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Abstract—Artificial neural networks are used in many state-

of-the-art systems for perception, and they thrive at solving 

classification problems, but they lack the ability to transfer 

that learning to a new task. Human and animals both have the 

capability of acquiring knowledge and transfer them 

continually throughout their lifespan. This term is known as 

continual learning. Continual learning capabilities are 

important to ANN in the real world especially with the 

continuous stream of big data. However, it remains a challenge 

to be achieved because they are prone to a problem called 

catastrophic forgetting.. Fixing this problem is critical, so that 

ANN incrementally learn and improve when deployed to real 

life situations. In this paper, we did a taxonomy of continual 

learning in human by introducing plasticity-stability dilemma, 

hence the Hebbian plasticity and compensatory homeostatic 

plasticity process of learning and memory formation that 

occurs in the brain.  We also did a state-of-the-art review of 

three different approaches to continual learning to mitigate 

catastrophic forgetting. 

Index Terms—Artificial Intelligence; Continual Learning; 

Catastrophic Forgetting; Artificial Neural Networks; Stability–
Plasticity Dilemma  

 

I.  INTRODUCTION 

EARNING continually has always been the grand goal 

of any Artificial Intelligent (AI) systems functioning in 

the real-world scenario because AI systems can be 

continuous exposed to streams of data and so are required to 

remember existing tasks when modelled on new stream of 

data. This has recently attracted much attention in the AI 

community, especially related to Artificial Neural Networks 

(ANNs) [1]. Humans and animals have an exceptional 

ability to learn large number of different skills and tasks  but 

also to select the ones which are useful and relevant without 

negatively interfering with each other and at the same time 

being able to recall information when needed on such tasks 

that were previously learned [2, 3]. The ability to do this is 

called Continual Learning and can also be referred to as 

Lifelong Learning or Incremental Learning [1, 2]. AI agents 

should demonstrate a capability for continual learning [4]. 

The goal is to gather knowledge across tasks, particularly 

through model sharing and possibly having only one model 

that can perform well on all the learned tasks [5]. However, 

the existing standard for model deployment has a critical 

flaw: data are dynamic, and this continues to change [1, 6].  

With remarkable successes accomplish over the past few 

years in AI, deep network applications are however 

restricted to sole, distinct problem. Where every single 

network has to be trained and re-trained from the beginning 

every single time a new task is fed into the network and as a 

result their training remains very challenging to deal with 

particularly in real-world settings and  in situations where 

data are scarce and/or computation is costly [7]. 

Furthermore, the sequence of tasks may not be clearly 

labelled tasks and they may switch randomly, leading to an 

individual task recuring in long time intervals. Therefore, 

the main challenge of an AI agent to learn continually is 

being susceptible to catastrophic forgetting or catastrophic 

interference [4].  

This well-known phenomenon was first recognized by 

McCloskey and Cohen in [8]. Catastrophic forgetting always 

leads to a degrade generalization performance or in the 

worst case, a complete loss of information on an older task 

that was previously performed because it was simply re-

trained on the new task or dataset sequentially [1, 2]. It 

specifically happens when a network is trained in sequence 

on several tasks because the weights that are imperative for 

task A are modified to incorporate the goal of task B, and as 

a result of these changes to the network, the accuracy on 

task A  can severely reduce after some training updates on 

task B [4, 9]. This is conceivably, one of the main gap 

between modern ANNs design and biological neural 

networks because of the complexity of synapses [10]. 

To overcome the lack of continual learning in ANNs, 

recently three main strategies have been proposed: 

Progressive/Architectural Strategy, Rehearsal Strategy, and 

Regularization Strategy [2, 5]. 

A lifelong learning architecture capable of continual 

learning could guide the field of AI into a period of 

extraordinary performance, generality, and integration. This 

architecture could also prevent the need for costly data 

collection, labelling and retraining that sets constrains on 

today’s state-of-the-art computer systems [9]. In essence, to 

overcome catastrophic forgetting, an AI system should  

display the capability to gain new knowledge and 

simultaneously improve the network on existing tasks based 

on the continuous stream of data, thereby, preventing 

significant existing knowledge from being forgotten [1, 2]. 

This is known as the stability-plasticity dilemma. Plasticity 

is the ability to integrate new knowledge, while stability is 

preserving existing knowledge while new stream of data is 

processed. Although, a model will not be able to gain new 

knowledge from new training data if they are too stable. 

Likewise, a model with abundant plasticity can suffer from a 

great weight change and forget a previously learned task. 

[11, 12]. One of the effective approaches to plasticity was 

the one addresses by Stephen Grossberg, articulated in 1980 

on the solution to the stability–plasticity dilemma which 

states that “a system must remain plastic enough to learn 
important and new information, while also maintaining 

stability in its memories for information that has already 

acquired” [9].  Such adaptation and memory formation are 
what can be observed in biological neurosystems. Humans 

have remarkable ability to preserve old knowledge and skills 

learned and it is mainly reliant on how often they are 

recollected and used. Tasks that are practiced and performed 

regularly, tend to be unforgettable, unlike the ones that are 
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so old and frequently not used. Strangely, this adaptation 

and memory formation sometimes happens with little or no 

form of supervision whatsoever. This process, at the 

fundamental level, according to Hebbian theory,  is the 

consolidation of neurons connected to synapses, that 

performs together at the same time, compared to neurons 

with unrelated performance behavior [5].  

Most of the algorithms presented in this paper are based on 

the current state and advancements in both neurophysiology 

and computational neuroscience field that are capable of 

continual learning in AI. [7, 9] 

In this paper, we review some of the major works in 

continual learning both in advanced  animals such as 

humans, whales, dogs, dolphins etc. and  AI agent: we focus 

on how humans and animals acquire new knowledge and 

memories and at the same time been able to retain the useful 

ones over time. We also discussed several proposed 

algorithms for continual learning systems to overcome 

catastrophic forgetting. The rest of this paper is organized as 

follows: Section 2 reviews continual learning in humans and 

animal. Section 3 also reviews few continual learning 

strategies and algorithms proposed in the last 4 years. 

section 3.1 introduced the fundamental of continual 

learning, its desiderata,  and the three different strategies. 

Section 3.2 reviewed some common algorithms proposed for 

continual learning with their respective mathematical 

equations and in table 1, a summary of  different recent 

algorithms to continual learning is given. In  section 4 we 

proposed our novel research idea for forgetting in ANN, and 

in section 5 the conclusion of the paper . 

II. CONTINUAL LEARNING IN ADVANCED  ANIMALS 

New skills and knowledge can easily be acquired and 

transferred across domains in advanced animals to complete 

tasks, while artificial neural systems are still in the early 

stages regarding transfer learning, which is prone to 

catastrophic forgetting [1]. Likewise, humans and animals 

can learn in a continual way, but it has been somewhat 

challenging for an AI system to do the same [5].  

Evidence found recently suggests that the human and animal 

brain can avoid forgetting by shielding previously learnt 

knowledge and skills in the neocortical circuits. The brain 

significantly benefits from the integration of multisensory 

information, which provide the means for an effective 

communication. Furthermore, in conditions of sensory 

hesitation with respect to the predominant tendency to train 

ANNs on uni-sensory information, such as audio or visual 

information [1]. For example, when a mouse learns a new 

task/skill, a part of its excitatory synapse is reinforced, and 

this leads to an increase in the capacity of individual 

dendritic spines of the mouse brain neurons [5]. Afterward, 

these increased dendritic spines persevere in spite of 

learning some other skills alongside the old one, and it 

results to retention of such skill after a few months later. 

When some of these dendritic spines are selected and 

cleared up, the matching skill is forgotten. This gives a 

fundamental evidence that neural mechanisms for 

supporting the protection of these synapses are important to 

retention of task performance. The results obtained with the 

mouse experiment alongside with some other 

neurobiological models suggested that continual learning in 

the neocortex depends on  task-specific synaptic 

consolidation, by which knowledge is strongly encoded by 

reducing the plasticity of synapses that are vital to 

previously learned tasks and therefore stable over a long 

timeframe [13]. 

The principal core idea is that learning is associated with 

persistent and experience-driven changes to the brain, as 

given with the mouse example, that help them in the 

effective performance of vital tasks, such as the acquisition 

of necessities like food and shelter while avoiding the 

unpleasantness that accompanies injury or predation [14]. 

This is the inspiration behind autonomous embodied agents 

research on multisensory features for early development and 

sensorimotor specialization in human brain [1]. 

A. Stability–Plasticity Dilemma 

The human brain experiences neural plastic changes across 

its lifespan both in healthy conditions and also after brain 

lesions. The process where the brain adapts to 

environmental challenges and disease is referred to as 

plasticity [15, 16]. This process was first demonstrated by 

neuroanatomist Michele Vincenzo Malacarne in 1783 when 

he intensively trained one in each pair of two birds and two 

dogs from the same clutch of eggs and litter respectively 

[15]. The external environment surrounding animals can be 

considered as static for a short period of time but will 

become dynamic over a long time. Animals essentially learn 

quickly about new stimuli to adapt to such environments 

when it changes, so also, the plasticity that occurs at the 

neural pathways and continuously changes with respect to 

internal and external stimuli [17, 18]. 

Plasticity is an important part for neural malleability at the 

cells and circuits level in the brain. Neural plasticity can 

serve multiple functions, such as been homeostatic in nature 

for excitement within a network, it could also be mnemonic 

to form the basis of the memory and lastly, 

been metaplasticity [18]. 

One important form of plasticity is indicated across sensory 

modalities, however, a large part of the human brain neurons 

are present at birth, therefore plasticity and associated 

learning are expected to occur early in life. The brain needs 

to be plastic enough to acquire new knowledge and 

memories but stable enough to retain them over time. This 

balance is known as the plasticity-stability dilemma [19, 20].  

Humans have amazing ability to adapt by efficiently gaining 

new skills, transforming them to new experiences, and 

recalling and transferring them across several areas where 

they are needed. It is also true that humans have the capacity 

to forget gradually some previously learnt information at 

some point when they get older. Therefore, learning of new 

information rarely affect consolidated knowledge in human 

[1, 21]. Stability-plasticity dilemma is the degree whereby a 

system must be inclined to integrate and learn novel skills 

and, most of all, how these learning processes can be 

rewarded by internal mechanisms which stabilize and 

modulate neural activity just to avert catastrophic forgetting 

[1]. Artificial neural networks gain their principal structure 

by sensorimotor experiences, from the imitation of human 

brain which is mainly plastic during the crucial phase of 

early development [16]. Sensorimotor skill learning, like 

any other form of learning, happens through the general 

mechanism of experience-dependent synaptic plasticity. 

When new skill is learned via general training, synapses in 

the brain are revised to form a lasting motor memory of that 

skill learned [22].  
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Stability-Plasticity positioned at multiple brain areas are 

regulated by the mechanisms of neurosynaptic plasticity. 

Neurosynaptic plasticity mechanisms is such that it protects 

knowledge about previously learned tasks from forgetting, 

by decreasing the rates of synaptic plasticity.  However, 

there are two types of plasticity needed for a stable continual 

process: Hebbian Plasticity [23] and Compensatory 

Homeostatic Plasticity [24]. When used together, both 

Hebbian learning and Compensatory Homeostatic Plasticity 

stabilize neural cells to shape the optimal patterns of 

experience-driven connectivity, integration, and 

functionality in a network [1, 16, 24]. 

Neurosynaptic plasticity is an important attribute in the brain 

because it produces physical changes in the neural structure 

and allows us to learn, remember, and adapt to any changing 

environments [16] as well as activity-dependent synaptic 

plasticity in learning and memory formation. Synaptic 

plasticity was first discovered in the hippocampus of the 

human brain in the early 1970s. It was concluded that an 

increase in the strength of the synaptic input of the 

stimulated connections only is produced by repeated, near-

synchronous activation of both pre- and post-synaptic 

neurons [14] and this process is known as Long-Term 

Potentiation (LTP). These characteristics of synaptic 

plasticity suggests its role in learning new skills as well as 

being an information storage device [25]. 

However, memories may not be properly stabilized if 

synapses are easily bendable and in such state of perpetual 

flux, old learning can easily be overwritten by new learning. 

Hence, for any learning system, there is essentially 

constraint between the competing requirements of stability 

and plasticity [22]. 

B. The Hebbian Synaptic Plasticity 

The brain can adapt to a changing environment and as well 

as providing important insights into the shape of cortex’s 

connectivity and function. It has been shown that while 

fundamental designs of connectivity in the visual system are 

noticeable at early development, normal visual input is 

essential for the accurate development of the visual cortex 

[26].  Donald Hebb in 1949 was the first to propose the 

theory describing and explaining the mechanisms of 

synaptic plasticity in the adaptation of neurons to external 

stimuli. Hebb postulated that the connection between two 

neurons is strengthened, when one neuron pilots the activity 

of another neuron [27]. In the following years, Hebb’s idea 
has been interpreted to the weight changes among nodes of a 

single layer perceptron in ANNs based on coincidence or the 

product of pre- and postsynaptic activity mimicked from the 

brain neurons, thereby altering the connection of neurons 

into changes relative to the coactivity of the input and output 

nodes in ANNs [14]. Thus, considering Hebb’s theory from 

an ANN’s standpoint, after a network has been trained using 

backpropagation successfully, the synapses between neurons 

that synchronous fires a given input are made stronger for as 

long as it takes, to maintain and improve its outputs [27, 28].  

A simple formula for Hebbian plasticity considers a change 

in the synaptic weight w and it is updated as the product of 

the activities in pre-synaptic x and post-synaptic y with 

learning rate η is given  as [1]: 

 

  (1) 

 

Yet, Hebbian plasticity is unstable while alone, but 

depended on and requires compensatory mechanisms to 

stabilize its learning process. This is attainable by enhancing 

Hebbian plasticity with some constraints like upper limits on 

specific synaptic weights or regular neural activity, which 

can only be done by homeostatic plasticity [29, 27]. 

Homeostasis plasticity is also referred to as a compensatory 

process that stabilizes the neural firing rates in the brain [24] 

III. OVERCOMING CATASTROPHIC FORGETTING WITH 

CONTINUAL LEARNING ALGORITHM 

Catastrophic forgetting problem can occur in different ways. 

One way is between mini-batches when using stochastic 

gradient descent methods during the  general training 

processes. Another way is the degradation of the  

generalization performance of a network [12, 30].  Similar 

to the continual learning methods, in Stochastic Gradient 

Descent (SGD) optimization, every mini-batch can be 

thought of as a mini-task offered sequentially to the 

network. In this context, the interest is describing the 

changes in the learning of  the neural networks by analysing 

examples of forgetting events [14]. This happens when task 

that have been learned and correctly classified at some time t 

in the optimization process are afterward misclassified at a 

time t´ > t [31]. It should also be noted that catastrophic 

forgetting occurs to ANN models including SOMs as well as 

Deep Neural Networks, for example Transfer Learning in 

DNN [32]. 

Typically, the current approaches to overcome catastrophic 

forgetting in ANN have concurrently made data available 

from tasks  during training. By passing in data from several 

tasks while training and learning, forgetting is prevented. 

This is attributed to the fact that the weights of the network 

can be mutually optimized for high performance on all 

training tasks. This case is frequently referred to as the 

multitask learning, and a good example can be seen in 

reinforcement learning method where a successfully trained 

single agent can be used to play many Atari games 

effectively. If data are introduced to the network 

sequentially, multitask learning can only be used if tasks are 

recorded by an episodic memory system and replayed during 

training to the network [19, 33]. However, this method can 

be impractical when dealing and learning a large number of 

tasks, as large number of memories would be required to 

stored and replayed, likewise been related to number of 

tasks [4, 14, 29].  

 

A. Continual Learning Basics 

Continual Learning is the basic step towards AI, because it 

permits an intelligent agent to continuously adapt to changes 

that occur in data and tasks. Nevertheless, there are some 

consequences during learning for both supervised and 

unsupervised learning. For example, when data are not 

properly represented or there is a mistake in the input 

distribution, a model can overfits the recently seen data, 

which is something continual learning systems aim to 

address [34, 35]. 

A series of desiderata are used to defined Continual 

Learning in practice which includes Firstly, online learning 

meaning that learning can occur at every moment, with no 

permanent tasks or datasets and with no clear 

boundaries/restrictions between tasks. Secondly, 
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forward/backward transfer of model from existing tasks to 

new tasks with the possibility of the new task  improving the 

performance of older tasks. Furthermore, resistance to 

catastrophic forgetting, that is, new learning task does not 

degrade the performance on previous data, and lastly, there 

should be no direct access to previous tasks but be able to 

retain it [34, 35]. 

An infinite sequence of data is considered for a general 

continual learning setting, where at each timestep  the 

network accepts a new data { , } to draw  a non 

independent and identically distributed. from an existing 

distribution P that could by itself experience some rapid or 

gradual changes. The key goal is to learn a function  

parameterized by  that can minimize a predefined loss ℒ on 

the new data without interfering on existing tasks and also 

with the possibility of improving on the tasks that were 

learned previously [34]: 

 

 

 

(2)  

 

 

Such 

that: 
 (3)  

 

 

  (4)  

 

Where  is the input,   is the ouput and = { } is the 

slack variable that allows some constraints to be violated 

like small increase in loss from previous tasks [34]. 

Some strategies have been designed for continual learning, 

which are: Firstly, the progressive/architectural strategy. 

Architectural strategy can be used to incrementally builds a 

network’s structure for every single task being processed. In 

addition, it also tries to copy and re-use as much as possible 

the attributes of the previous model in the process. The 

second strategy is known as rehearsal methods, since it 

keeps a memory of data analyzed on previous tasks and 

continues to retrain the network on this memory to maintain 

its performance. And the third approach is regularization. 

Regularization strategy tries to re-use a single neural 

network, which is by including a few regularization 

penalties to alleviate the behaviour of the network with 

respect to previous tasks [1, 20]. Usually, rehearsal and 

progressive strategies, performs very well but always 

declines as the number of tasks increase, and might require a 

high computational power. With some differences from the 

first two approaches, the implementation of regularization 

strategy is quite simple, they require little memory, but it 

performance might not be up to that of  rehearsal methods 

[7]. One main problem encountered when applying 

regularization strategy is determining what task best 

represents the behaviour of the network and, this can lead to 

the form of regularization penalty that would be taken [7]. 

Recently, a lot of attention has been shifted to the idea of 

using regularization function to fit the existing task for 

learning a new task in a network. This method can be 

understood as an approximation of sequential Bayesian. 

Some distinctive examples of this regularization approach 

include the elastic weight consolidation [4] and learning 

without forgetting [21].  

 

 

B. A Review of Some Popular Continual Learning Strategies 

Several algorithms have been proposed so far to mitigate 

catastrophic forgetting in neural networks and few are 

reviewed in this paper: 

[4] proposed an algorithm that performs operation like 

synaptic consolidation used on the brain on ANNs by 

constraining some important parameters to stay close to their 

old values. This algorithm is known as Elastic Weight 

Consolidation (EWC).  

In EWC, the performance in task A is protects by 

constraining its parameters to stay in a region of low error 

just for task A to be positioned mainly around . This 

constraint is implemented as a quadratic penalty and can 

exist as a spring anchoring the parameters to the previous 

solution, hence been called elastic. However, all parameters 

should not have the same stiffness of this spring, but it must 

be larger for parameters that are very much affected by the 

performance in task A. 

To further explain the optimal choice of constraint and 

weights, the neural network training is considered from a 

probabilistic viewpoint using Bayes’ rule and also noting 

that the log probability of the data  given the parameters 

log p (| ) from the Bayes’ rule equation is simply the 

negative of the loss function  − ℒ( ) [4]: 

 

 log p( | ) = log p( | ) + log p( | ) − log 
p(  ). 

 

(5)  

The key to implement EWC is that all the information about 

task A, must have been accepted into the posterior 

distribution p( | ). The true posterior probability is 

inflexible, so the posterior distribution was approximated as 

a gaussian distribution with average specified by parameters 

 and a diagonal precision specified by the diagonal of the 

Fisher information matrix F. This matrix F is used because 

it has three key characteristics: Firstly, it is equivalent to the 

second derivative of the loss near a minimum. Secondly, it 

can be computed from first-order derivation alone and it is 

quite easy to compute even for big models. Thirdly, a 

positive semidefinite is guaranteed. Therefore, the loss ℒ  

minimized in EWC is computed as:   

 

 ℒ( ) = ( )   (6)  

 

where ( ) is the loss on task B only, λ determines how 

important the existing task is compared with the new task, 

and i gives labels to each parameter. However, when 

considering a third task C, the EWC algorithm might try to 

maintain the network parameters value close to the learned 

parameters of previous tasks A and B. This can be imposed 

either with two separate penalties or as one by observing 

that the sum of two quadratic penalties is itself a quadratic 

penalty [4]. Because computing over the diagonal of fisher 

requires summation of all possible outputs, thus EWC has 

complexity linear in the number of outputs, limiting its 

application to low-dimensional output spaces [10]. 

 A simple structural regularizer that can be computed online 

was introduced by [10] and also implemented locally at each 

synapse/parameter (weights and biases). The authors 

developed an algorithm which can keep track of 

an importance measure . 
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Considering the change in loss function ℒ for an 

infinitesimal parameter update δ(t) at time t, where (t) is 

the trajectory in parameter space between task A and task B, 

and  is the gradient can be written as [10]: 

 

 ℒ(  (t))  ℒ(  (t) (t) 

 

(7)  

However, to calculate the change in the loss over the whole 

trajectory, all the infinitesimal, and the changes are summed 

over, which amount to computing the path integral of the 

gradient vector from the start time t0 to the end time t1 and 

also the loss between the end and the start point  ℒ( (t1)) 

− ℒ( (t0) [10]): 

 

 dt  

(   

 

(8)  

 

The authors tried to solve the problem of minimizing the 

total loss function summated on all tasks, ℒ = , with no 

contact to the loss function ℒμ of the past training except the 

new task μ at any given time but with this minimization 

come catastrophic forgetting which led to a drastic weight 

changes between the old task and the new task (ν < μ) while 

training task μ. To avoid this problem, they introduced 

quadratic surrogate loss which approximates the summed 

loss function of old task ℒν (ν < μ). The implication of using 

the quadratic surrogate loss for training instead of the actual 

loss function, is that the final parameters will remain the 

same and change in loss during the training process [10]: 

 

 

(9)  

 

Where c is the dimensionless strength parameter,  is the 

reference weight at the end of previous task, and  is the 

per-parameter regularization strength. The equation 9 can 

only achieve two tasks. 

Although [10] algorithm is similar to EWC in [4] in that 

more importance synapses are strongly directed towards the 

reference weight, however, the method computes the 

importance measure online including all the learning 

trajectory [10], considering that, EWC is about the point 

estimate of the diagonal of the Fisher information matrix at 

the final synapse values, that has to be calculated during a 

separate stage at the end of each task [4]. 

Inspired by Hebbian learning in neuroplasticity, [5] 

proposed Memory Aware Synapses (MASes). Unlike 

previous proposed research on synapses, their continual 

learning method can learn using unlabelled data and in 

online manner. The sensitivity of the output function was the 

main focus and not the loss while estimating importance 

weights for the network parameters. After the model has 

been trained on the approximation  of the true function , 

the function  output was preserved, and its sensitivity was 

measured for changes. A small perturbation  in the 

parameters  results in a change in the function output that 

can be approximated by  

 

 
 

(10)  

Where  is the gradient of the function learned and  

is the change in parameter  But the goal is to preserve the 

prediction of F. To do this, the gradients of all data point 

were accumulated to obtain importance weight  [5] 

 

 
 

(11)  

Where N is the total number of data points. However, when 

function F is multi-dimensional, the gradients for each 

output can be computed by using the squared  norm the 

learned function output. The importance is measured by the 

sensitivity of the squared  norm over learned function 

output. To learn a new task, a new loss , and a 

regularizer for penalty to change important parameters (high 

)  

 

 
 

(12)  

Where is the regularizer’s hyperparameter and  is the 

previous network parameter [5]. 

[36] explicitly address the diagonal assumption made by 

EWC algorithm in [4]. They assumed that if the Fisher 

Information Matrix is not diagonal, EWC might fail to stop 

the network from drifting from “good parameter space”. The 

proposed Rotated Elastic Weight Consolidation approach is 

based on rotating the parameter space of a network, that is, 

re-parameterization of the parameter space , in a way that 

the output of the forward pass is not changed, while the 

computed Fisher Information Matric from the gradients 

during the backpropagation is approximately diagonal [4]. 

To obtain reparameterization, the rotation matrix is 

computed using Singular Value Decomposition (SVD) even 

though computing SVD on a very large matrices is quite 

expensive. Applying chain rule on FIM and computing 

using SVD, the following equation was obtained where  is  

 the new rotated weight matrix [36]: 

  
 

(13)  

 

 
 

(14)  

  
 

(15)  

The results obtained with rotated EWC is outstandingly 

more real at overcoming catastrophic forgetting in 

sequential task learning problems [36].  

Variational continual learning [37] and Continual Learning 

with Adaptive Weights (CLAWs) [38] are another 

regularization strategy [37]. In [37], Bayesian inference 

provides a fundamental framework for continual learning 

with its algorithm where the posterior of the model 

parameters is learned and updated continually from a 

sequence of datasets. To achieve this algorithm, online 

Variational Inference (VI) was merged with Monte Carlo VI 

for neural networks to produce Variational Continual 

Learning (VCL). In addition, VCL was enhanced to contain 

a small episodic memory by the combination VI with the 

coreset data summarization process. The coreset can be 

compared to an episodic memory that holds important 

information from previous tasks, where the algorithm can go 
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back so as to refresh its memory of these important 

information.  

Similar to [37], in [38], their approach is based on 

probabilistic modelling and variational inference [37]. But 

rather than strictly dividing the architecture into shared and 

task-specific parts, the approach adapts the contributions of 

each neuron using Gaussian distribution for the adaptation 

as the probabilistic model and afterwards the adaptation 

parameters are included within the variational parameter in 

Monte Carlo VI. 

[39] is another form of regularization approach to continual 

learning. The method presents the option to control the 

stability and compactness of the learned task. This makes 

this method also agreeable for network compression 

applications and online learning. They proposed a task-

based hard attention mechanism that can preserves learning 

from an existing task without affecting the learning of a new 

task. As well as learning tasks with the binary attention. A 

task can also be learned over gated task embeddings, using 

backpropagation and minibatch SGD. Some attributes of 

hard attention task are: It can store, as well as maintain a 

lightweight structure. Secondly, the task is learned instead of 

a heuristic approach or rule-driven. Thirdly, the mask is not 

necessarily binary, and this might be useful if the weights 

need to be re-used for learning other tasks, i.e., to overcome 

catastrophic forgetting. 

[21] proposes Learning without Forgetting method which 

compose of Convolutional Neural Networks (CNN) and this 

approach can be perceived as combination of Distillation 

Networks (transfer of information from a large to a small 

model) [40] and fine-tuning. The main idea here is only used 

on new task data for training the network. The network 

learns from parameters that works fine on old task and uses 

this information to train the new tasks without the use of 

data from previous tasks. 

To achieve this, the responses  on each new task object 

from the original network for outputs on the old tasks 

(defined by shared parameters  and task-specific ) were 

recorded, then the network was trained for the loss to be 

minimize  for all tasks and regularization R by using SGD. 

To define the loss for a new task, the output  was merged 

with the one-hot ground truth : 

  
 

(16)  

 

To transfer the known, knowledge distillation loss must be 

introduced to the network [21]  

  

 
 

(17)  

 

[41] provided an architectural strategy algorithm called 

Reinforced Continual Learning (RCL). It comprises of three 

networks: value network, controller, and task network. The 

controller is executed as a Long Short-Term Memory 

network (LSTM) or as Recurrent Neural network to generate 

policies and determine how many filters/nodes will be added 

to each task.  The value network was designed as a 

multilayer perceptrons/fully-connected network, that 

approximates the value of the state [41]: 

 

 
 

(18)  

Where  the controller network’s parameter. 
However, the task network, on the other hand, can be any 

network of interest for solving any task, for example object 

detection or image classification. Furthermore, RCL 

adaptively expands the network when a new task arrives, 

while using stochastic gradient descent with  as the 

learning rate [41]: 

 
 

 

(19)  

  

 
 

 

(20)  

 

[42] propose Incremental Moment Matching (IMM) 

framework from Bayesian Neural networks, Here moments 

of posterior distribution which are trained on old and new 

task are matched together in an incremental way using 

Gaussian distribution. Considering that the objective is to 

determine the ideal parameter and  of the gaussian 

approximation function  from the posterior parameter of 

the kth task , two different moment match method 

can be used: mean-IMM and mode-IMM. Mean-IMM finds 

the average of the parameters of two networks for both old 

and new task [42]: 

 

 
 

(21)  

Mode-IMM is an alternative form of mean-IMM. It merges 

the parameter of old and new network using Laplacian 

approximation of the posterior of gaussian distribution [42]: 

 

 
 

(22)  

The result obtained from the experimental with both IMM 

on shows that Mode-IMM performed better than mean-IMM 

and other comparative models in the various dataset. The 

limitation is that IMM performance decreases with more 

complex dataset. 

[43] introduced a model architecture called Progressive 

Neural Network (PNN) that support transfer of knowledge 

across sequence of tasks particularly in reinforcement 

learning. Progressive network makes use of transfer learning 

by retaining a pool of knowledge through training of an 

agent from a previous task, and also having the ability to 

transfer that knowledge to another agent to improve 

convergence speed. After PNN finishes training of a 

previous task, its parameter  is frozen when switching to 

the second task, after which another parameter  is 

instantiated [43]: 

 

 

(23)  

Where  is weight matrix,  in the lateral connection, 

and  is an element-wise non-linearity. 

PNN is robust to harmful features learned in incompatible 

tasks by the RL agent. A major downside of PNN is the 

growth in number of parameters with the number of tasks.
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TABLE 1: SUMMARY OF SOME OTHER DIFFERENT APPROACHES TO ALLEVIATE CATASTROPHIC FORGETTING 

Authors, 

Year, and 

Country: 

Proposed 

Methods/Algorithms 

and 

Strategies/Approaches:  

Important Note: Limitation 

[4] 

2018, 

United State 

of America 

Elastic Weight 

Consolidation (EWC), 

Regularization 

The EWC uses only one network with 

static network capacity and nominal 

computational overhead which has a 

low computational cost. 

 

EWC are very sensitive to the diagonal 

approximation of the FIM used in practice 

because of the large size of a full FIM and costly 

to compute weights for regularization penalty 

[10] 

2017, 

Australia 

Synaptic Intelligence 

using Quadratic 

Surrogate Loss SI, 

Regularization 

 

The method computes the per-

synapse consolidation strength in an 

online manner and over an entire 

learning trajectory in parameter space 

and individual synapses act as higher 

dimensional dynamical systems.   

SI can only learn importance weights during 

training, which leads to lack of adaptation to 

some particular subset. 

[5] 

2018, 

Germany 

Memory Aware 

Synapses (MAS), 

Regularization 

The important parameters (high ) 

can  be reused, through model 

sharing, which is only possible with a 

penalty when changing the 

parameters.  

It is limited by brittleness caused by 

representation drift mostly common to 

regularization methods. 

[36] 

2018, 

Italy 

Rotated Elastic Weight 

Consolidation, 

Regularization 

The evaluation of the experiment on 

various learning tasks shows that the 

approach performed well compared to 

the standard EWC. 

Rotated EWC can also suffer from brittleness 

caused by representation drift. 

 

[39] 

2018, 

Sweden 

Hard Attention to Task 

(HAT), 

Regularization 

HAT presents the option to monitor 

the used network capacity throughout 

different tasks and layers and it has 

only two hyperparameters, and are 

both referred to as the stability and 

compactness of the learned task. 

HAT gradually declines in classification accuracy 

during training with no signs and hope of ever 

increasing 

[21] 

2016, 

Netherlands 

Learning without 

Forgetting, 

Regularization 

The method is only proposed for 

convolutional neural networks. It is a 

hybrid of knowledge distillation and 

fine-tuning. 

Additional memory and computation are needed 

in LFL to compare activations 

[44] 

2020, 

Italy 

Embedding 

Regularization for 

continual learning, 

 

Regularization 

ER develops an efficient way to 

regularize the behaviour of the 

network by acting on its internal 

embeddings, i.e., the activations of 

one or more layers closer to the exit. 

In ER, when the memory grows, the required 

training time also increases. 

[45] 

2020,  

Germany 

Bayesian Neural 

Networks for Non-

Stationary Data, 

 

Regularization 

 

It makes use of Bayesian forgetting 

and a Gaussian diffusion process for 

adaptation to non-stationary data, 

leading to a better predictive 

performance 

Bayesian neural networks with a uni-modal 

approximate posterior often find poor local 

minima if the dataset is small and models are 

complex, which is especially challenging in 

situation where data are streamed 

[46] 

2018, 

Canada 

FearNet, 

 

Architectural 

The basolateral amygdala is used to 

determine which memory system to 

use for recalling task and it is more 

memory efficient. 

FearNet can suffer from recall when the number 

of classes to learn is high.  

[41] 

2019, 

Germany 

Reinforced Continual 

Learning (RCL), 

 

Architectural 

RCL explores the best neural network 

architecture for each upcoming task. 

The training time of RCL is particularly 

important and high for large networks with more 

layers 

[47] 

2020, 

France 

Move-to-Data: 

Incremental learning 

approach, 

 

Architectural 

This approach does not require 

gradient based optimization 

The Move-to-Data method is limited to only one 

fully connected layers 

[33] 

2017, 

Gradient Episodic 

Memory (GEM), 

The advanced memory management 

was not investigated, and the iteration  

It may be less scalable and require many 

observations and complex generative model to 
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United State 

of America 

 

Regularization, 

Rehearsal 

requires one backward pass per task, 

which increases the computational 

time. 

represent realistic tasks, and the Effective 

prioritized replay remains an unsolved problem 

[48] 

2019, 

United 

States of 

America 

Average Gradient 

Episodic Memory (A-

GEM), 

 

Regularization, 

Rehearsal 

It is about 100 times faster and 

memory is  10 times less  required; 

compared to regularization-based 

approaches, it achieved a significantly 

high average accuracy  

 

The model is plausibly a little incremental over 

GEM 

[49] 

2017, 

United State 

of America  

Incremental Classifier 

and Representation 

Learning (iCaRL), 

 

Regularization, 

Rehearsal 

It comprises of 3 major components: 

a nearest-mean-of-exemplars, a 

herding to prioritize exemplars, and a 

representation learning step, and It 

learns strong classifiers and data 

representation at the same time 

iCaRL’s performance 

is still lower than what other systems achieve 

when trained 

in a batch setting,  

[50] 

2020, 

Virtual 

Conference 

 

Functional Regularised 

Continual Learning 

(FRCL): Gaussian 

processes, 

 

Regularization, 

Rehearsal 

When viewed from the regularisation 

perspective, it  regularises the 

functional outputs of the neural 

network, while when viewed from a 

rehearsal method perspective, a 

principled way is provided for 

compressing data from previous task, 

by optimizing the selection of 

inducing points. 

It suffers from a fixed memory buffer in which 

case the summaries of all the previous seen tasks 

need to be compressed one needs into a single 

summary. 

[38] 

2020, 

United State 

of America 

Continual Learning 

with Adaptive Weights 

(CLAW), 

 

Regularization, 

Rehearsal and  

Architectural 

It is based on variational inference 

from VCL. 

This approach did not actually  compare their 

result to other to VCL, every other.   

[37] 

2018, 

Canada 

Variational Continual 

Learning, 

 

Regularization, 

Rehearsal and  

Architectural 

VCL is most suitable for efficient 

model fine-tuning in sequential 

decision-making problems, and  can  

be applied to generative model and 

discriminative model. 

VCL also suffers from brittleness caused by 

representation drift 

 

 

IV.  OUR NOVEL RESEARCH PROPOSAL 

According to [51], the human brain act as information filters. From 

the inward region of the brain (hippocampus), when new 

information is taken in, old irrelevant information is filtered 

out and the updated  information are stored for long term 

retrieval and decision making. The unused pieces are 

however deleted to create space. It is called forgetting in 

neuroscience. Forgetting occurs when the synaptic 

connection between neurons weakens and are eliminated 

over time [51]. To effectively adapt, humans need to 

strategically forget, so also the need to forget in ANN for a 

successful continual learning.  

The previously discussed works have approached the 

problem of catastrophic forgetting, specifically the continual 

learning with  valuable  strategies and algorithms.  Most  of  

works,  tackled ways to achieve continual learning, but left 

out the aspect of forgetting. Forgetting some older 

knowledge is essential to accommodate information from 

new data. The novel idea here is to build a network to 

deploy learning and the same network will be re-purposed to 

learn a new task, forgetting some specific information that is 

irrelevant. Self-Organizing Map (SOM) will be used for this 

purpose of forgetting. The algorithm will be in such a way 

that the network learns and update in the opposite direction 

which will lead to forgetting in the SOM. In addition, we 

will measure 3 different performance metrics, which are: 

The Average Accuracy, The Backward Transfer, The 

Cumulative Backward Transfer Scores of Forgetting. 

Forgetting can be beneficial in some cases: 1) it prevents 

overfitting to specific features and can improve 

generalization, 2) forgetting outdated data can enhance 

flexibility of decision made from learning with new data. 

[51]The main goal of this novel research is to control the 

forgetting process during learning to protect some vital 

information and in the process minimizing accuracy loss. 

V. CONCLUSION AND FUTURE WORK 

Continual Learning is the fundamental step towards AI, 

because it permits an intelligent agent to continuously adapt 

to a dynamic environment, a distinctive characteristic of 

natural intelligence. The goal for continual learning is to 

acquire knowledge across tasks particularly through model 

sharing and having a single model that can perform well on 

all the tasks, however, there is one challenge to achieving 

this, which is catastrophic forgetting of previous task 

learned, in the process of learning new task. In this paper, 

we presented continual learning in advanced biological 

animals and Artificial intelligent agents. We discussed 

plasticity-plasticity dilemma and taking it a little further, we 

talked about Hebbian plasticity and compensatory 

homeostatic plasticity process of learning and memory 

formation that occurs in the brain.  Despite significant 

advancement, most of the currently proposed algorithms for 

continual learning are still far from providing a robust, 
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flexible, and scalable approach displayed in biological 

animals. However, we presented a state-of-the-art overview 

of several algorithms, from the most popular and recent 

literature on continual learning, where some significant 

progress has been made to tackle catastrophic forgetting in 

ANN.  On top, we used a table to summarize these 

algorithms which included: the type of strategy/approach, 

the dataset used for the performance evaluation and some 

key notes about these algorithms. In addition, we introduced 

our novel research proposal on intentional forgetting, which 

is such that an intelligent system will chose to forget some 

irrelevant or old information when learning a new task. 

Evaluating with different dataset, we will measure different 

performance metrics with the new proposed algorithm. 
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