
Machine Learning and High-Performance

Computing Hybrid Systems, a New Way of

Performance Acceleration in Engineering and

Scientific Applications

Pawel Gepner

Warsaw Technical University

ul. Narbutta 86, 02-524 Warszawa, Poland

email: pawel.gepner@pw.edu.pl

Abstract—Machine learning is one of the hottest topics in
IT industry as well as in academia. Some of the IT leaders
and scientists believe that this is going to totally revolutionise
the industry. This transformation is happening on both fronts,
one is the application and software paradigm, the other is at
the hardware and system level. At the same time, the High-
Performance Computing segment is striving to achieve the level
of Exascale performance. It is not debatable that to meet such
level of performance and keep the cost of system and power
consumption on reasonable level is not a trivial task. In this
article, we try to look at a potential solution to these problems
and discuss a new approach to building systems and software to
meet these challenges and the growing needs of the computing
power for HPC systems on the one hand, but also be ready for
a new type of workload including Artificial Intelligence type of
applications.

Index Terms—Machine Learning, High-Performance Comput-
ing, Exascale performance, HPC systems, IPU

I. INTRODUCTION

T
ODAY’S High-Performance Computing systems are

build out of thousands of nodes containing a couple of

CPUs and one-or-many accelerators, mostly GPUs, onto the

same node. All theses nodes are connected using dedicated

fabric to make a cluster, the most common and universal

supercomputer of the present day. Clusters definitely dominate

the HPC market and occupy 92% of all the systems ranked

on the TOP 500 list [1]. From an architecture stand point

one-such- node of the system represents a hybrid architecture,

including CPU processor and accelerating unit. Basically we

find the major CPU architecture commonly used for HPC

are Intel/AMD x86, Arm, and Power. According the latest

Top 500 list more than 28% of the systems utilize GPUs

[1], also on this segment we have a choice between, Nvidia

and AMD, as well as, soon to be third player — Intel with

their GPU architecture. Integrating hundreds or even thousands

of heterogeneous nodes together requires special interconnect

technology and advanced topology for the network part. Today

we have basically two solution scenarios: InfiniBand with

low latency and standard Ethernet with all its advantages and

disadvantages. Unfortunately, both new technologies, such as

OPA or BXI, which could become a potential alternative, have

not achieved significant market penetration and adoption to be

considered real players.

From a programming perspective, such solutions are not

trivial, we need to properly handle heterogeneous infrastruc-

ture and be fully aware of the hybrid structure of code.

Effective use and management of the offload-acceleration parts

and utilizing CPU portions of the code is not a simple task

and requires experienced and knowledgeable developers.

There is no doubt that in the case of large Exascale systems,

homogeneous systems based on CPUs only are unable to

provide the required performance in a reasonable size and

do not destroy the power budget. It seems that the first few

Exascale systems, we are going see in the next couple of years,

will be based on a heterogeneous architecture - CPUs plus

GPUs, although in diverse combinations of vendors for these

components.

Artificial Intelligence-AI and Machine Learning-ML sys-

tems have been discussed for decades, but limited access

to large data sets , lack of relevant computing architectures

and available systems able to execute the AI workloads have

restrained AI developments, until the last couple of years.

Artificial intelligence systems are based on one of the

combinations of the following types of devices in conjunction

with a Central Processor Unit:

• GPU – Graphics Processing Units.

• FPGA – Field Programmable Gate Arrays.

• ASIC – Application Specific Integrated Circuits.

Many of today’s AI systems only use modern, efficient

multi-core processors to solve ML tasks. Processor vendors

are trying to support this segment by optimizing the architec-

ture, extending instruction sets to best address common ML

workloads, but also by adding a new data format and special

precision for this type of computation.

Despite these efforts by CPU manufacturers, processor-

based systems are not considered the most effective solution

for processing AI-oriented tasks, especially in the training

phase, and dedicated hardware has earned a reputation as the

best solution for this type of applications.

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 27±36

DOI: 10.15439/2021F004

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 27

Solutions such as GPU, FPGA or specialized ASICs such

as Tensor Processing Units-TPU from Google, Inferentia from

Amazon, Gaudi and Goya from Habana Labs, Grayskull

from Tenstorrent, SambaNova AI Chip, Cerebras Wafer Scale

Engine or a special dedicated Intelligent Processor Unit-IPU

from Graphcore are gaining great recognition and a reputation

for being the best solution for ML workloads.

Initially, the GPU was designed to accelerate multidimen-

sional data processing in computer graphics applications. The

GPU consists of thousands of small cores designed to work

independently. On the one hand ensures intensive processing,

but at the same time requires advanced management of the

memory subsystem and operating on the subset of data on

which it runs. A GPU can perform complex computational

operations for computer graphics such as texture mapping,

resizing and cropping images, rotating and flipping, translation

and filtering, and the dedicated memory makes these opera-

tions fast and efficient.

The HPC community realized the possibilities and benefits

of using the GPU to accelerate linear algebra calculations

long before the AI researchers started using them to solve

machine learning problems. The GPU has been found to

benefit wherever we are able to take advantage of the natural

parallelism of algorithms and accelerate them by parallel

execution. At the same time, from specialized chips dedi-

cated to graphics solutions they became fully programmable

graphics processors. Today they are still specialized parallel

processors, but also highly programmable and the spectrum

of implementation has grown significantly.

Deep neural network calculations are based on a similar

type of operation as linear algebra calculations, so the natural

consequence of this fact is the use of GPUs to solve deep

learning problems. GPUs are throughput processors and can

provide high throughput and be an effective solution for

accelerating HPC and machine learning type of systems.

Unlike GPUs, FPGAs did not make a stunning career in the

HPC market but for Machine Learning specially in inference

it is very interesting alternative for already trained model. FP-

GAs are an array of programmable logic blocks and memory,

connected via a hierarchy of reconfigurable interconnects that

allow the blocks to be wired together to perform specific com-

plex tasks. Since the FPGA is not a processor, it cannot execute

the program stored in memory, but it can perfectly execute the

code for which it has been configured. FPGAs are inherently

parallel, so they’re a perfectly matching parallel computing ca-

pabilities of machine learning models. To configure and store

the executable program in to the chip and make it operational

we use a fully parallel hardware description language - HDL.

Results show that FPGA provides superior performance/Watt

over CPU and GPU because FPGA’s on-chip extracting fine-

grained parallelisms and matches the specifics of the machine

learning code.

Specialized ASICs for AI solutions, like all customised

chips, have their own specific requirements optimized for AI,

which radically accelerate the calculations demanded by ML

algorithms. They are based on massive parallel operations

that are performed simultaneously, instead of sequentially,

to achieve the required performance. Dedicated AI chips

require low precision computation in a way that AI algorithms

implement them effectively, this approach reduces precision

but speeds up execution and reduces the number of transistors

required for the same computation. Customised AI ASICs are

characterized by super-efficient memory access, where they

store all of the data necessary for the correct implementation

of the algorithm, therefore, with the growth of models, the

memory of such chips also evolves over time. Many companies

have brought AI specialised chips to the market and number of

new solutions increases every day. Different types of AI chips

are useful for different tasks some of them were developed to

do training others to do inference others for both domains.

In this article, we propose a hybrid system architecture

capable of solving both HPC and AI problems. Such a solution

is utilising classic HPC platforms and dedicated AI chip

systems, which is particularly important in the context of the

challenges of the new types of Exascale systems. We will

discuss not only the implications at the chip level, but also

the system approach along with the necessary modification

of algorithms and software, as well as the performance. The

approach of the heterogeneous system presented in the article

will allow us to propose a system capable of accelerating the

most complex simulation problems. The construction of such

a heterogeneous system is based on customized AI chips and

systems utilizing Graphcore’s Intelligent Processor Unit-IPU

for executing a new hybrid algorithm acceleration scenario. Of

course on the market we can find other ASICs and dedicated

AI type of chips but IPU appears to be the most mature and

universal solution available on the market today, with a solid

and comprehensive software ecosystem.

This paper is organized as follows. Section 2 presents

related works. Section 3 is devoted to the introduction of the

Intelligent Processor Unit. It explains architectural details of

IPU and describes the way it works and the principles of it’s

programming model. In Section 4, we concentrate on the de-

tails of the proposed system architecture, discuss the benefits

and challenges. Section 5 discusses the programming approach

and the new way algorithms are tuned to the architecture

that enables the use of a hybridization approach. In Section

6, we present the conclusions of the conducted architectural

proposal.

II. RELATED WORKS

Over the last few years, there have been many attempts

at improving the architecture as well as many discussions

on development directions of hardware technology, as well

as attempts to use the existing High Performance Computing

technology in Machine Learning frameworks and artificial

intelligence systems [2]. The convergence of HPC and artificial

intelligence [2], [3] offers a promising approach to major

performance improvements. As classic HPC simulations are

reaching the limits of their progress and slowing down due to

the stagnation of Moore’s law that has led to the proliferation

of various accelerator architectures. These architectures are

28 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

still evolving, resulting in very costly, if not harmful, modifi-

cation of the scientific codes that must be optimised to bring

out the last marginal gains of parallelism and efficiency. In

many application areas, the integration of traditional HPC

approaches with machine learning methods is perhaps the

greatest promise to overcome these barriers.

The need to increase performance is the clue to the inter-

national efforts behind the Exascale supercomputer projects.

Exascale initiatives in the US, Japan and Europe exploring

the possible integration of ML with large-scale computing is a

very promising way to achieve high performance. There is un-

doubtedly a close relationship between machine learning and

high performance computing as machine learning algorithms

are based on the same basic linear algebra operations that are

used in HPC. The question that arises is how to efficiently

use the existing HPC infrastructure for ML applications and

can ML code be incorporated into HPC simulation and is this

approach optimal?

Interesting attempts to answer these questions can be found

in works such as Jeff Dean’s ”Machine Learning for Sys-

tems and Systems for Machine Learning” [4] and Satoshi

Matsuoka’s "Convergence of AI and HPC" [5]. However, the

most advanced categorization of such systems, and even the

development of a specific taxonomy, can be found in Geof-

frey Fox’s et al. "Learning Everywhere: Pervasive Machine

Learning for Effective High-Performance Computation" [2].

The authors attempted to classify a new category of system and

the type of calculations associated with them, they proposed a

method for their hierarchy, and even defined some performance

metrics .They distinguished classical performance as measured

by Flops or benchmark results from effective performance,

which is achieved by combining learning with simulation and

delivering increased performance as seen by the user. This is

absolutely crucial in the cases where there is a combination

of machine learning and the components of a traditional HPC

simulation where classical benchmarks are not representative

at all.

On the basis of the proposed classification, several clearly

different approaches to the construction of systems using

machine learning and HPC solutions have been identified

[2]. Basically, two categories of systems are distinguished:

HPCforML and MLforHPC:

• HPCforML: Utilising HPC to run and enhance ML

performance, or using HPC simulations to train ML

algorithms.

• MLforHPC: Deploy ML to enhance HPC applications

and systems.

Of course, the proposed split divides the system based on par-

ticular type of calculations. If ML and AI is the major target,

then we can utilize the HPC installations for acceleration of

AI type of code, but if we have a HPC traditional problem

and AI and ML seems to be a good way for acceleration run

time than, the system belongs to the second class [3]. This is

absolutely clear that the main categories of systems have their

subclasses and they are defined as follows:

• HPCrunsML: Using HPC to perform ML type of work-

loads with highest degree of effective using the HPC

acceleration capabilities [2], [3].

• SimulationTrainedML: Using HPC simulations to train

ML algorithms, which are then used to understand ex-

perimental data [2], [3].

• MLautotuning: Using ML to configure autotune HPC

simulations. MLautotuning can also be used for simula-

tion mesh sizes and in big data problems for configuring

databases and complex systems like Hadoop and Spark

[2], [3].

• MLafterHPC: ML analyzing results of HPC simulation

[2], [3].

• MLaroundHPC: Using ML for learning from simulations

and creating learned solvers replacing classic HPC wrap-

pers [2], [3].

• MLControl: Using ML to control of experiments and

simulation run on HPC system [2], [3].

There are many research groups working on all of these HPC

and AI hybridization categories, and most of the work is just

starting and still in an early stage of development, but by far

the most attractive in terms of performance and potential is

MLaroundHPC. Some groups have already very im- pressive

results with MLaroundHPC especially in high energy physics,

materials science, weather simulation, epi- demic forecasting,

tissue and cellular simulations, nanoscale and biomolecular

simulation, computational fluid dynamics simulation and many

others [3].

Another aspect often discussed in the context of combining

AI and HPC is the question of measuring the performance of

such solutions. In the classic model of measuring the efficiency

of HPC systems, the situation is quite obvious "faster is

better" which in turn prompts the acceleration of individual

work units. For hybrid systems, the ML component should

be included, and this requires both hierarchical (vertical) and

horizontal (multitasking) parallelism [6].

Much effort has been put into developing a new type of

hybrid systems that can scale to very large sizes and bring

performance benefits to a whole new level that is impossible to

achieve based on classical simulation and HPC. The proposed

hybrid approach in this paper incorporating AI and HPC

components takes into account these new trends and proposes

the use of solutions that have already proved their usefulness

in AI solutions.

III. INTELLIGENT PROCESSOR UNIT

Bulk Synchronous Parallel - BSP model is the foundation

for the architectural assumptions of the IPU Colossus MK2

GC200 processor and the Poplar programming model. Valiant

proposed the Bulk Synchronous Parallel model as a parallel

computing abstraction scheme that facilitates the expression

of parallel algorithms, helps design large paralleled systems

and makes it easier to analyse the performance they achieve

while running [7].

This model, proposed in the 1980s, is a parallel counterpart

to the Von Neumann model’s for sequential computing, and

PAWEL GEPNER: MACHINE LEARNING AND HIGH-PERFORMANCE COMPUTING HYBRID SYSTEMS 29

allows exemplification structure of parallel algorithms and can

be used for performance characteristic measurement [8].

BSP is a parallel computing model that IPUs use to organize

data processing and exchange operations. The way the BSP

model arranges computation is based on sequential 3-steps

phases [8]. This 3-steps phase is constituted of:

• local computation phase - every process performs com-

putation that operates exclusively on local memory. No

communication between processes occurs in this phase.

• communication phase - processes exchange data and each

process may send a message to each looked-for destina-

tion counterpart. No computation occurs in this phase.

Processes can use the communication phase not only to

send each other intermediate computation results, but also

to request and (at a later communications stage) receive

data from remote memories. This mechanism allows each

process to use other local memory as a remote memory

and to ultimately access the entire aggregate system

memory as one larger store.

• • barrier synchronization phase - no process continues to

the next phase till all processes have reached the barrier.

Neither computation nor communication occurs in this

phase except for that strictly required by the barrier itself.

The BSP model is ideally suited to describe any parallel al-

gorithms of any complexity and allowing software developers

to specify processes in terms of graph vertices that compute

on local data. Input operands are fetched to each process by

the run-time system before the computation begins, in the

communication phase related to the previous cycle [8].

The hardware-assisted programming model not only en-

forces phase separation but also ensures the coupling of both

entities. Since the IPU cores can only access directly the local

memories on the chips, this naturally imposes local constraints

on the computational phase. The hardware-implemented all-to-

all memory exchange mechanism provides native support and

enforces control and exchange during the communication and

synchronization barriers phases [7].

From the hardware definition IPU is distributed memory,

massively parallel, multiple-instruction, multiple-data (MIMD)

devices. Each IPU has 1472 cores, each with its own on-chip

624KiB SRAM memory per core, combination of core and

associated on-chip memory is named a tile. With 1472 tiles

the IPU has just under 900 MB of memory in total. This

local memory is the only memory directly accessible by tile

instructions. It is used for both the code and data used by that

tile. There is no shared memory access between tiles. The tile

uses a contiguous unsigned 21-bit address space, beginning

at address 0x0. The effect of accessing unpopulated memory

addresses is undefined. Memory parity errors can occur when

data is read from memory, for example, by a load instruction

or an instruction fetch. A parity error detected in a fetched

instruction prevents the execution of that instruction. Tiles

cannot directly access each other’s’ memory but can commu-

nicate via message passing using an all-to-all high bandwidth

exchange (theoretical 8 TB/s). The memory has very low-

latency (6 cycles) and ultra-high bandwidth (theoretical 47.5

Fig. 1. Simplified version of IPU die

TB/s). The whole chip is built on the budget of 59.4 billion

transistors and using the TSMC 7nm manufacturing process

[9]. Fig. 1 shows simplified schematic of IPU die.

The IPU is specifically designed for machine learning type

of computation, and the tile Instruction Set Architecture-

ISA[15] includes focussed hardware elements such as Ac-

cumulating Matrix Product-AMP units and Slim Convolution

Units-SLICs which allow up to 64 multiply-add instructions

to complete per clock cycle. There are also hardware support

instructions for random number generation and some selected,

generally used in machine learning, transcendental operations.

The IPU supports 32-bit single-precision floating point FP32-

IEEE, as well as FP16-IEEE 16-bit half-precision floating

point numbers of data format with hardware stochastic round-

ing support. Every tile runs 6 hardware execution threads in

a time-sliced round-robin schedule, allowing instruction and

memory latency to be hidden. With this mechanism, most

instructions, including memory access and vectorised floating-

point operations, complete within one thread cycle (6 clock

cycles). Every thread represents a truly independent program,

there is no restriction that threads run in groups executing the

same program in lockstep, and no requirement that memory

accesses are coalesced to achieve the high SRAM bandwidth

[9].

All these architecture principals have been carefully selected

to entirely support the machine learning specific workloads but

at the same time they make the IPU one of the most powerful

devices on the market. Table 1 shows comparison of existing

CPUs and GPUs available on the market. This table clearly

illustrates that IPU has a significant advantage in terms of

the available resources but also theoretical performance versus

other devices uses for machine learning applications.

The programming interface to access the IPU is the Graph-

core Poplar programming framework. Poplar is a graph pro-

gramming environment that essentially extends the function-

ality of C ++ by transforming it into the IPU operation model

and is based on three concepts:

• Vertexes are the programs which execute on individual

tiles. Vertices in Poplar are subclasses of the Vertex class.

They each have a compute method that is run on the

30 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

TABLE I
CHARACTERISTICS OF CPUS, GPUS AND IPU

Architecture Memory Capacity Frequency (GHz) Bandwidth (GB/s) FP32-TFLOPS FP16-TFLOPS

Graphcore IPU SRAM 900 MB 1.325 47500 61 245

Intel, Xeon 8380 L1/L2/L3/DRAM 48KB/1.25MB/60MB/4TB 2.3 7048/5424/1927/225 5.8 11,6

AMD 7742 (Rome) L1/L2/L3/DRAM 4MB/32MB/256MB/4TB 2.25 190 4.7 9,4

Nvidia GPU-A10 L1/L2/HBM-2 128KB/6MB/24GB 0.885 600.2 31.2 31.24

Nvidia GPU-A100 L1/L2/HBM-2 192KB/40MB/40GB 0.765 1555 19.5 77.97

Nvidia GPU-V100 L1/L2/HBM-2 128KB/6MB/16GB 1.312 897 16.4 31.33

AMD GPU-MI-100 L1/L2/HBM-2 16KB/8MB/32GB 1 1229 23.07 184.6

Fig. 2. IPU Computation Graphs concept

tile and returns a bool value. Vertexes are defining an

interface of inputs and outputs which later allows them

to be wired into the Computation Graph. The function

performed by a vertex can be anything from a simple

arithmetic operation to reshaping tensor data operation

or performing a complicated code.

• Computation graph defines the input/output relationship

between variables and operations. Poplar provides func-

tionality for constructing, compiling, and serialising the

computation graph.

• Control programs administrate arguments, select IPU

devices, control the execution of the graph operations.

Fig 2 shows the concept of the IPU computation graphs

which defines the input/output relationship between variables

and operations.

The graph is made up of tensor variable (variables in the

graph), compute tasks (vertices) and edges that connect them.

Data is stored in the graph in fixed size multi-dimensional

tensors, a vertex is a specific piece of work to be carried out

and the edges determine which variable elements are processed

by the vertex. A vertex can connect to a single element or a

range of elements. Each vertex is associated with a codelet

- piece of code that defines the inputs, outputs and internal

state of a vertex. Codelet is implemented in standard C++11

[10]. Example 3.1 shows simple example of the Adder vertex

(vertex that adds two numbers).

Example 3.1 (C++): The Adder vertex:

#include <poplar/Vertex.hpp>

using namespace poplar;

class AdderVertex : public Vertex {

public:

Input<float> x;

Input<float> y;

Output<float> sum;

bool compute() {

*sum = x + y;

return true;

}

};

The final element that brings all the elements together is the

control program, it organizes the selection of devices, loads

compiled graphs into the IPU and executes graph programs.

An important part of this is the mapping of data transfers

between the IPU and the host, memory structures, and initiat-

ing transfers. Once the program is deployed, all the code and

data structures required to run the program reside in the IPU’s

distributed memory [10]. The control programs run in order

to execute the appropriate vertices.

IV. HYBRID SYSTEM ARCHITECTURE

The next generation of AI systems promises to accelerate

computer vision, speech recognition, machine translation sys-

tems and increasingly impact our lives. Realizing this promise

we need AI systems that can compute massively increasing

amounts of data and do it in realistically short time. In the

same time the size of the HPC systems is increasing but the

level of utilization does not necessarily evolve in the same

direction. The most extensive and sophisticated of today’s HPC

models are so computationally expensive that researchers need

to replace parts of the model with approximation mechanisms

that transfer accuracy to speed, only to obtain a simulation that

can be performed at feasible scale and resolution. It turns out

that ML models are universal and accurate approximations, so

one direction of research is to use accurate but slow numeric

code to generate training data for the ML model that can

then be implemented on a large scale, more efficiently, and

maybe even more accurately. To make this transformation

successful we need the specialized hardware dedicated for ML

framework from one hand but should not jeopardise the HPC

requirements. Due to different architectural characteristics and

the large number of system parameter configurations (such as,

the number of threads, thread affinity, workload partitioning

PAWEL GEPNER: MACHINE LEARNING AND HIGH-PERFORMANCE COMPUTING HYBRID SYSTEMS 31

between multi-core processors of the host and the acceler-

ating devices), achieving a good workload distribution that

results with optimal performance for HPC 64 bits and ML

32 bit and 16-bit workloads is not a trivial task. An optimal

system configuration that results with the highest throughput

and performance for HPC may not necessarily be the most

effective solution for AI type of solvers. Moreover, the optimal

system configuration for AI workloads is likely to change for

the different types of applications, sizes of input problems,

and available resources that we have in HPC. Taking all these

elements into account the proposed approach of hybridisation

the system architecture appears to be a creditable solutions.

Suggested systems contain two parts AI and HPC dedicated

portion but from the networking, storage and orchestration,

administration point of view it is a single instance. This

type of the approach provides an optimized solution for the

monolithically type of HPC code which is running on the HPC

section of the system without any limitation, as well as the

AI portion can be utilized only when we have ML workload.

The most complicated scenario appears for the hybrid type of

code when they have HPC section involved in the preparation

phase for the data generating process for AI optimized solver.

These new architectures will aim not only to improve the

performance, but to simplify the development of the next

generation of AI and HPC hybrid applications by providing

rich libraries of modules that are easily composable.

Many institutions have already started investigation and

development of hybrid systems for example, the University

of California, Berkeley Firebox project or Lawrence Liver-

more National Laboratory - LLNL with their two hetero-

genic systems. The LLNL integrated AI-specific systems one

from Cerebras and one from SambaNova into two existing

LLNL HPC systems (Lassen (23 petaflops) and Corona (

10 petaflops)) to achieve system level heterogeneity [11].

Many other works have been carried out and many centres

are experimenting with different setups and configurations.

Most of today’s research is concerned with the allocation

of resources and the interaction between different types of

resources. One should also consider what is the proper ratio

of these different types of resources and what should be a

reasonable size of the systems between the HPC and AI

components. A particularly important question is the need to

provide disaggregated network bandwidth that will be suffi-

cient and network latency low enough to tie the two domains

together and meet the needs of each task. Fig. 3 shows the

simplified version of the system with separated HPC classic

system and ML section. The HPC section is CPU or CPU

plus accelerator based. This part is dedicated for typical HPC

simulation workload. Second section is ML system responsible

for AI type of workloads. Both systems are connected via

unified network e.g. Ethernet and they are utilizing the storage

subsystem which can be shared simultaneously or as the

aggregated bandwidth subsystem for hybrid type of workloads.

The proposed architecture can utilize any type of HPC

system based on the existing infrastructure as we see e.g.,

in LLNL or completely new specially built system. For the

Fig. 3. Schematic of the hybrid system

machine learning component, the proposed system is based

on Graphcore architecture for a couple of reasons. The perfor-

mance of the IPU itself and architecture customisation for ML

work- loads already discussed in the previous section of the

article, also because of the unique approach to the architecture

of the IPU systems, based on disaggregated approach for the

platform level integration and scalability.

Graphcore IPU-M2000 system is basically a 1U server uti-

lizing 4 IPUs, gateway chip which connects IPUs into compute

domain, provides access to the DRAM, two 100Gbps IPU-

Fabric Links, a PCIe slot for standard Smart NICs, two 1GbE

Open BMC management interfaces, and access to an M.2 slot.

Fig.4 shows the block diagram of the IPU-M2000 system.

The host system accesses IPU-M2000 platform over 100Gb

Ethernet with ROCE (RDMA over Converged Ethernet) with

very low-latency access. Such an implementation based on

Ethernet avoids the bottlenecks and costs of PCIe connectors

and PCIe switches and enables a flexible host CPU to ac-

celerators combination and provides the scaling from single

IPU-M2000 system to massive supercomputer scale including

64000 IPUs, all networked over standard networking at lower

cost and much more flexibility than using e.g., InfiniBand [12].

The IPU-Fabric is a totally new scale-out fabric designed

from the ground up to support the needs of machine intelli-

gence communication. The IPU–Fabric is natively integrated

into the IPU processors and IPU-M2000 system. A key

difference between IPU-Fabric and other proprietary fabrics

are the usage of Compiled Communication and Bulk Syn-

chronous Protocol, both these elements provide deterministic

communication behaviour. Every IPU has dedicated IPU-Links

providing 64GB/s of bidirectional bandwidth and an aggregate

32 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

Fig. 4. Schematic and building block of IPU-M2000 Machine

Fig. 5. IPU-POD64 configuration

bandwidth per chip of 320 GB/s. Each IPU- M2000 has 8

external IPU-Links for intra-rack scale out using OSFP copper

cables. The intra-rack configuration called IPU- POD64 con-

tains 16 of IPU-M2000’s connected into a single instance with

2D ring topology utilizing IPU-Links. Host-Link connectivity

is provided from the GW through a PCIe NIC or SmartNIC

card. Fig. 5 shows the IPU-POD64 configuration [12].

For inter-rack scale out the IPU-GW provides 100GbE ports

that tunnel the IPU-Link protocol over regular Ethernet, theses

links are named as IPU-GW-Links. Physically every IPU-

M2000 system has 2 QSFP ports that support both optical

transceivers and copper cables for rack-to-rack connectivity.

Each IPU-GW-Link represent a switch plane. In an IPU-

POD64 there are 32 such planes and with 32 128-port 1U

100GbE switches it can be scaled to 8000 IPUs in a single

switch hop. IPU-Fabric can connect clusters of IPU-PODs

in scale-out from a few IPU-PODs to 1,000’s of IPU-PODs

and can scale to support a cluster of up to 64000 IPU’s

that can work as a singular AI compute entity or supporting

1000’s of different workloads and tenants. The IPU-Fabric

is fully compatible with 100Gb Ethernet using QSFP/OSFP

connectors and standard switches. These can be used to

connect IPU-Fabric clusters and to build larger systems and

to fit in with existing datacentre technology[12].

The memory model for the IPU-Machine is also quite

unique and in addition to In-IPU Memory each IPU-M2000

systems has DDR memory available to the four IPUs. This

DDR memory is used differently from that found in CPUs or

GPUs. Instead of a memory hierarchy that requires swapping

data and code from host memory store to the accelerator’s

memory, the Poplar Graph Compiler creates the deterministic

code-memory relationships in both the memory on the IPU

tile and the DDR memory. In fact, the IPU-M2000 system can

use this additional memory in stand-alone mode for inference

processing without any attachment to a host server. And

thanks to the BSP model compiling both computation and

communication, the network communication overhead is kept

to a minimum compared to traditional messaging or shared

memory constructs commonly used for parallel processing.

Built-in fabrics are becoming a necessity for AI accelerators

since model sizes are increasing dramatically, some containing

billions of parameters. These large models must be distributed

across hundreds or thousands of processors to solve problems

in a reasonable time. Graphcore’s hybrid model uses a propri-

etary IPU-Link fabric to communicate across the tiles in an

IPU and adjacent rack IPUs, while tunnelling the IPU-Link

protocol across standard 100GbE for rack-to-rack scale-out

supporting larger configurations [12].

This disaggregated scaling model is the most important

feature of IPU-M2000 based systems and, together with IPU-

Fabric, enables a flexible disaggregation model, allowing the

user to configure multiple accelerators on the fly without

constraints by a predetermined scenario. It is also an important

architectural element in the context of the hybrid type of

system discussed in this article, where the HPC and AI part

can be dynamically reconfigured based on the requirements

and specifics of the code allocating HPC processors and

accelerators in combination with the ML component based

on the task requirements and code characteristics. It would be

ideal to implement this in a multidimensional backbone that

is efficiently supported by IPU-Fabric and an HPC network

topology that would allow direct 1 to 1 communication with

very low latency.

V. PROGRAMMING HETEROGENEOUS SYSTEMS

High performance scientific computing has traditionally

focused on scaling and increasing the performance of a single

large task. In fact, they were designed and optimized for the

efficient execution of a few large-scale simulations, instead

of the large number of smaller scale simulations necessary

e.g., to train accurate ML models. However, even a new

hybrid system as proposed in previous section of the article

without a radical redesign of algorithms and computational

methods faces increasingly serious limitations in the ability

to scale single monolithic applications and achieve significant

performance gains on large parallel machines. In response,

PAWEL GEPNER: MACHINE LEARNING AND HIGH-PERFORMANCE COMPUTING HYBRID SYSTEMS 33

HPC scientific applications are looking for new methods to

reduce time to obtain scientific insight, such as the use of

team - aggregated simulations [6], [13] and the integration of

artificial intelligence and machine learning methodologies with

traditional HPC applications. The coupling of ML methods and

HPC simulations is not trivial and it involves a fundamental

reconfiguration of classic HPC algorithms and the use of

appropriate data sets. In particular, there are two design

strategies:

• Sequential implementation of the simulation followed by

AI / ML training and subsequent inference runs.

• Stream implementation of the AI / ML component that

enables independent and concurrent running of simulation

and AI / ML tasks, but with the possibility of data

exchange by individual tasks at runtime. Tasks can still

be interdependent, depending on how the simulations are

selected using the AI / ML methods to run next.

The second strategy, although even more attractive and

innovative, requires a complete rebuild of existing codes

and the development of a completely new application, so

most of the work and efforts of the researchers currently

focuses on a strategy ensuring interaction between artificial

intelligence and classical solvers for much faster analysis and

reduced simulation time. Although using machine learning

methods to speed up simulations can significantly improve

the performance of scientific applications, there are many

limitations that must be considered. ML systems require many

examples (data samples) to build accurate surrogate models,

and HPC systems are designed to perform as few as possible

simultaneous instances of very complex tasks. This underlying

tension between ML and HPC requires the problem of multiple

simulations to be solved, unfortunately HPC is optimized

for a few, meaning that the creation of HPC simulation

datasets used to train ML models must be done with care.

Standard HPC workflow tools may not be the most effective

way to make the large simulation datasets required to train

ML models. Also, batch scheduling systems are typically not

designed to run thousands or millions of simulations. Parallel

file systems can degrade performance when presented with a

large number of simultaneous reads and writes that overload

the metadata servers. Dynamically loaded shared objects can

pose similar problems. Essentially, creating ML-ready HPC

simulation datasets requires workflow technology that can

efficiently coordinate asynchronous heterogeneous simulation

tasks at scales well beyond the design operation of HPC

systems [14].

Taking all this into account and being aware that this is

the beginning of an arduous road, it should be emphasized

that there are already several works and articles that can boast

interesting results combining ML components with the classic

HPC simulation.

Fundamentally these methods have been used to replace,

accelerate, or enhance existing solvers via AI/ML solution.

These methods are based on the fact that solvers compute a set

of iterations to achieve the convergence state of the simulated

Fig. 6. Scheme of replacing classical solver via ML enabled solution

phenomenon. These methods are based on the assumption

of the convergence of ML models on the basis of several

initial iterations generated by the classic solver. This way,

intermediate iterations do not have to be computed to get

the final result, and therefore the time needed to solve is

significantly reduced. Fig. 6 shows the simplified scheme of

replacing classical solver via ML enabled solution for a CFD

workload [15].

The presented approach includes the initial results computed

by the CFD solver and the AI-accelerated part executed by

the proposed AI module. The CFD solver produces results

sequentially, iteration by iteration, where each iteration pro-

duces intermediate results of the simulation. All inter- mediate

results wrap up into what is called the simulation results. The

proposed method takes a set of initial iterations as an input,

sends them to AI module, and generates the final iteration of

the simulation. The AI module consists of three stages:

• data formatting and normalization,

• prediction with AI model (inference),

• data export

The advantage of this method is that it does not require to

take into account a complex structure of the simulation, but

focus on the data. Such an approach lowers the entry barrier for

new adopters compared with other methods, such as a learning

aware approach [15], which is based on the mathematical anal-

ysis of solver equations [15]. The AI-accelerated simulation is

based on supervised learning, where a set of initial iterations is

taken as an input and returns the last iteration. For simulating

the selected phenomenon with conventional non-AI approach,

it is required to execute 5000 iterations. At the same time,

only the first iterations create the initial iterations that produce

input data for the AI module. The accelerated part utilized a

dedicated part of the system specialized for ML workloads,

when CFD simulation portion uses HPC portion of the system.

The proposed approach to accelerating CFD simulation allows

shortens the simulation time almost ten times compared to

using only a conventional CFD solver. The proposed AI / ML

module uses 9.6% of the initial solver iterations and predicts

a convergent state with an accuracy of 92.5% [15].

Undoubtedly, the 10-fold reduction in simulation time is

impressive, and there are also studies in which this type of

approach provides up to a 100-fold improvement in simulation

related to protein folding. Over 100 times faster protein folding

and 1.6 times more simulations per time unit, improving

resource utilization compared to the classic HPC solver, even

34 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

more interesting is that this type of approach is not used as

an experiment, but is running on platforms and workloads in

production [16].

In parallel to the hybrid approach that tries to combine

HPC solutions with ML, there are several initiatives that use

typical ML frameworks to solve classic HPC problems. This

approach can be seen in the attempt to use TensorFlow to

solve problems typical for HPC. TensorFlow was designed

for creating ML applications, but it must be noted that it re-

duces the difficulty of programming accelerators in distributed

environments, avoiding the low-level programming interfaces

typical for HPC, such as CUDA, OpenCL and MPI. This

concept allows the use of cloud systems with accelerators such

as GPU, TPU, IPU, but also allows the use of typical HPC

supercomputers. While TensorFlow was originally designed

to solve machine learning problems, it can be generalized to

solving a much wider range of numerical problems. Although

TensorFlow is not a typical library for numerical computation,

there are several examples of using TensorFlow to solve

them. TensorFlow is a complete development environment

with a high-level API that allows easy development and

implementation of distributed algorithms without the need for

in-depth knowledge of concepts such as CUDA and MPI.

Although TensorFlow is a dynamically developed platform that

can be used to create HPC applications on supercomputers

with accelerators, it does not seem to be a good candidate to

replace classic solvers due to the mismatch of the hardware

architecture typical for ML (e.g. TPU or IPU) solutions,

different from those for HPC [17].

Considering the proposed hybrid system architecture pro-

posed in section IV where the ML component was based on

the IPU-M2000, it should be noted that there are significant

limitations in using the IPU for typical HPC tasks. Firstly,

Poplar graphs are static, making it difficult to implement

techniques such as dynamic grids and adaptive mesh refine-

ment. Secondly, the graph compile time is very high compared

to compilation of typical HPC kernels. It is important to

emphasise that for small problems, graph compilation may

take longer than executing the resulting programs. Thirdly,

code developed for the IPU is not portable to other platforms.

Fourth and most importantly, the IPU is limited to 32-bit

precision, which is absolutely the biggest obstacle for some

HPC scientific applications.

VI. CONCLUSIONS

The horizon of Exascale HPC projects is a set of challenges

and opportunities. On the one hand, HPC methods and plat-

forms are becoming general and necessary for scientific ad-

vances. On the other, classical HPC computations are reaching

limits. The HPC community confidently expected that as long

as improvements in hardware performance were promising,

traditional simulation-based methods would continue to deliver

improved performance. The ramifications of this belief are

obvious, achieving productivity gains is becoming increas-

ingly difficult, while at the same time requiring significant

and unsustainable, investment in software and algorithmic

reformulation. However, it is clear that traditional simulations

may not represent the optimal approach for Exascale systems

and for the next generations of supercomputers, which could

consequently lead to complete stagnation.

The new discussed hybrid HPC and machine learning

model enables a new approach to performance, scalability

and execution time. In this new paradigm, a specialized ML

system in conjunction with classical simulation replaces single

large units, which requires both hierarchical and multitasking

parallelism. The current research trend shows that hybrid

systems, which are a combination of ML and HPC solutions,

outperform simulation based approaches. The exact optimal

point or intersection point is not trivial: it will be application

specific, will depend on the complexity of the learned models,

the amount of the data, and the effectiveness and cost of the

simulation among others. However, the fundamental idea, that

surrogate learned models will represent effective performance

improvements over traditional simulations, is powerful and is

an important generalization of the multi-scale, coarse-grained

approaches used in many disciplines of science such as:

computation fluid dynamics simulation, molecular science,

climate change, materials simulation, and many others.

Presented details of surrogate system based on machine

learning approach with high performance computing infras-

tructure that is widely available will have important implica-

tions for the cyberinfrastructure developed and deployed for

the science of tomorrow. While a great deal of effort has gone

into making the most of the HPC infrastructure, this article

only describes a few fasteners and construction methods that

seem easy to implement. From a future system architecture

perspective ML methods have and will have an increasingly

visible and important role in smarter computational systems.

The main reason for the success of such techniques is that

they offer simple, scalable and fairly general means to deal

with high-dimensional, scientific datasets [14].

While new hybrid systems push the boundaries of effective

simulation, this work demonstrates above all that a confluence

of disaggregated ML components and traditional HPC tech-

nologies represents a promising path towards the realization

of next generation integrated scientific computing.

REFERENCES

[1] https://top500.org/statistics/list/

[2] Geoffrey Fox, James A. Glazier, JCS Kadupitiya, Vikram Jadhao, Minje
Kim, Judy Qiu, James P. Sluka, Endre Somogyi, Madhav Marathe,
Abhijin Adiga, Jiangzhuo Chen, Oliver Beckstein, and Shantenu Jha.
"Learning Everywhere: Pervasive machine learning for effective High-
Performance computation: Application background". Technical report,
Indiana University, February 2019. http://dsc.soic.indiana.edu/ publica-
tions/Learning Everywhere.pdf.

[3] Geoffrey Fox, Shantenu Jha,"Understanding ML driven HPC: Appli-
cations and Infrastructure", Invited talk to "Visionary Track" at IEEE
eScience 2019.

[4] Jeff Dean. "Machine learning for systems and systems for machine
learning". In Presentation at 2017 Conference on Neural Information
Processing Systems, 2017.

[5] Satoshi Matsuoka. "Post-K: A game changing supercomputer for con-
vergence of HPC and big data" / AI. Multicore 2019, February 2019.

[6] Kadupitiya Kadupitige. "Intersection of HPC and Machine Learning".
ENGR-E 687 IND STUDY INTEL SYS: FINAL REPORT

PAWEL GEPNER: MACHINE LEARNING AND HIGH-PERFORMANCE COMPUTING HYBRID SYSTEMS 35

[7] https://docs.graphcore.ai/projects/ipu-overview/en/latest/about-ipu.html
[8] Leslie G. Valiant. 1990. "A bridging model for parallel computation".

Commun. ACM 33, 8 (August 1990), 103-111.
[9] https://www.graphcore.ai/products/ipu

[10] Zhe Jia, Blake Tillman, Marco Maggioni, Daniele Paolo Scarpazza,
"Dissecting the Graphcore IPU Architecture via Microbenchmarking",
https://arxiv.org/abs/1912.03413

[11] Ion Stoica, Dawn Song, Raluca Ada Popa, David Patterson, Michael W.
Mahoney, Randy Katz, Anthony D. Joseph, Michael Jordan, Joseph M.
Hellerstein, Joseph Gonzalez, Ken Goldberg, Ali Ghodsi, David Culler,
Pieter Abbeel. " A Berkeley View of Systems Challenges for AI". EECS
Department. University of California, Berkeley. Technical Report No.
UCB/EECS-2017-159. October 16, 201.7

[12] Karl Freund, Patrick Moorhead. "The Graphcore Second-Generation
IPU". https://moorinsightsstrategy.com/research-paper-the-graphcore-
second-generation-ipu/

[13] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda,
Nathan Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack
Deslippe, Massimiliano Fatica, Prabhat, Michael Houston. "Exascale
Deep Learning for Climate Analytics". Super Computing Conference

November 11-16, 2018, Dallas, TX, USA
[14] J. Luc Peterson, Ben Bay, Joe Koning, Peter Robinson, Jessica Sem-

ler, Jeremy White, Rushil Anirudh, Kevin Athey, Peer-Timo Bremer,
Francesco Di Natale, David Fox, Jim A. Gaffney, Sam A. Jacobs,
Bhavya Kailkhura, Bogdan Kustowski, Steven Langer, Brian Spears,
Jayaraman Thiagarajan, Brian Van Essen, Jae-Seung Yeom. "Enabling
Machine Learning-Ready HPC Ensembles with Merlin". Lawrence
Livermore National Laboratory, Livermore, California 94550, USA.
https://arxiv.org/pdf/1912.02892.pdf

[15] Krzysztof Rojek, Roman Wyrzykowski, Pawel Gepner. "AI-Accelerated
CFD Simulation Based on OpenFOAM and CPU/GPU Computing"
International Conference on Computational Science -2021

[16] Alexander Brace, Hyungro Lee, Heng Ma, Anda Trifan, Matteo
Turilli, Igor Yakushin, Todd Munson, Ian Foster, Shantenu Jha,
Arvind Ramanathan. "Achieving 100X faster simulations of com-
plex biological phenomena by coupling ML to HPC ensembles".
https://arxiv.org/abs/2104.04797

[17] Steven W. D. Chien, Stefano Markidis, Vyacheslav Olshevsky, Yaroslav
Bulatov, Erwin Laure, Jeffrey S. Vetter. "TensorFlow Doing HPC".
https://arxiv.org/abs/1903.04364

36 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

