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Abstract—With the advancement of air pollution management,
low-cost sensors are increasingly being used in air quality
monitoring, but the data quality of these sensors is still a major
source of concern. In this paper, data from five air monitoring
stations in Sofia were compared to data from fixed low-cost
PM sensors. The values of atmospheric pressure from low-cost
sensors and the effects of relative humidity were investigated. A
two-step model was created to refine the calibration process for
low-cost PM sensors. At first, we calibrated the sensors with five
separate supervised machine learning models and then the ANN-
final model with anomaly detection completed the results. The
ANN-final model improved the R2 values of the PM10 determined
by low-cost sensors from 0.62 to 0.95 as compared to standard
instruments. In conclusion, the two-step calibration model proved
to be a positive solution to addressing low-cost sensor efficiency
issues.

I. INTRODUCTION

A
IR POLLUTION is a significant public health problem

that has long been a source of anxiety for citizens.An air

pollutant is described as any substance that can affect humans,

animals, plants, or materials. In the case of humans, an air

pollutant may cause or lead to an increase in mortality or

serious illness, as well as pose a current or potential health risk

[1]. Measurements of air emissions are critical for epidemi-

ology and air quality control, but the scope of ground-based

air pollution observations has limitations [2]. PM (Particulate

Matter) air pollution is a suspended combination of solid

and liquid particles that vary in quantity, size, shape, surface

area, chemical composition, solubility, and origin. Total sus-

pended particles (TSPs) have a trimodal size distribution in

the ambient air, including coarse particles, fine particles, and

ultrafine particles [3]. PM size-selective sampling refers to the

collection of particles that are below, above, or within a defined

aerodynamic range of sizes, which is commonly chosen to be

relevant to inhalation and deposition, causes, or toxicity [4].

A. Air quality monitoring systems

Traditionally, concentrations of air emissions have been

monitored by air monitoring stations equipped with standard

equipment, allowing for highly reliable monitoring results.

However, the high costs of equipment and servicing make

meeting the demands of high-resolution surveillance and as-

sessing the extent of personal exposure impossible [5], [6].

Low-cost air quality sensors have been widely used in air

monitoring in recent years due to the benefits of low cost,

low power usage, quick operation, and rapid response [7].

B. Opportunities and disadvantages of wireless low-cost sta-

tions

Wireless sensor networks connect a large number of fixed

sensors in multiple places into a single network, enabling

long-term, high-resolution surveillance of air contaminants

[8]. Its applications are seen often in health-related studies

and tracking individual exposure. A sensor tracking network

was built on the Hong Kong marathon route in 2015, and

it is used to measure the Air Quality Health Index (AQHI)

and determine athletes’ individual exposure levels [9]. In

Rochester, NY, USA, a study used PM sensors to test airborne

PM at various locations concurrently and continuously to

determine the temporal and spatial variance of PM, as well

as the impact of traffic and wood burning on outdoor PM

concentrations [10]. By installing sensors on carriers such as

vehicles, motorcycles, and drones, the mobile sensor network

can provide more compact spatial data than fixed sensors and

can achieve stereoscopic tracking of air quality and emission

sources [11].

C. Effects from humidity and height

Despite the low-cost sensor’s widespread usage, the data’s

precision has been challenged [12]. Some countries have

conducted sensor assessment and calibration tests, and rec-

ommendations for the use and evaluation of sensors have

been written [13]. However, just a few researchers have tested

and calibrated low-cost sensors so far, and their performance

under a variety of environmental conditions and time scales

is still unknown [14]. Relative humidity (RH) and particle

size distribution have been shown to have a significant effect

on sensor monitoring results [15]. Other research investigated

in foggy conditions at high RH (RH > 80%) the tracked

performance of the sensor was higher than that of the nor-

mal instrument [16]. Several studies identify that barometric
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pressure is important for modeling particulate matter because

complicated wind flows may occur, resulting in stagnant/sta-

tionary conditions with little circulation. Pollutants accumulate

near the ground as a result of these conditions [17]. When

barometric pressure was included in the model, the connection

between particulate matter and cardiovascular mortality was

marginally strengthened [18]. Finding associations between

MLH and near-surface pollutant concentrations representative

for a city like Berlin (flat terrain) appears to be impractical,

particularly when traffic emissions are dominant [19].

II. METHODOLOGY

The efficiency of fixed low-cost sensors was evaluated

in this study using five air quality monitoring stations in

Sofia (capital city of Bulgaria) which were compared with

standard instruments. The effects of AP, RH, and PM size

distribution (PM10 ratio) on the performance of PM sensors

were analyzed. Taking independent variables (RH, T and AP)

and the dependent variable (PM10) as input factors, a two-step

model calibration model to adjust fixed sensors was designed.

Finally, we evaluated the performance of each model and gave

recommendations for the conditions of the model application.

A. Reference instrument

This research used five air quality control stations with tra-

ditional measuring methods as a guide. The BETA-attenuation

monitor (BAM) was used to calculate PM10. Impactors,

cyclones, detection parts, and a dynamic heating system

are among the standard instruments. They are situated in

Sofia, Bulgaria respectively in the areas of Mladost, Druzhba,

Nadezhda, Hipodruma, and Krasno Selo. Only one of these

stations is measuring PM 2.5 and due to this PM 2.5 is not

used for a reference in this research.

B. PM sensors

The PM sensor used in this research was the NovaFitness

SDS011 laser particle sensor. The laser diffraction principle

is used to use the sensor. The laser illuminates the trapped

ions when capturing dispersed light waves at a certain angle

as air flows through the photosensitive region of the sensor. A

particle size continuum is created by classifying these pulse

signals into various particle size intervals in order to measure

the mass concentration of the particles [20].

C. The wireless network

In this research the Wireless Sensor Network (WSN) of

Luftdaten was used. It was made up of 300 fixed sensors

covering Sofia. Each sensor was installed in a plastic tube

that could be mounted on walls, balconies, street light poles,

and other structures.

Certain guidelines were developed to aid in obtaining the

best representation of PM emissions in the city with the least

amount of sensors possible. The WSN used fixed sensors that

were mounted in 1 km grids to ensure that the majority of the

downtown area was covered with adequate density.

Fig. 1. Calibration Model

D. Calibration model setup and methods

The five sensors were situated right next to the five air

monitoring stations. Since the sensor’s time resolution differed

from that of the regular instrument, the hourly mean was used

for calculation and evaluation. A two-step model calibration

method was modeled in this analysis, as seen in Fig. 1.

Values of PM2.5 were measured only from one reference

instrument, therefore, it was decided to exclude this instance

from the model. A decision tree (DT) is a decision-making

model that employs a tree-like model of decisions and their

potential consequences, including the implications of chance

events [21]. The Gradient Boosting Decision Tree (GBDT)

algorithm is an iterative decision tree algorithm made up of

multiple decision trees [22]. To obtain the final answer, the

conclusions of all trees are added together. Random Forest

(RF) is a tree predictor hybrid in which each tree is based

on the values of a random variable sampled independently

and with the same distribution for all trees in the forest [23].

In this research a RF with 10 trees is applied. The Artificial

Neural Network (ANN) is a mathematical model that simulates

neuronal behavior and is automatically modified by back-

propagation errors [24]. Anomaly detection is decided It is

a method of detecting unusual objects or occurrences in data

sets that are out of the ordinary [25].The anomaly detector was

used to remove outliers from the training dataset. As this is

unsupervised learning, an evaluation with the same ANN setup

was made, before and after cleaning the dataset to identify if

unsupervised learning is appropriate for this dataset. RF and

ANN are stochastic techniques, therefore, several runs have

been performed in order to obtain objective results. In addition,

statistical test from multiple runs have shown if the difference

between the standard ANN and the one with anomaly detection

is indeed significant.

The learning process of the model was divided into two stages:

learning and testing. The raw data was split into two data sets

at random, with 80% for training and 20% for testing. The

model was first trained using the training data, and then its

output was evaluated by the test data set.

E. Correlational analysis for atmospheric pressure

For evaluating the pressure measurement from the low-cost

sensor were used the values from the reference instrument,
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the height difference between each sensor and station, and the

Barometric formula. To do this 4 low-cost sensors within a

perimeter of 500m on different heights were evaluated. The

Barometric formula (1) is used to model how the pressure of

the air changes with altitude and it is as follows:

P = Pb.

[

Tb + Lb. (h− hb)

Tb

]

−g0.M

R∗.Lb

(1)

To evaluate the AP results from low-cost sensors a corre-

lation method was used. The comparison statistical methods

fall into two categorizations: parametric and nonparametric.

Parametric comparisons are based on the premise that the

variable is continuous and normally distributed. Nonparametric

approaches are used where data is continuous with non-normal

distribution or any other form of data other than continuous

variables. As our calculation model includes data normal-

ity and strict sample size, a parametric method is chosen.

Moreover, parametric methods are better ways to measure

the difference between the groups relative to their equivalent

nonparametric methods.

The parametric Pearson correlation coeficient (2) is used for

comparing the two sources of data. It provides a measure of

the linear association between the two continuous variables

(usually just referred to as correlation coefficient). Correlation

coefficients for each (x , y) pair are determined to carry out the

evaluation, and the values of x and y are consequently replaced

by their ranks. Applying the test findings to a coefficient of

correlation ranging from -1 to 1.

r =

∑

n

i=1
(xi − x̄)(yi − ȳ)

√

∑

n

i=1
(xi − x̄)2

√

∑

n

i=1
(yi − ȳ)2

(2)

III. RESULTS AND DISCUSSION

A. Comparison between low-cost sensors and standard instru-

ments

For better evaluation of the low-cost sensors together with

the coefficient of determination (R squared), the mean absolute

error and mean squared error are calculated (see Table I).

The mean value of R squared between PM sensors and

standard instruments without calibration was 0.62. The LR

model showed worst result with a mean R2 of 0.77. The best

correlation for PM10 came from the ANN model. The mean

value of the R2 was 0.94 (PM10), which matched the findings

of previous studies [12], [2]. For long-term comparison, the

low-cost sensor and the regular instrument were put in the

same location, which was a common approach for sensor

evaluation in previous studies [26].

B. Relative humidity and air pressure

Relative humidity (RH) and temperature are considered

to be the most important impact factors on particle sensor

efficiency. High RH has been shown in previous studies to

be the catalyst to causing hygroscopic growth of particles and

modifying optical properties, resulting in substantial interfer-

ence for PM sensors [27]. Moreover, RH turned out to be of

the highest importance in the RF and ANN models for the

PM10 values.

The low-cost sensors had identical values as compared to

normal instruments when RH was below 40%. While PM10

had a poor correlation when RH was above 80%.

Results of the AP from 4 sensors installed on different

heights within 500m were compared with the calculations

from the barometric formula and the data from the reference

instrument. The installation height of the sensors was 3, 6,

8, and 18m while the height of the reference instrument

is 2m. Calculations showed a high correlation between the

sensors and r the with a mean value of the Pearson correlation

coefficient r = 0,92.

C. Results of the calibration model

Table I presents the statistical outcomes of each model’s

testing, where Mean Absolute Error (MAE), Mean Squared

Error (MSE), and the R2 were determined.

The output of the other five separate models showed that the

ANN model performed best. The RF model showed slightly

worse results. The R2 of PM10 increased from 0.62 to 0.9 and

0.94 for RF and ANN respectively. The ANN model performed

best out of the 5 models, slightly better than the RF model,

therefore, was chosen to be used in comparison with anomaly

detection.

D. Improvements of the model through unsupervised learning

The ANN model was used as an autonomous model with

sensor data and environmental variables as inputs. With the

output values of five independent models as inputs, the ANN-

final model conducted an artificial neural network model after

filtering the dataset from anomalies . It was set up to find

the top 20 anomalous instances within a forest with 256

trees. The highest anomaly score of a tree was 68%. These

20 outliers were removed from the training set and ran an

ANN with the cleaned model which was evaluated again. The

compared evaluations showed improvement with an R2 of

0.95. In addition, the MAE and MSE decreased by 5.16%

and 14.69% respectively. Therefore, the use of unsupervised

learning in this study is considered to be useful. In conclusion,

the ANN-final model had the best calibration score, with the

largest R squared and the best correlation, indicating that the

two-step model was more accurate than a single model in the

model calibration of low-cost sensors.

IV. CONCLUSION AND FUTURE RESEARCH

The efficiency of PM sensors was measured by comparing

by standard instruments using the wireless sensor network. To

calibrate the fixed sensors, a two-step process was developed,

and the model’s results were evaluated. The following are

the major conclusions: The findings of the two-step model

were satisfactory. The R2 of the fixed PM10 sensors increased

from 0.62 to 0.95. The ANN model had the strongest impact

of the five independent models, followed by the RF model,
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TABLE I
RESULTS FROM SUPERVISED LEARNING MODELS.

TYPE OF MODEL MEAN ABSOLUTE ERROR MEAN SQUARED ERROR R SQUARED

LINEAR REGRESSION: 11.19 288.12 0.77

DECISION TREE: 8.89 170.03 0.86

GRADIENT BOOSTING DECISION TREE: 8.68 145.22 0.89

RANDOM FOREST: 7.96 125.57 0.90

ARTIFICIAL NEURAL NETWORK: 6.27 83.90 0.94

while the LR model was ineffective. Anomaly detectors can

be an unsupervised alternative to classifiers in an unbalanced

dataset and in this research the final result was improved.

The atmospheric pressure values of 4 low cost sensors were

compared with a standard station by the use of calculations

with the Barometric formula. The correlation was strong which

means that low-cost sensors may be considered as a good

source of modeling air pollution in vertical planning in further

researches.

Further studies will beneficial in incorporating gas sensors

into the WSN network. In addition, it is useful to analyze

automotive emissions with integrated mobile sensors in the ve-

hicles and using the model’s improvement from this research.
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