In the literature, there are other proposals to integrate the

human in the training process of a DRL algorithm, such as

by demonstration [24], imitation [25], and heuristic methods

to select a state where the human subject should send actions

to the RL system, as shown in the study by [26]. However,

these methods need further investigation for agent training.

Our approach aims to create an RL agent capable of creating
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new annotations from few human interactions, thus reducing

the cost of generating new annotations.

Table I shows a comparison between our study and studies

in the literature.

III. PROPOSED APPROACH

We integrate the human in the training loop to contribute

to the learning process of the RL agent. With this, the agent

can generate a more significant number of annotations from a

few annotated data samples. Hence, supervised convolutional

neural networks could take advantage of an increased machine

learning ready dataset for training purposes.

As shown in Figure 1, a problem that extends from dataset

limitations are scarce annotations. Some strategies are adopted

in the literature with some solutions to this problem, such

as Data Augmentation, Leveraging External Labeled Datasets,

Cost-Effective Annotation, Leveraging Unlabeled and Reg-

ularized Training. Based on the strategies of cost-effective

annotation, we present an approach to reduce efforts to acquire

new annotated data, creating an RL agent that does this task

automatically.

Fig. 1. Organization of strategies that can be used based on the problem of
scarce annotations (image adapted from [27]).

A. Background

Q-Learning is a classic algorithm for reinforcement learning

implementation. This algorithm is an off-policy Temporal

Difference that focuses on state-action value. The action value

in each state is obtained using a table that is updated in each

interaction with the environment, denoted Q-values, as shown

in the equation 1.

Q(s, a) = Q(s, a) + α[r + γ.maxQ(s′, a′)−Q(s, a)] (1)

where s is the current state and a is an action taken in

this state. When each action a is taken, a new s‘ state is

selected, and a reward issued for that pair of (s, a). For the new

selected state, a new action a’ is taken, chosen randomly using

a predefined probability (a method called Epsilon-Greedy

Policy). α is the learning rate, r is the reward for an action

taken in a given state and γ and the factor of discount.

With the success of this classic algorithm, Mnih et al

[7] proposed combining Q-Learnig and Convolutions Neural

Network (CNN) and presented a algorithm called Deep Q-

Network.

B. Understanding Deep Q-Network

We used the DQN algorithm for the agent learning process.

It uses a neural network with convolutional neural networks

(CNN) to approximate the Q value of all possible actions in

each state. Two techniques are the pivot for the success of this

algorithm: experience replay and target network.

1) Experience replay: It serves to store the experiences

acquired by the RL agent at each step. A memory buffer

was used to store a predetermined amount of past experiences

(batch size). At each step t, a transition is saved in this memory

buffer and then used to train the neural network via stochastic

gradient descent.

A transition is a tuple formed by the Markov Decision

Process (MDP), where it is composed of an MPD tuple (S,

A, R, S ’), being:

• S (State): The current state.

• A (action): Action performed in the current state.

• R (reward): Reward for an action taken in a given state.

• S’ (Next State): Next state.

Figure 2 illustrates the storage of transitions in a memory

buffer;

Fig. 2. Experience replay storage illustration in DQN algorithms.

2) Target Network: The Loss equation calculates the differ-

ence between the target and the prediction value, as shown in

Equation 2. DQN uses a second neural network called target

network to optimize the loss equation and calculate the target

value.

Loss = (r + γmaxa
′Q(s′, a′; Θ)−Q(s, a; Θ))2 (2)

The Target network is a clone of the policy network and

its used to calculate the target value. Initially, their weights

are frozen with the weights of the original policy net and are

updated with the new weights of the policy net for a certain

period. The loss function given by,

Loss = (r + γmaxa
′Q(s′, a′; Θ′)−Q(s, a; Θ))2 (3)

where:

• r = reward

• γ = discount factor

• Θ’ = Is updated weights once every target steps.

• Θ = Learns the correct weights by using gradient descent
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TABLE I
COMPARISON TABLE BETWEEN OUR STUDY AND RELATED WORKS

Reference algorithm Medical Aplication HRL Method

V. R. Saripall et al.[14] DQN, A2C Annotate medical signal data N/A

J. Wang et al.[15] DQN, AL Image classification N/A

Z.Liu, et al.[13] RL, CNN, AL N/A Policy Shaping

Sun and Gong [12] DQN, AL N/A N/A

Torrey e Taylor [19] SARSA, Q-LEARNING N/A Advice

Lin, et al.[20] DQN N/A advice

Krening [21] BQL N/A advice

Knox [22] Supervised Learning and RL N/A Reward shaping

Our study DQN Automatic annotation in x-ray images advice

C. Implementation of the Deep Q-Network algorithm

Based on study of Caicedo et al. [28], [29], we started by

implementing the DQN algorithm to locate objects in two-

dimensional (2D) images.

At each step, the RL agent observes the current state (region

of an image) and estimates the potential rewards based on the

cost of taking different actions. After this calculation, it selects

the action that will lead it to receive the maximum reward and

moves on to the next state. This process is repeated until it

reaches the terminal state. This cycle within the RL is called

an episode. The following is a mapping of the MDP to the

context of our work.

1) States: A medical image represents a state within our

context of locating a desired region. The RL agent’s area

visualization is of the image size and will serve as input data

for the network. At each step of the algorithm, the agent

analyzes pixels of the image within its viewing area and

thus calculates the best action to be taken. With each action

performed by the RL agent, its viewing area will be adjusted

until the object of interest is located. The next state is the

current image, and the agent’s viewing area is adjusted by the

last action taken. The terminal state is when the agent stops

performing actions because it has already completed its search.

In this case, is create a new bounding box if was found an

object.

2) Actions: We adopted a set of nine actions that agent RL

can perform in the current state, were applied eight of which

to the deformation of the agent’s viewing area and one to

indicate the terminal state, as shown in Figure 3. As the agent

takes his actions, the agent’s bounding box is deformed until

it fits in the space of the object of interest.

Figure 5 illustrates the actions that the RL agent takes to

detect a region of interest.

3) Rewards: The reward function used for this work is the

same as presented by Caicedo et al. [28].

Equation 4 is calculated to assign rewards to the RL agent

for each action taken. This equation is formed by the current

visualization area of the agent RL b, together with the ground

truth of the target object to be located g, and b′ is the

visualization area in the next step. In general, this function

will attribute a positive reward to the agent if the action

Fig. 3. Illustration of the actions that the RL agent perform in the States.

Fig. 4. Image illustrating agent RL creating an annotation in the form of the
bounding box of the papilla in a mammography exam.

taken improves the IoU between the current and the next

state, otherwise, the reward will be negative, as Equation 5

represents.

RewSigna(s, s
′) = sign(IoU(b′, g)− IoU(b, g)) (4)

{

+1, if RewSigna(s, s
′) > 0

−1, Otherwise
(5)
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TABLE II
LEARNING HYPERPARAMETERS

Parameter Value

Target network update 10000

Replay memory size 50000

Number of episodes 5

Discount factor 0.99

Learning steps 700

Leaning rate 0.00025

Epsilon start 1.0

Epsilon end 0.2

Batch size 32

Optimizer RMSProp

Equation 6 rewards the agent when it reaches the terminal

state according to the final result. In this case, we check if

the IoU is greater than or equal to the threshold t (we adopt

t = 0.3 and 0.5, depending on the use case). With that, the

agent receives a positive or negative reward.

{

+3, if IoU ≥ t

−3, Otherwise
(6)

4) Hyperparameters: Table II sumarize the hyperparame-

ters used for training the RL agent.

D. DQN architecture

DQN architecture uses a sequence of layers of a convolu-

tional network to extract features of the image. The input to

the network will be the raw frame of an image. It’s common

to downsample the pixel and convert the RGB values to

grayscale values to reduce computation and consume less

memory. Fully connected layers are used with an activation

function to estimate Q values directly from the image. The last

layer defines the number of units of the output layer according

to the possible actions in the environment.

The following diagram shows the DQN architecture used:

Fig. 5. Architecture used for the DQN algorithm. The input is an image with
256 x 256 pixels and processed by convolutional layers. The output layer
predicts the value for the nine possible actions to be taken by the agent.

Algorithm 1 Algorithm for advice

Require: Medical image

Ensure: bouding box annotation

for each episode do

2: budget = 5;

for each state do

4: Calculates uncertainty;

if uncertainty >= 1.2 then

6: if budget > 0 then

Aagent receives human advice

8: budget = budget - 1

else

10: The agent takes action generated by your policy.

end if

12: end if

end for

14: end for

E. Implementation of an advice method

As an initial experiment, we adopted the method called early

advising proposed by Torrey and Taylor [19]. The idea of this

method is that the initial states are essential to the advise

process, as they have a grater impact in the agent learning

process. We adopted a limit of 5 pieces of advice that the

human teacher can apply per episode. Algorithm 1 represents

the pseudocode of the implemented method.

The human goes on to advise the RL agent when it has

uncertainty about what action to take. For this experiment,

a threshold of 1.2 was set, since, after a visual observation,

we detected that the RL agent tends to take suitable actions

below this value. As an experimental phase, the user informs

the suggested action through the keyboard, inserting numbers

that correspond to the agent’s actions.

• Move right = 0

• Move down = 1

• Scale Bigger = 2

• Aspect ratio Fatter = 3

• Move left = 4

• Move up = 5

• Scale Smaller = 6

• Aspect ratio Taller = 7

• Trigger = 8

IV. EVALUATION

As suggested by Poole and Mackworth [30], a way to

measure an agent’s performance is by analyzing the cumulative

reward per episode. As the RL agent learns to perform the

actions correctly, it receives increased rewards.

We also evaluate quantitatively the agent performance

through the number of annotations that it was able to make

with and without human help. In addition, we adopt metrics

such as Intersection Over Union (IoU) and Average Precision

(AP).

The IoU is an evaluation metric used to measure the

accuracy of an object detector on a specific data set. It is a
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measure of the overlap between two areas, that of the bounding

box generated by the algorithm and the ground-truth bounding

box [31].

Fig. 6. The image illustrates a ground truth bounding box (in green) and a
bounding box generated by a model (in red). Source [31]

Through a threshold t, the IOU allows one to classify

whether the detection of the object is correct (IOU >= t)

or incorrect (IOU < t). This implies that if the IOU is

greater than or equal to the threshold, the bouding box created

is within the expected (TP - True Positive). Otherwise, the

created bouding box is lower than expected (FP - False

positive).

Average Precision (AP) is the metric used to measure the

model’s ability to identify only the object of interest. The result

ranges from 0 to 1. The closer to 1, the more accurate the

model will be in creating new annotations.

After implementing our algorithm and the definitions of the

evaluation metrics, we applied our approach in two different

use cases.

A. Use case 1: Chest examination database

We started by analyzing the agent’s performance with and

without advice in a database with chest X-ray medical exams

for cardiomegaly detection [32]. For this purpose, we use the

chest X-ray database from NIH [33]. Cardiomegaly refers to

an enlarged heart condition. It is one of the most common

inherited diseases of cardiovascular diseases with a prevalence

of at least 1 in 500 in the general population [34] [35].

Chest X-ray examinations are frequent and economical.

However, the clinical diagnosis of a chest X-ray can be

challenging and sometimes more complex than the diagnosis

by chest computed tomography. The lack of large, publicly

available data sets with meaningful annotations is challenging,

delaying the detection and diagnosis of chest X-ray examina-

tions.

B. Use case 2: Mammography exam database

A second use case, which we tested our approach, was

in cases of mammography images. Breast cancer can be

considered one of the most common global health problems

and is considered the second leading cause of cancer mortality

in women [36] [37].

Breast images are acquired through an x-ray examination.

Two projections are made during the examination procedure:

the Cranial Caudal (CC) and Medio Lateral Oblico (MLO)

planes. In the CC view, the breast is seen from top-down,

while in the MLO, the view is from the lateral region.

TABLE III
TRAINING DATA OF CARDIOMEGALY

Experiments Advice # Images Pre-trained # Annotations

exp1 No 31 No 11

exp2 Yes 31 No 17

exp3 No 31 Yes 17

exp4 Yes 31 Yes 19

TABLE IV
TEST DATA OF CARDIOMEGALY

Experiments Advice # Images Pre-trained # Annotations AP

exp1 No 64 No 25 0.3

exp2 Yes 64 No 38 0.5

exp3 No 64 Yes 37 0.5

exp4 Yes 64 Yes 32 0.4

The nipple is a structure of interest to be observed in

mammography exams. This structure helps the mammography

technician verify the quality of the positioning of an exam,

which can minimize the need for patients to return to repeat

the exam caused by poor positioning [38]. However, detecting

this structure is not trivial since, in addition to being a small

structure, it does not always appear clearly in the images.

V. EXPERIMENTAL RESULTS

A. Use case 1: Chest examination database

We conducted four training experiments with the RL agent

to analyze its performance in taking notes automatically. The

description of the data used for training is highlighted in Table

III.

Table IV presents the results obtained on a set of unlabeled

tests.

Figure 7 shows the evolution of the learning of the RL

agent when creating annotations the structure of cardiomegaly.

Throughout the episodes (indicated by the horizontal axis), is

shown the accumulation of expenses (vertical axis) that the RL

agent obtained. Negative rewards signify that the RL agent had

a hard time learning how to take notes.

As shown in Figure 7, and Table IV, with the insertion of

the human in the training loop, the agent was able to obtain

better results compared to training without advice, where his

learning oscillated more.

Figure 8 illustrates the result obtained by the RL agent when

creating a new annotation in the form of a bounding box. The

model used was the one that presented the best result, that is,

the advice with a AP = 0.5.

B. Use case 2: Mammography exam database

Likewise, for this use case, we have carried out four training

experiments. The description of the data used can be seen in

Table V. The RL agent was trained to automatically create new

notes of the nipple from exams projected on the CC plane

(Cranio Caudal).
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Fig. 7. Result of training of the RL agent to detect the structure of
cardiomegaly. Different colors are highlighting the comparison between the
experiments.

Fig. 8. Cardiomegaly image with being detected. In blue the ground truth,
and red the bounding box generated by the agent.

TABLE V
TRAINING DATA OF NIPPLE

Experiments Advice # Images Pre-trained # Annotations

exp1 No 31 No 0

exp2 Yes 31 No 5

exp3 No 31 Yes 1

exp4 Yes 31 Yes 15

TABLE VI
TEST DATA OF NIPPLE

Experiments Advice # Images Pre-trained # Annotations AP

exp1 No 192 No 0 0.003

exp2 Yes 192 No 34 0.16

exp3 No 192 Yes 6 0.03

exp4 Yes 192 Yes 60 0.3

We performed the RL agent testing experiments from a

database without annotations. Table VI presents the results

obtained.

Figure 9 shows the evolution of the learning of the RL agent

when creating annotations of a region of interest to the breast.

Throughout the episodes (indicated by the horizontal axis),

it is shown the accumulation of expenses (vertical axis) that

the RL agent obtained. Negative rewards signify that the RL

agent had a hard time learning how to take notes. As the graph

shows, the experiment that presented the best rewards, i.e., the

agent obtained positive rewards, was through apprenticeship

learning.

Fig. 9. Result of training of the RL agent to detect the structure of the papilla.
Different colors are highlighting the comparison between the experiments.

As shown in Figure 9 and Table VI, training the RL agent

with advice impacts positively in creating new annotations

automatically. On the other hand, the RL agent, without

counseling, proved to be less effective, having difficulties in

learning the task.

Figure 10 illustrates the result obtained by the RL agent

when creating a new annotation in the form of the papilla’s

bounding box. The model used was the one that presented the

best result, that is, the advice with a AP = 0.3.

VI. CONCLUSIONS

This paper presents a new approach for a cost-effective

annotation in a set of medical data, where annotations are

performed in an automated manner by a virtual agent through
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Fig. 10. Nipple image with being detected. In blue the ground truth, and red
the bounding box generated by the agent.

human advice. We evaluated our approach in medical datasets

for chest and mammography X-ray. The results showed that

the human advice allowed the RL agent to perform learning

even with a small sample of annotated data. The results also

showed how early human assistance increased both precision

and convergence speed to the annotation learning process.

For future work, we plan to perform experiments adjusting

a more significant number of hyperparameters, analyze the

amount of advice given by the human, and advise at different

times during the agent training process. In addition, we intend

to implement an active learning approach to increase the

autonomous agent accuracy, increasing its capacity to create

new annotations suitable for supervised machine learning

algorithms.
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