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Abstract—Modern safety-critical embedded systems have to
be time-deterministic to guarantee safety. One source of time-
nondeterminism are interrupts. This paper shows how to miti-
gate their influence in the system on a commercially available
processor IP (Codasip uRISC) can be modified to exhibit time-
determinism in real-time workloads and isolate interrupts. We
extend the processor with fine-grained multithreading and iso-
lated interrupt handling to localize time-nondeterminism caused
by interrupts. We show a comparison between original and ex-
tended processors on a selection of TACleBench benchmarks. For
interrupt-driven workloads, ideal interrupt isolation is achieved.
The proposed modification can be used on other in-order single-
issue processors.

I. INTRODUCTION

Nowadays, Commercial-Of-The-Shelf (COTS) edge com-

puting platforms are used in real-time applications. Their

designers have to design them carefully to tolerate the time-

nondeterminism of such platforms. Moreover, COTS platforms

are optimized for average performance, so real-time appli-

cations require significant over-provisioning to meet timing

requirements, especially in the worst case.

The Worst-Case Execution Time (WCET) bounds are given

by two factors: the program and its inputs and the underlying

processing architecture [1]. In this paper, we focus on process-

ing architecture.

Modern processor architectures use many techniques to

increase performance, but these are usually not time-

deterministic. To name a few: instruction-level parallelism in

superscalar architectures, branch prediction and speculative ex-

ecution, out-of-order execution, caching and complex memory

hierarchy. The problem with all these techniques is that timing

depends on a complex micro-architectural state, which is often

held secret from users. As a result, the execution time of a

piece of code is subject to variance known as jitter.

Many researchers investigate the possibility of having a

completely time-deterministic computing architecture. They

propose either to modify existing architectures by replac-

ing time-nondeterministic components with their determin-

istic counterparts. For example lockable [2] and partition-

able caches [3], scratchpad memories [4] or time-predictable

branch predictor [5]. Another approach is to develop a time-

deterministic CPU, commonly referred to as PREcision Timed

(PRET) machine [6], from scratch. Examples of such proces-

sors are FlexPRET [7] and Patmos [8].

This work was supported by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 832011 (THERMAC).

One source of time-nondeterminism in real-time appli-

cations running in COTS processors is interrupt handling.

Interrupts are essential to I/O communication [9], [10] and

their arrival time is often unpredictable [11].

In this paper, we focus on interrupt isolation so that the

execution time of software threads not requiring the interrupts

for their function is not affected. We demonstrate how a COTS

processor Intellectual Property (IP) can be modified to provide

multithreading with interrupt isolation to decrease execution

time jitter of real-time tasks. While FlexPRET [7] implements

a similar feature in a completely new architecture, we show

how such a feature can be implemented by modifying an

existing architecture (Codasip uRISC). Finally, we evaluate the

proposed modification in terms of additional FPGA resource

cost and jitter reduction, which is completely eliminated for

interrupt independent tasks.

Section II describes background information, namely the

PRET machine and Codasip uRISC processor. In Section III

we introduce our design of PRET-like uRISC core, and in

Section IV, we describe exact modifications of the core.

Evaluation of our modifications based on the CPU simulator

is provided in Section V, and we conclude in Section VI.

II. BACKGROUND

This section describes the background information that

serves as a basis for our work.

A. PRET machine

According to Lee et al. [12], [6] an abstract PRET machine

is a machine where "Repeatable timing is more important and

more achievable than predictable timing".

The authors argue that software control over timing is

orders of magnitude coarser than hardware controlled timing.

The software approach leads to unnecessary over-provisioning

and does not allow for software and hardware independent

safety certifications because the software always has to be

tailored to a specific target computing platform. There are three

distinguishing features that a PRET machine has:

• timing instructions

• hardware threads

• isolated interrupts

Timing instructions set and clear deadline for a task. At the

beginning of task execution, a deadline is set and at the end

of execution, the deadline is cleared. If the deadline is not
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cleared before its due time, an exception occurs, which can

deal with the missed deadline.

Hardware threads eliminate pipeline bubbles caused by

branching. The thread switching is implemented as fine-

grained multithreading, which interleaves instructions from all

threads in a round-robin fashion.

Lastly, interrupts isolation allows to assign interrupts to

hardware threads. Interrupts are handled as streams of sporadic

events.

B. uRISC

Codasip uRISC processor is a pipelined core, written in

the CodAl architecture description language [13]. It is used

mainly for technology demonstrations by Codasip and has

gained popularity in academia [14], [15], [16]. The uRISC

instruction set architecture (ISA) supports 46 instructions with

an effective single-cycle latency. The processor architecture is

32bit wide, has 32 registers in a register file. Its pipeline has

fetch, decode, execute, and writeback stages. As a modified

Harvard architecture, it has separate interfaces to memory for

instructions and data. The memories, as well as peripherals,

are connected through the AHB3 lite bus.

III. DESIGN

This section describes the design of our two extensions of

the uRISC processor: 1) fine-grained multithreading and 2)

thread independent interrupt handling.

The fine-grained multithreading helps reduce execution

time jitter by effectively eliminating pipeline stalls (pipeline

bubbles), which are induced by the elimination of pipeline

hazards. It can be shown that fine-grained multithreading min-

imizes pipeline stalls by eliminating control hazards. Control

hazards are eliminated because consecutive instructions do not

depend on the result of previous n instructions. For a core

with a four-stage pipeline, such as the uRISC, this condition

is fulfilled by dispatching instructions from one thread every

fourth cycle.

Issuing instructions from a thread every n
th cycle increases

the minimal, average and worst-case execution time of tasks,

but the execution time jitter is eliminated. In order to utilize the

pipeline optimally, at least n threads have to be executed on

a core. As shown in [12] n-thread fine-grained multithreading

achieves minimal execution time jitter for real-time tasks

without performance loss.

Interrupts are a source of uncertainty for the execution time

of any task. It is not only the delay caused by interrupt service

routine, but the changes to the state of the components such as

caches or branch target buffer also affect execution time. We

assume that real-world sources of interrupts can be modelled

as sporadic events with a non-zero minimal time between

two consecutive events. However, there could be more sources

of interrupts, which can arrive at the same time. Traditional

processors can deal with simultaneous interrupts in many

ways. One is to use interrupt masking, which forbids servicing

interrupts simultaneously; the other is nesting, which allows a

higher-priority interrupt to preempt lower priority interrupt.

Isolation of interrupts removes the need for interrupt mask-

ing and nesting by assigning a single interrupt controller to

a single thread. This way, tasks requiring interrupts for their

functionality (e.g. I/O services) do not affect the execution of

other tasks and, vice versa, are not affected by the execution

of other tasks in other threads.

This work does not implement deadline instructions pro-

posed in [12] because the same functionality can be imple-

mented with a timer interrupt without changing the ISA.

A drawback of our design is the lack of atomic instructions

in the uRISC ISA, limiting the options of inter-thread data

access. We assume that every thread executes a separate

program, and the programs do not communicate with each

other. We plan to add atomic instructions later.

This design can be used for other in-order single-issue cores,

which have one-cycle latency of all instructions. For cores

with branch prediction and operand forwarding, the number

of dependent instructions could be smaller than the number of

pipeline stages but is never greater.

IV. IMPLEMENTATION

This section describes the specific implementation of PRET

uRISC core and test platform, which is used for evaluation.

A. PRET extensions

The implementation of the fine-grained multithreading ex-

tends the number of simultaneously executed threads to four.

Instructions from multiple threads are dispatched in a round-

robin fashion, and the pipeline never contains two instructions

from the same thread.

To support four threads, changes are made to the pipeline

as shown in Fig. 1 by grey elements. A program counter

is quadrupled, and the register file size is increased four

times so that each thread has its own program counter and a

portion of the register file. The whole pipeline keeps track of

the thread associated with each instruction, further referenced

as thread id. The fetch stage implements thread switching

logic. Instructions are fetched based on a periodic round-

robin schedule. Once the instruction is fetched, it is associated

with a thread id. The decode stage is modified to decode

operand register addresses based on the thread id so that

every instruction accesses only a portion of the register file

associated with its thread. It is not possible to address registers

in the register file which are associated with other threads.

Execute stage requires no modification; only passing of thread

id is implemented. The writeback stage is modified to decode

a return register address based on the thread id.

The uRISC has one interrupt signal and a fixed address for

the interrupt service routine (ISR). We extend the interrupt

signal to four signals, one for each thread.

The original uRISC core has four instructions related to

interrupts: interrupt enable, disable, call and jump. Implemen-

tation of these instructions is modified so that interrupt enable

only enables interrupts in the thread it is executed in. Likewise,

interrupt disable instruction disables interrupts only for the

thread it is executed in. Interrupt enable register is quadrupled.
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Fig. 1. Schematic of data path in modified PRET uRISC processor, grey colored components are added to the original design in order to implement
multithreading

Call interrupt instruction is modified to call one of the four

interrupt service routines.

Decode stage issues a call interrupt instruction if the fol-

lowing conditions are met: interrupt enable register is set,

interrupt signal is high and both match the thread id of current

instruction in decode stage. The fetched instruction of the

current thread is discarded and replaced by a call interrupt,

which saves the program counter of the current thread and

replaces it with an address of ISR. The interrupt enable register

corresponding to thread id is cleared, so no interrupt can be

serviced in the thread until the ISR ends and enables interrupts

by setting the interrupt enable register.

Jump interrupt instruction returns from ISR. It restores the

thread to a state before the interrupt. The right program counter

and interrupt enable register of the corresponding thread are

set.

B. Test platform

The uRISC is a plain core. For full functionality, it is

coupled with peripherals, which enables the whole platform

to execute software. All peripherals are connected through

the AHB3 Lite bus to the core. Any transaction on the bus

takes two clock cycles, one address cycle and one data cycle.

Effectively, every transaction takes only one clock cycle due

to pipelining. The address is issued in execute stage and data

in the writeback stage.

To fully support isolated interrupts, four programmable

interrupt controllers (PIC) are present for a multithreaded

platform and a single PIC for a single-threaded platform.

Each PIC is coupled with a timer. The timers are original

sources of interrupts on the presented platform. Both types of

TABLE I
COMPARISON OF RESOURCE UTILIZATION IN FPGA

FPGA resource type uRISC PRET uRISC increase

Slice LUTs 1715 3532 206 %
Slice Registers 1416 4624 327 %

F7 Muxes 285 1117 392 %
F8 Muxes 0 512 -

TABLE II
COMPARISON OF EXECUTION TIMES ON SINGLE AND MULTITHREADED

URISC

benchmark
uRISC PRET uRISC

(clk) normalised (clk) normalised

iir 3815 1 12052 0,79
bitcount 23161 1 73656 0,79

peripherals are connected through the AHB3 Lite interface.

The peripherals support read and write access to its control

registers over the bus. PICs have an additional one-bit interface

for interrupt signals, which are connected directly to the core.

The memory subsystem is a crucial part of the platform.

There are separate memories for the program and for data.

Such a setup allows adjusting latencies for each memory

independently. An approximation of complex cache memory

subsystem is achieved by changing the latencies of memories

which may affect the time-predictability of the platform.

V. EXPERIMENTAL EVALUATION

We evaluate our modified uRISC processor in terms of

increased FPGA resource allocation and in terms of real-time

properties.
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Fig. 3. Completion times of iir and bitcount benchmarks on singlethreaded
core, Interrupts are enabled.

A. Resource cost

The whole platform design has been synthesized for Xilinx

Artix 7 FPGA. The FPGA resource requirements loosely trans-

late to the area. As researchers often demonstrate their designs

on FPGAs, we present area requirements. Table I shows a

comparison of the platforms for single and multithreaded

uRISC. The multithreaded uRISC requires 206% of LUTs,

327% of registers, 392% of F7 muxes and additional 512 F8

muxes in comparison to single-threaded uRISC. If four uRISC

cores were used, 400% of resources would be required, and,

if it were to share the memory, memory arbitration would

be required. We achieve this ratio on a simple uRISC core

without branch predictor, divider or floating-point unit and

essential ISA. If more complex and thus more resource-heavy

processors were modified, the resource requirements ratio

would be smaller. It should be noted that over 300% increase

in registers is due to quadrupled register file, which could be
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Fig. 4. Completion times of iir and bitcount benchmarks on multithreaded
configuration. All four benchmarks are run simultaneously, but in a separate
thread. Two threads have interrupt enabled and two disabled.
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Fig. 5. Completion times of iir and bitcount benchmarks on multithreaded
configuration when data memory latency is 10 clock cycles. All four bench-
marks are run simultaneously, but in a separate thread. Two threads have
interrupts enabled and two disabled..
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mitigated by halving its size by adopting modifications similar

to RISC-V extension E, which proposes to use only 16 general-

purpose registers.

B. Real-time properties

We select two single-thread benchmarks from the

TACleBench suite [17] to demonstrate how the real-time appli-

cations can benefit from interrupt isolation. One benchmark is

iir and the other is bitcount. This selection is made to show the

behaviour of tasks with short and long execution time. We do

not show the rest of the benchmarks from the suite because

all benchmarks are influenced by the interrupts in the same

way. The benchmarks are compiled with LLVM based (Clang)

Codasip compiler, which is automatically generated based on

the processor description in CodAL. The compiler offers opti-

mization presets -O0 (no optimization) through -O3 (maximal

optimization). We choose to compile with optimization level

set as -O2, which is commonly used by software developers

and generates smaller code than -O3, which is preferred in

embedded systems.

As the TACleBench does not have benchmarks, which

would use interrupts, we simulate synthetic interrupts to

evaluate the benefits of interrupt isolation. The interrupts are

generated pseudo-randomly from the ISR. The ISR generates

a pseudo-random number with uniform distribution ranging

from 1 through 25 000 and sets the timer. Every benchmarking

setup is run 3 000 times to get enough data to evaluate

execution time jitter.

Two scenarios are benchmarked. First, for single-threaded

uRISC processor, two sources of interrupts are enabled, and a

simple periodic round-robin schedule of four tasks is executed,

iir, iir 2, bitcount and bitcount 2. This scenario mimics a

traditional approach of software threads that execute tasks non-

preemptively. We measure the completion time of all tasks

from the start of task 0 till the end of each task, as shown

in Fig. 2. The histogram of measured execution times of this

scenario is shown in Fig. 3. It is obvious that the only source

of time-nondeterminism in this scenario is from ISR.

The second benchmarked scenario is a multithreaded uRISC

processor with PRET-like modifications. Again four tasks are

executed, but this time concurrently in four hardware threads.

Two threads have interrupts enabled, and the other two execute

without interrupts. In Fig. 4 we show the completion times,

which directly translates to execution time for this scenario.

The longer execution times caused by interrupts affect only the

respective threads, and the execution of other threads remains

unaffected. If we normalize the completion times of the

unaffected tasks to a thread time, the execution time is shorter

than on a single-threaded core, as shown in Table II. This is

due to the increased efficiency of branching instructions, which

no longer clear the pipeline of the consecutive instructions,

as there is no dependency of consecutive instructions in the

pipeline.

Next, we want to evaluate the effect of interrupt isolation

under the presence of time-nondeterminism caused by in-

creased memory access latency. Higher memory access latency

is typically present in bigger CPUs. We increase the memory

latency to 10 clock cycles. Therefore, each load-store instruc-

tion stalls the whole pipeline, which, with our implementation,

influences all threads, not only the one accessing the memory.

Fig. 5 shows the results of our benchmark in the multithreaded

scenario. It can be seen that the jitter of interrupt-isolated tasks

(magenta, green) is greater than zero but still significantly

smaller than the jitter of interrupt-enabled tasks.

VI. CONCLUSION

We proposed an enhancement of an in-order single-issue

processor IP by PRET-like modifications to increase time-

determinism for mixed-criticality systems. We evaluated our

proposal on the uRISC processor. We demonstrated the be-

haviour of the modified PRET uRISC on two benchmarks.

We conclude that the execution time of a single task is in-

creased proportionally to the number of hardware threads, the

execution efficiency of real-time tasks is increased, and time-

determinism of interrupt independent tasks can be guaranteed

even under the presence of other simultaneously executing

interrupt-driven tasks. The execution time jitter of interrupt

independent tasks is eliminated by 100%. These results are

also valid for any other single-threaded application.

The cost of our modifications lies in the increased chip/F-

PGA area. Specifically, when compared to the original uRISC,

our implementation needs 206% of LUTs, 327% of registers,

392% of F7 muxes and additional 512 F8 muxes. This is due

to multiplying the register file for storing the thread context,

but those numbers are smaller than for instantiating a complete

core for each thread.

Although time-determinism of the CPU is degraded when

memory latencies are higher than one clock cycle, we have

shown that our interrupt isolation decreases the execution time

jitter even in this setting.
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