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Abstract—Currently, the use of information and communica-
tion technologies for solving economic, social, transportation, and
other problems in the urban environment is usually considered
within the "smart city" concept. Optimal traffic management
and, in particular, traffic signal control is one of the key
components of smart cities. In this paper, we investigate the
reinforcement learning approach, namely, the double Q-learning
approach, to solve the traffic signal control problem. Both
the initial data on the connected vehicles distribution and the
aggregated characteristics of traffic flows are used to describe the
state of the reinforcement learning agent. Experimental studies
of the proposed model were carried out on synthetic and real
data using the CityFlow microscopic traffic simulator.

I. INTRODUCTION

T
HE growth of the urbanization level poses the problems
of increasing the efficiency of the urban resources and

existing infrastructure usage. The amount of collected urban
environment data and the development of information and
communication technologies (ICT) are key factors in solving
these problems [1]. The concept of city transformation using
ICT is commonly referred to as a "smart city". Smart cities
involve the use of a wide stack of information and communica-
tion technologies to solve economic, social, transportation, and
other problems. A wide area of research, as a result, attracts
the attention of scientists from different scientific fields who
consider certain aspects of smart cities: smart mobility, smart
urban environment, smart government, etc. [2].

Smart cities provide new opportunities to solve urban traffic
management problems, optimize traffic flows and individ-
ual vehicle routes, reduce traffic congestion, environmental
emissions, improve road safety, etc. [3], [4], [5], [6]. The
development of connected devices and the Internet of Things,
in general, is an important factor to make smart cities efficient
in various aspects [7]. Moreover, one of the dominant trends in
the development of modern intelligent transportation systems
is the development of communication networks (VANET), and,
as a consequence, the development of connected vehicles.
Connected vehicles are vehicles that can communicate with
other vehicles (V2V communications), infrastructure (V2I),
and other road users (V2X). The exchange of information
between road infrastructure and vehicles in real time can
be used to improve the efficiency of traffic management,
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including through coordinated optimization of traffic signals
and vehicle trajectories [8], [9].

In this paper, we consider the traffic signal control problem
using information from connected vehicles in order to mini-
mize the total travel time in the transport network. To solve
this problem, it is proposed to use a reinforcement learning
approach, in particular, a double Q-learning algorithm.

The work is structured as follows. Section II provides
a literature review and describes classic and state-of-the-art
traffic signal control methods. Section III introduces the basic
notation and problem statement. In Section IV, we present a
traffic signal control method based on a reinforcement learning
approach. Experimental studies of the proposed method are
described in Section V. Finally, we give some conclusions and
possible directions for further research.

II. RELATED WORK

In [10], the authors presented an overview of widely ac-
knowledged classical transportation approaches and the current
state of research on the traffic signal control problem. In
[11], the authors analyzed the literature for 2015-2020 on
the topic of traffic management, reviewed approaches based
on microsimulation and computational intelligence, presented
research gaps and possible directions for future work. An
overview of traffic control methods using data from au-
tonomous and connected vehicles is presented in [12]. The
authors explained the advantages and disadvantages of differ-
ent types of traffic control methods and discussed possible
future research directions.

An overview of classic traffic signal control strategies is
presented in [13]. For each traffic light, the control plan usually
includes stage (or phase), phase split, cycle time, and offset.
Fixed-time strategies use a control plan based on historical
traffic data [14], [15]. State-based strategies determine the
optimal cycle time and phase split, minimizing the total
delay or maximizing the capacity of the intersection. Phase-
based strategies further optimize the optimal staging for the
intersection.

Separately, we can distinguish a class of strategies that apply
coordinated traffic signals control at intersections in a certain
area or the whole network. The MAXBAND algorithm [16]
optimizes the phase displacement of traffic lights at adjacent
intersections to maximize the number of vehicles that can
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pass through intersections without stopping. The TRANSYT
method [17] uses a dynamic network model to iteratively
select values of decision parameters, evaluate performance,
and select the best set of parameters. In [18], the authors
proposed an approach aimed at stabilizing demand and reduc-
ing the risk of oversaturation by balancing the queue length
at the intersection. Optimization methods for urban-traffic
management was applied in [19].

Most modern scientific research is devoted to the use of ma-
chine learning and artificial intelligence methods for solving
the traffic control problem, and, in particular, reinforcement
learning approaches. In [20], the authors reviewed various
reinforcement learning models and algorithms applied to traffic
signal control, classified by model characteristics (state space,
actions, rewards) and performance metrics. An analysis of
modern deep reinforcement learning approaches for the adap-
tive traffic signal control problem is presented in [21]. The
authors provided recommendations for adequate model choice,
architecture design, and hyper-parameters tuning. In [22], the
authors compared traffic optimization methods with different
Q-learning approaches and different objective functions but
considered only a single intersection environment.

In [23], the authors used a Q-learning approach, training
a separate reinforcement learning agent for each intersection
independently, without considering information at adjacent
intersections. The authors’ research was continued in [24],
[25]. In [24], the authors used the state of the entire network to
train the graph attention network that controls all intersections.
However, using the data of the entire network in the feature
vector significantly increases the training time and the amount
of required memory. In [25] it was proposed to use the concept
of "pressure" to achieve coordinated control in the network.

In [26], the authors investigated a multi-agent algorithm
based on Q-learning, taking into account the traffic state at
neighboring intersections. In [27], the authors proposed using
a knowledge exchange protocol between agents to increase the
level of cooperation between agents and achieve an optimal
traffic light control strategy. A double Q-learning algorithm
for improving the stability of control policy was investigated
in [28]. In [29], the authors combined the recurrent neural
network (RNN) with Deep Q-Network and showed that the
proposed approach performs better in partially observed envi-
ronment. However, the experimental study was conducted at
only one intersection.

In this paper, we consider a double Q-learning model in
which one agent is trained on the data from all considered
intersections. As a vector for describing the network state,
both the initial information about the distribution of vehicles
by lanes and the aggregated characteristics of the traffic flow
(queue length at the intersection, pressure) are used. The
experimental study of the proposed solution was conducted
both on synthetic and real-world datasets.

The next section provides basic notation and problem state-
ment.

III. PROBLEM STATEMENT

In this paper, we consider the traffic signal control problem.
Each intersection in the transportation network is controlled
by a reinforcement learning agent that chooses an action
based on the observed state on the intersection. To decrease
the computational complexity, we train one Q-learning neural
network. It means that all the agents share the same neural
network.

The traffic signal control problem as a reinforcement learn-
ing problem is usually presented as a Markov decision process
that can be defined by a tuple 〈S,A,Pa,Ra〉, where:

• S is the system state space,
• A is the action space,
• Pa(s, s

′) = Pr (st+1 = s′|st = s, at = a) is the transi-
tion of probability from state s to state s′ under the action
a at time t,

• Ra (s, s
′) is the immediate reward after the transition

from state s to state s′ under action a.
Let us consider these definitions in more detail in accor-

dance with the considered traffic signal control problem.
It is assumed that each agent i at time step t observes a

current system state st ∈ S. In this paper, we consider the
following factors that describe the environment:

• current traffic signal phase,
• queue length on each incoming lane,
• number of vehicles on each spatial segment of the incom-

ing and outgoing lanes
Next, each agent chooses an action ait ∈ A for the next time

interval ∆t. The chosen action set at of all agents is sent to
the system that transit to a new state st+1 ∈ S according to the
transition probability. The reward Rat

(st, st+1) is determined.
The main idea of the traffic signal control problem is to

minimize the total travel time for all vehicles in the system.
However, this is hard to optimize this criterion directly since
the travel time metric cannot be used to calculate the instant
reward after the transition in state st+1. In this paper, we cal-
culate the reward for agent i as a weighted linear combination
of several factors that indirectly describe the traffic situation:

rit = α0

∑

l∈Li

qlt + α1

∑

l∈Li

vlt + α2p
i, (1)

where αj , j = 0, 2 are the weight coefficients, Li is the set
of incoming lanes at the intersection i, qlt is the queue length
on lane l at time t, vlt is the average speed of all vehicles
on lane l at time t, pi is the pressure [18], i.e. the difference
between the incoming and outgoing number of vehicles at the
intersection i.

The goal of the reinforcement learning problem is to learn
a policy πi : A×S→ [0, 1], π(a, s) = Pr(at = a|st = s) for
each agent i that maximizes the expected cumulative reward:

Ri =
T
∑

t=0

γtr
i
t, (2)

where T is the total times steps number, γ ∈ [0, 1] is the
discount factor.
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Fig. 1. Neural network architecture

IV. METHODOLOGY

To solve the traffic signal control problem as a reinforce-
ment problem, we propose to use a double Q-learning ap-
proach that is used to overcome the problem of overestimating
the action values in a noisy environment.

Consider the action-value function (Q-function) of a pair
(s, a) under the policy π:

Qπ(s, a) = E{R|s, a, π}. (3)

One of the possible solution to find the optimal policy π∗

is to find the optimal Q-function:

Q∗(s, a) = max
π

Qπ(s, a). (4)

In Q-learning, an iterative procedure is used:

Qnew(st, at)←(1− α)Q(st, at)+

+ α
(

rt + γmax
a

Q (st+1, a)
)

,
(5)

where α ∈ (0, 1] is a learning rate.
In the double Q-learning approach [30], two Q-functions

QA, QB are used as a double estimator in the following way:

QA
t+1(st, at) = (1− α)QA

t (st, at)+

+ α
(

rt + γQB
t

(

st+1, argmax
a

QA
t (st+1, a)

))

,

QB
t+1(st, at) = (1− α)QB

t (st, at)+

+ α
(

rt + γQA
t

(

st+1, argmax
a

QB
t (st+1, a)

))

,

(6)

In this paper, to approximate the Q-functions we use two
neural networks with the same simple architecture that is
shown in Fig. 1.

We train networks on the data from all intersections, so
all the agents use the networks with the same parameters.
The output value of the network is the action vector for one
intersection.

In the next section, we present an experimental study of the
proposed approach.

V. EXPERIMENTAL STUDY

To conduct an experimental study, we use an open-source
traffic simulator CityFlow [31] designed for large-scale traffic
scenarios. The simulator provides a Python interface to imple-
ment different modules. In particular, the simulator provides
data access methods for obtaining information about the
position/speed of each vehicle in the transport network, as
well as control methods for setting the traffic signal phase,
vehicle routes, etc.

We conduct our experiments on two datasets [24]:

• Synthetic 6× 6 grid network dataset.
• Real-world data New York dataset that contains 196

intersections with traffic flow information from open-
source taxi trip data.

We compare the proposed double Q-learning approach with
the following classical and reinforcement learning methods:

• FixedTime [13] method that uses a predefined traffic
signal phase plan with random offsets.

• MaxPressure [18] method that chooses that phase that
maximizes the pressure at an intersection.

• Individual RL [23] method in which each intersection is
controlled by an individual agent, each agent train and
use a separate neural network.

• CoLight [24] method in which one agent is trained on
data from the whole network and returns an action for
each intersection.

• Double QL: considered in this paper double Q-learning
algorithm.

Experiments were performed iteratively, in several runs.
Each run consists of the following steps:

1) Perform a traffic simulation using trained (or default)
Q-functions and store system states and reward values.

2) Create a training dataset using obtained system states/re-
wards.

3) Train Q-functions.
4) Calculate the average travel time in the network using

the trained Q-functions.

To compare the effectiveness of the considered methods, we
evaluate the average travel time of all vehicles in the network.
The metric shows the average time that all vehicles spend to
complete their trips from the origin to the destination. The
performance comparison of the algorithms by the described
criteria is presented in Table I.

The Individual RL method is not performed on the New
York dataset due to memory limits.

The proposed double Q-learning approach showed the best
results in comparison with baseline algorithms.
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TABLE I
PERFORMANCE COMPARISON OF THE ALGORITHMS BY AVERAGE TRAVEL

TIME

Model Grid 6× 6 NewYork

FixedTime 210.94 1826.78
MaxPressure 195.49 1225.97
Individual RL 171.97 -
CoLight 177.45 1316.04
Double QL 165.71 1099.19
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Fig. 2. Convergence speed on the 6× 6 dataset

Finally, we estimate the convergence of the double Q-
learning model. Fig. 2 shows the convergence speed on the
synthetic dataset, Fig. 3 - on the New York dataset.

The model starts with the high average travel time value
that decreases during iterations. For the synthetic network, the
average travel time reaches a stable optimal value very fast;
for the New York dataset, the convergence is worse.

VI. CONCLUSION

In this paper, we consider the double Q-learning algorithm
to solve the traffic signal control problem. It is supposed, that
the problem is solved in the connected environment, where
position/speed information is available for each vehicle. This
information was used to describe the system state in the
reinforcement learning problem statement. The proposed ap-
proach was evaluated using the microscopic traffic simulation.
Experimental analysis on synthetic and real-world traffic data
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Fig. 3. Convergence speed on the New York dataset

allows us to conclude that the considered method outperforms
other classical and reinforcement learning algorithms.

In the future study, we plan to consider more complex neural
network architectures. Other direction of research includes
considering the neighborhood of the intersection to describe
the system state.
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