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Abstract—With the upcoming era of large-scale, complex
cyber-physical systems, also the demand for decentralized and
self-organizing algorithms for coordination rises. Often such
algorithms rely on emergent behavior; local observations and
decisions aggregate to some global behavior without any appar-
ent, explicitly programmed rule. Systematically designing these
algorithms targeted for a new orchestration or optimization
task is, at best, tedious and error prone. Suitable and widely
applicable design patterns are scarce so far. We opt for a machine
learning based approach that learns the necessary mechanisms
for targeted emergent behavior automatically. To achieve this,
we use Cartesian genetic programming. As an example that
demonstrates the general applicability of this idea, we trained
a swarm-based optimization heuristics and present first results
showing that the learned swarm behavior is significantly better
than just random search. We also discuss the encountered pitfalls
and remaining challenges on the research agenda.

I. INTRODUCTION

C
YBER-PHYSICAL systems (CPS) are equipped with a

steadily increasing degree of autonomy (cf. [1], [2]).

The technical viability of such systems has already achieved

broad attention (see for example [3]). Often, the autonomy

in CPS emerges from self-organization principles that are

used for coordination as well as from integrating artificial

intelligence (AI) -enabled algorithms – as also stipulated in

[4] for the example of the European Union. Today’s cyber-

physical systems already comprise a huge number of physical

operation and sensing equipment that has to be orchestrated

for secure and reliable operation – prominent examples are

the electric energy grid, modern transportation systems, or

environmental management systems [5].

As yet, often human operators monitor and control a hierar-

chically organized CPS and aggregate information from lower

level subsystems. Supervisory control and data acquisition

(SCADA) systems – as an example from the energy sector

– provide a view on and allow for control of a decentralized

process and are thus a state-of-the-art means [6].

As complexity grows, more autonomy is desirable in future

CPS [7]; desiring for algorithms with self-*-properties [8]. A

targeted design of algorithms with specific emergent behavior

is difficult to achieve, especially with standard programming

languages [9]. Design patterns like [10], [11] may ease the

design process, but are often limited in applicability. There are

meta-heuristics like the combinatorial optimization heuristic

for decentralized agents [12] that are best on self-organization

principles, but they need to be manually adapted to each

new use case. Having a systematic methodology describing at

the design time the construction of self-organizing algorithms

or systems step-by-step, would be highly desirable but is

hard to achieve for general applicability [13]. Few paradigms

and pattern on a rather high abstraction level exist, but the

individual adaption to a specific algorithmic or functional

goals is left to the designer [13]. Nevertheless, as soon as

changes in the system occur, manual adaption might be nec-

essary. The concept of controlled self-organization addresses

this issue by introducing a observer-controller architecture for

automated correction of self-organized behavior of the system.

The concept works well, if correction can be achieved by (re-

)parametrizing the self-organizing entities/ agents according to

changes in the environment. Sometimes, it might be necessary

to change the algorithmic behavior on a level that needs a

redesign.

For the initial design of an algorithm addressing a given

task by self-organizing mechanism as well as for automated

redesign at runtime for proper situational tracking, we propose

an automated design of emergent behavior by machine learn-

ing approaches. As this goal is a huge field with many aspect

to be addressed, we here start by discussing a first example:

the applicability of Cartesian genetic programming [14] to the

automated design of a swarm-based optimization algorithm for

solving global optimization problems.

Thus, we propose to choose a different approach for

designing purposeful emergence in self-organizing systems

by using machine learning. Machine learning in multi-agent

systems is already used for problems that are difficult to solve

with preprogrammed agent behavior. The agents must instead

discover a solution to the problem on their own, using machine

learning [15]; often by reinforcement learning. We go for

automatically discovering mechanisms for emergent behavior

and self-organization by genetic programming [16]. In this

way, we learn control programs for individually acting entities

in a decentralized system with the goal to jointly solve a

specific problem. As test scenario, we started with swarm-

based optimization.

The rest of the paper is organized as follows. We start with

a brief review on related work with a focus on multi-agent

reinforcement learning and Cartesian genetic programming

that we use for learning control programs for particles in our

optimization swarm. After describing our share of pitfalls on

the way to the first successfully trained swarms, we present
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preliminary results comparing our swarm with random search

and real particle swarm optimization.

II. RELATED WORK

In general, machine learning algorithms automatically build

a mathematical model using sample data. These models are

then used to make decisions without a need for specifically

programming rules to make these decisions. Starting from the

first works of [17] many different algorithms and approaches

have been developed. Among them are reinforcement learning

[18], [19], classifiers like support vector machines [20], or

artificial neural networks [21], to name just a few. A good

overview can for example be found in [22].

Reinforcement learning is often applied in intelligent agents

for learning to take appropriate actions based on observations

from the environment that the agent interacts with [18]. An

extension is multi-agent reinforcement learning (MARL) [23].

In MARL, many agents independently learn how to decide

on the most rewarding action in a dynamic environment that

is disturbed by the other agents. Many MARL algorithms are

designed for static and thus stateless games [15]. But, also use

cases for cooperative games are scrutinized and may generate

emergent behavior [24], [25]. Nevertheless, the application is

limited as agents still just learn to choose from a predefined

set of (singular) actions [23].

A subset of machine learning algorithms is made up by a

special type of evolutionary algorithms. Genetic programming

(GP) is used to discover solutions to problems automatically

by using evolutionary mechanisms like random mutation,

crossover, a fitness function, and multiple generations of

evolution. Alan Turing was probably the first to raise the ques-

tion, whether programs might be evolved by something like

evolution [26]. After a first implementation by [27] for logical

functions represented as tree programs, many improvements

were made [28]–[31].

One of this improvements is the use of a special pheno-

type representation that allows leaving computational nodes

unused. In general, Cartesian genetic programming (CGP) is

a more efficient version of genetic programming and encodes

computer programs as graph representation [32]. CGP is an

enhancement of a method originally developed for evolving

digital circuits [33], [34]. CGP already demonstrated its capa-

bilities in synthesizing complex functions in several different

use cases for example for image processing [35], neural

network training [36], or for the synthesis of Bent functions

for cryptography [37].

III. LEARNING EMERGENCE WITH CARTESIAN GENETIC

PROGRAMMING

Our goal was to automatically generate a swarm-based

heuristics for optimization similar to the particle swarm algo-

rithm, i. e. to derive a swarm of individually acting particles

that may include observations from neighboring particles into

their own move decisions. To achieve this, we implemented

particles that can be equipped with a control program learned

by CGP. Figure 1 shows the general architecture. A swarm

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) 𝒗 = (𝑣1, 𝑣2, … , 𝑣𝑛)

CGP programparticle control For each 𝑥𝑖:
execute

+

best particle 𝑥
𝑖

objective 𝑓 𝑓(𝑥)

swarm control find

step

state

Fig. 1. General architecture of the swarm and the incorporated particles with
the embedded CGP program.

consists of an arbitrary number of particles. In each iteration

during optimization, each particle is stepped by a global swarm

control; just like PSO. The global control is also responsible

for ranking the particles and detecting the best one (in terms

of fitness). When a particle is stepped, the CGP program that

determines the new position of the particle is executed and the

new fitness value is calculated. We experimented with different

input to the CGP program and different internal particle states

as described later

Currently we are only considering the observation of other

particles in the swarm. Two succeeding stages of extension

will be the integration of inter-entity coordination (1) by using

stigmergy and (2) by communication by exchanging messages.

Finally, we are opting for problem solving with multi-agent

systems.

When learning the control program by CGP, the same

swarm setting is used. For each CGP solution candidate,

several swarms were set up. Each particle was equipped

with the solution candidate program. Each swarm was run

for several iterations. Finally, the mean achieved optimization

result evaluated the solution candidate.

Cartesian genetic programming is an advanced form of

genetic programming (GP) designed to evolve acyclic graphs

[38]. The nodes are indexed by their Cartesian coordinates

and represent functions of a computational structure (the

graph) [39]. Many traditional GP approaches suffered from

the so called bloat effect [40] – programs steadily growing

in complexity without any significant objective improvement

[41]. CGP does not suffer from this problem [40].

A chromosome comprising function as well as connection

genes and output genes encodes the computational graph that

represents the executable program. Figure 2 shows an example

with six computational nodes, two inputs and two outputs.

The gene of a function represents the index in an associated

lookup-table (0 to 3 in the example). Each computation node

is encoded by a gene sequence consisting of the function
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Fig. 2. Computational graph and its genotype representation in Cartesian
genetic programming.

look-up index and the connected input (or output of another

computation node) that is fed into the function. Thus, the

length of each function node gene sequence is n + 1 with

n being the arity of the function. The graph in traditional

CGP is acyclic. Parameters that are fed into a computation

node may only be collected from previous nodes or from

the inputs into the system. Outputs are connected to any

computation node output or directly to any input. Not all

outputs of computational nodes are used as input for other

functions. In fact, usually many of such unused computational

nodes occur in evolved CGP [33]. These nodes are inactive, do

not contribute to the encoded program’s output, and are not

executed during interpretation of the program. In this way,

phenotypes are of variable length whereas the size of the

chromosome is static.

A computational graph in CGP is typically evolved using

a (1 + λ)-evolution strategy, i. e. with probabilistic mutation

but no crossover [42]. CGP allows for unused nodes. Thus,

the maximum number of nodes is a priori specified. It has

been shown to be advantageous to evolution to overestimate

the number of nodes due to an induced higher genetic drift

[39].

For our experiments, we used an extension to the ECJ-

toolkit [43], [44]. In addition to the traditional integer rep-

resentation as in Fig. 2, the ECJ version also supports a real-

valued representation. For each gene, alleles are allowed to

range from [0, 1]. Prior to executing the program, all real val-

ues are rounded back to integer for interpretation as described

above. With real-valued encoding, it becomes possible to apply

a real-valued crossover operator. In this way, the performance

of convergence is significantly improved at least for regression

and [45]. In the integer-encoded case, crossover is usually left

out. Nevertheless, more operators are possible with continuous

encoding and discovering improved genetic operators for other

problems remains an open area of research. We chose to use

real-valued encoding.

For learning the internal particle control, we started by

setting up a standard CGP scenario. For a start, as function set

we chose the four basic arithmetic operations, a generator for

normal distributed random numbers, the classical if-then-else-

statement, and the set of standard order relations. As input,

we gave the current position (in search space), the current

objective value, and the position of the best particle. The

output of the program was set to be the new particle position.

Initially, we introduced an additional parameter v meant to

be comparable to the velocity in particle swarm optimization

[46], that was output and input to the next iteration as well.

In this way, it was meant to enable the particle have a more

complex inner state apart from the mere position. But, we

were not able to make train CPG to make any targeted use of

it. Thus, we changed it to be an automatic increment of the

current position.

Instead, we extended the functions set by a function that is

able to determine the current rank of the particle (compared

with all other). Moreover, the numbers 0-9 were given as

constant functions. In many training process we observed that

CGP learned to construct needed constants by itself. This was

for example achieved by using the if-statement to construct a

1 and then adding it up several times. Usually, this seemed

to be a waste of necessary evolutions as well as of needed

computation nodes. With introducing the constants, CGP could

use the numbers directly. A further improvement was to reuse

the same learned program for all dimensions of a multi-variate

problem. Figure 1 shows the final architecture of a particle and

its embedding in the swarm.

The next challenge was the decision for the objective

function. First, we tried evaluating the fitness of a swarm by a

single optimization problem. The swarm solves each problem

several times and the mean achieved residual problem error

is taken to evaluate the performance of the swarm in solving

the problem. This approach failed, because CGP learned to

solve the given optimization problem directly and made the

swarm output the problem solution hard-coded. Actually, this

was to be expected. With the next try, we handed a bunch

of different optimization problems with optimal solutions at

different positions – otherwise it would have resulted in a

directly learned result again. With a given set of objectives

that are all to be solved independently by the swarm, a sort

of swarm behavior could already be generated – but not as

expected. The swarm learned to move along a trace that passes

through all the optima of the different problems. Again, this

was not optimization. In order to tackle this problem, we

introduced a random offset. For each problem instance fi, a

random offset r uniformly sampled from the problem domain

was generated and added to x. The offset is fixed for one

training episode. So the swarm solves fi(x + r) resulting

in a randomly translated optimum x
∗. Now we were able to

observe an optimization behavior within the trained swarms.

When just using the goodness of the optimization results as

criterion for training, the achieved swarm behavior resembles

more or less a random search. As our goal was to generate

a swarm behavior that exhibits some emergent characteristics

and shows self-organization, further criteria evaluating these

characteristics need to be added.

Criteria for quantifying emergence are for example known

from biology [47] or neuroscience [48]. Applications in com-

puting science are scarce. An example for detecting emergence

J ÈORG BREMER, SEBASTIAN LEHNHOFF: TOWARDS EVOLUTIONARY EMERGENCE 57



in technical systems can be found in [49]. Many fractal anal-

ysis tools from chaos theory have a rather high computational

complexity. At least, for the application within an objective

function for training that has to be called millions of times. For

our experiments we tested the so called correlation length as

known from fitness landscape analysis [50]. When analyzing

fitness landscapes, the correlation length is a criterion that

measures the number of iterations after which the majority

of succeeding solutions is statistically no longer correlated. It

is calculated by λ = −

1
ln(ρ(1)) from the autocorrelation

ρ(σ) =
E[fkfk+σ]− E[fk]E[fk+σ]

V [fk]
(1)

of a series of consecutively sampled objective values fkm.

When using the inverse version, we can maximize this dis-

tance. As additional indicators for desired swarm behavior we

used the improvement relation

rimp =
1 + ndec−ninc

ndec+ninc

2
(2)

to maximize the number of improvements ninc over decreasing

optimization steps ndec. Finally, we integrated the eventually

reached swarm diameter to measure contraction. All criteria

were combined in a scalarization approach.

IV. RESULTS

For our experiments we used an islanding model for CGP

training with two (µ + λ)-ES. One was set to µ = 20 and

λ = 100 with a mutation probability of 0.04. The other

was set to µ = 8 and λ = 16 with a mutation probability

of 0.4. Thus, we had a rather steadily evolving ES sending

individuals every 1000 iteration and a small rather fast-paced,

fluctuating one sending every 100 iterations; thus ensuring

liveliness in exploration. The number of nodes was set to

20. As training optimization problems we used Rosenbrock,

Bohachevsky, Alpine and Booth [51]. Because each candidate

has to be evaluated several times for each of these functions,

we limited the number of swarm iterations during the learning

phase to 200. The number of particles was set to 5 during

training due to performance issues.

Table I and II show the best result. We compared the

learned optimization algorithm with a random search and with

a real PSO. Random search was our bottom line that needs to

be beaten. Table I compares the performance of the swarm,

achieved with the number of particles set to 10 and with a

budget of 10000 objective evaluations. The performance was

tested on six different objective functions; three of which had

not been used for learning. Compared with the pure random

search, the learned optimization algorithm already behaves

rater good, except for the Booth function. For the Rosenbrock

function (4-dimensional) and the Six Hump Camel Back

functions (2-dimensional), it is already competitive to the PSO.

Table II shows the results when using a budget of 200000

objective evaluations; demonstrating that the learned algorithm

is significantly better than random search.

In order to detect emergent behavior or at least to distinguish

from pure random behavior in the system, we did a quick

analysis using two criteria: The correlation dimension [52]

and the Hurst exponent [53], [54]. The correlation dimension

is a characteristic measure describing the geometry of chaotic

attractors. One of the main applications of the Grassberger-

Procaccia-algorithm is to distinguish between stochastic and

deterministically chaotic time sequences [55]. We use it to

analyze the fitness sequence generated along the path of

particles. Table III shows example results for some test runs

revealing that the behavior of the particles in the learned

algorithm behave similar to the ones from PSO when attracted

from good solutions. Each run reflects a different objective

function. Although, when attacking function 4 from De Jong’s

test suite [56] which incorporates noise, the learned particle

behavior seems to be attracted from more local optima at

the same time (larger correlation dimension). The random

approach shows no attraction behavior at all.

The Hurst exponent is a measure for the long-term mem-

ory of a time series. In this way the long-term statistical

dependencies (excluding dependencies from cycles) seen in

the series are evaluated [57]. A Hurst exponent of 0.5 denotes

white noise. Larger values denote positive dependency, smaller

negative dependency. The results in Table IV suggest that the

PSO as well as the learned algorithm show a behavior of

systematically improving solutions whereas the random search

(as expected) exhibits mostly white noise.

V. CONCLUSION AND FURTHER WORK

With the upcoming era of large scale cyber physical sys-

tems, the need for controlling numerous entities will in future

most likely be accompanied by a growing demand of self-

organizing algorithms. We presented a first approach to learn

emergent swarm behavior. In a first step, individuals of a

swarm were trained to jointly solve global optimization on

arbitrary problem instances. So far, mere observation of other

swarm members was incorporated. Nevertheless, CGP already

was able to come up with solutions that are probable better

than a mere random search.

Recently, recurrent CGP has been developed to foster the

evolution of recurrent artificial neural networks [58]. For some

other use cases, the recurrent version also showed superior

performance [42]. On the other hand, necessary control and re-

duction of the number of recurrent connections introduces new

challenges into learning [42]. Nevertheless, one of the next

tasks will be to test this version for our use case. Other variants

also provide promising extensions or modification [59].

Looking at the mid-term agenda, several challenges still

have to be addressed.

• The question for detecting the desired emergent behavior

is still open to future research.

• Moreover, if the desired emergent behavior is present, it

needs to be quantified to generate appropriate guidance

for sampling new solutions.

• What is the best objective function? Obviously, it is a

mix of different criteria that would best be addressed

58 POSITION AND COMMUNICATION PAPERS OF THE FEDCSIS. ONLINE, 2021



TABLE I
COMPARISON OF THE BEST LEARNED ALGORITHM WITH RANDOM SEARCH AND PSO WHEN USING A BUDGET OF 10.000 OBJECTIVE EVALUATIONS.

function learned algorithm random PSO

Sphere 5.555× 10
−3 ± 2.865× 10

−3
1.638× 10

−2 ± 1.667× 10
−2

4.692× 10
−5 ± 1.251× 10

−4

Rosenbrock 2.928× 10
−1 ± 1.824× 10

−1
1.06× 10

−1 ± 1.187× 10
−1

2.351× 10
−1 ± 1.045× 10

0

Alpine 1.822× 10
−1 ± 3.984× 10

−1
7.27× 10

−3 ± 6.257× 10
−3

2.335× 10
−4 ± 4.163× 10

−4

Six Hump Camel Back -1.013× 10
0 ± 1.242× 10

−2 -9.927× 10
−1 ± 4.269× 10

−2 -1.031× 10
0 ± 9.789× 10

−4

Booth 3.837× 10
0 ± 5.941× 10

0
2.714× 10

−2 ± 2.603× 10
−2

3.529× 10
−4 ± 1.4× 10

−3

DeJong f4 3.478× 10
−5 ± 5.81× 10

−5
4.114× 10

−4 ± 8.626× 10
−4

1.365× 10
−9 ± 3.471× 10

−9

TABLE II
COMPARISON OF THE BEST LEARNED ALGORITHM WITH RANDOM SEARCH AND PSO WHEN USING A BUDGET OF 200.000 OBJECTIVE EVALUATIONS.

function learned algorithm random PSO

Sphere 4.971× 10
−7 ± 3.86× 10

−7
7.158× 10

−4 ± 7.738× 10
−4

1.2× 10
−12 ± 4.33× 10

−12

Rosenbrock 1.668× 10
−5 ± 1.902× 10

−5
6.514× 10

−3 ± 6.835× 10
−3

5.476× 10
−10 ± 1.347× 10

−9

Alpine 7.914× 10
−4 ± 1.199× 10

−3
1.329× 10

−3 ± 6.917× 10
−4

6.947× 10
−8 ± 1.532× 10

−7

Six Hump Camel Back -1.032× 10
0 ± 1.798× 10

−6 -1.03× 10
0 ± 1.453× 10

−3 -1.032× 10
0 ± 2.323× 10

−12

Booth 1.553× 10
−6 ± 1.293× 10

−6
1.042× 10

−3 ± 1.079× 10
−3

1.127× 10
−11 ± 3.635× 10

−11

DeJong f4 3.85× 10
−13 ± 6.305× 10

−13
4.378× 10

−7 ± 8.11× 10
−7

5.304× 10
−20 ± 2.652× 10

−19

TABLE III
FRACTAL CORRELATION DIMENSION AS CRITERION TO DISTINGUISH

STOCHASTIC AND DETERMINISTIC BEHAVIOR.

function learned algorithm random PSO

Sphere 2.805 1.135× 10
−15 2.659

Alpine 0.081 −6.107× 10
−16 1.447

DeJong f4 2.295 2.928× 10
−16 0.276

TABLE IV
HURST EXPONENT AS INDICATOR FOR LONG TERM MEMORY OF THE

SWARM’S DYNAMIC SYSTEM.

function learned algorithm random PSO

Sphere 0.936 0.556 0.872

Alpine 0.933 0.544 0.901

DeJong f4 0.949 0.497 0.758

in a multi-objective approach. In general, CGP could be

solved as multi-objective optimization problem, but this

would most likely generate severe performance problems.

• One major performance issue is the objective function.

For each evaluation of a CGP solution candidate, an

optimization procedure has to be run several times and

different evaluation criteria have to be calculated.

• Finally, the question for the best set of functions is still

open. Presumably, this set can be divided into an always

necessary base set and problem specific extensions.

Then, further steps will be the inclusion of first stigmergy

and second message-based information exchange. First simple

tests of evolving agent-based negotiations via message are

already promising for two agents.
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