
 Abstract—We deal here with a fleet of autonomous vehicles

which is required to perform internal logistics tasks inside

some protected area. This fleet is supposed to be ruled by a hi-

erarchical supervision architecture, which, at the top level dis-

tributes and schedules Pick up and Delivery tasks, and, at the

lowest level, ensures safety at the crossroads and controls the

trajectories. We focus here on the top level, while introducing a

time dependent estimation of the risk induced by the traversal

of any arc at a given time. We set a model, state some struc-

tural results, and design, in order to route and schedule the ve-

hicles according to a well-fitted compromise between speed and

risk, a bi-level algorithm and a A* algorithm which both relies

on a reinforcement learning scheme.

I. INTRODUCTION

NTELLIGENT vehicles, provided with an ability to move

with some level of autonomy, are the new hot spot in Mo-

bility [1]. Still, determining what can be exactly done with

new generations of autonomous or semi-autonomous vehi-

cles able to follow their own way without being physically

tied to any kind of track (cable, rail, …) remains an issue.

Most people are doubtful about the prospect of seeing such

vehicles moving without any external control inside crowded

urban areas.

I

Fig. 1 An Autonomous Vehicle

Instead they foresee that the use of those vehicles is likely

to be restricted to protected areas and professional purposes:

moving free access vehicles inside large parking areas,

performing rural or urban logistics or replacing too

 This work was supported by ANR, Labex IMOBS3

constrained AGV (Autonomous Guided Vehicles) inside

warehouses or industrial structures (see [1]).

This point of view raises the general challenge of moni-

toring a fleet of such a vehicles, required to perform internal

logistics tasks while safely interacting with workers, ma-

chines and standard vehicles. Related decisional problems

are at the intersection of Robotics and Operations Research.

When it comes to the management of such systems,

current trend is to the implementation of a hierarchical

supervision architecture, relying on 2 or 3 levels:

 The first level, or embedded level, is defined by the

monitoring and sensing devices which are embedded

inside the vehicles, compute the trajectories in real

time and adapt them to the possible presence of obsta-

cles: currently, most effort from the robotics commu-

nity remains devoted to this embedded level (see [9,

12, 13, 17]), which mostly involves optimal control

and artificial perception techniques;

 The second one, or midle one, is in charge of the super-

vision of small tricky areas, like for instance crossroads

or loading/unloading spots (see Figure 2).

Fig. 2 A Hierarchical Supervision Architecture

Working as a mediator agent, it sends signals and

instructions to the vehicles in order to regulate their

transit and to avoid them to collide when they get

through those areas. This level have been motivating a

Algorithms for the Safe Management of Autonomous Vehicles

Mourad Baïou
LIMOS Lab. CNRS/UCA,

Clermont-Ferrand, France

Aurelien Mombelli, Alain Quilliot
Labex IMOBS3, LIMOS Lab.

CNRS/UCA, Clermont-Ferrand, France

Lounis Adouane
HEUDYASIC Lab.CNRS and

UTC, Compiègne, France

Zhengze Zhu
LIMOS and InstitutPascal Labs

UCA/CNRS, Clermont-Ferrand, France

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 153±162

DOI: 10.15439/2021F18

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 153

rise in interest for the last years (see [5, 11, 15]), and

sometimes a confusion with the embedded level: in

many cases, hypothesis is set that all vehicles involved

are run by the same embedded software and exchange

perfect information; this become equivalent to

supposing the existence of a local external mediator.

 The third one, or global one, consists in tactical

dynamic planning and routing of the fleet, and the

distribution of Pick up and Delivery (PDP) tasks

among the vehicles (see [4, 7, 12, 21]).

Depending on the complexity and the size of the system,

the second level may merge with either the first one or the

last one. In any case, a true challenge is about the

synchronization of those monitoring levels, which

correspond to distinct time scales and purposes, and the

design of communication protocols which will allow them to

interact.

Our goal here is to deal with the Global Monitoring

level. By some aspects, related problems may be viewed as

cases of well-known Pick up and Delivery problem (see [4]),

since in most cases a task will consist for a vehicle in moving

to some place, performing some loading or unloading

transaction and keep on. But two specific features are going

to bring its specificity to this PDP variant:

 The time horizon of autonomous or semi-autonomous

vehicles is usually somewhat short: decisions have to

be taken fast, in a dynamic context, and decisional

processes must take into account the communication

infrastructure [20] and the way the global supervisor

can be provided, at any time, with a representation of

the current state of the system and its short term

evolution;

 As soon as autonomous or semi-autonomous vehicles

are involved, safety is at stake (see [2, 16, 17, 18]). The

global supervisor must compute and schedule routes in

such a way that not only tasks are going to be

performed fast (standard industrial efficiency) but also

that local and embedded supervisors will perform their

job more easily. In other words, risk minimization

should be a criterion for a good schedule.

A consequence is that performing the top level

supervision of a fleet of autonomous vehicles requires

disposing at any time of an accurate representation of the

current state of the system and its short term evolution. This

representation should enable us able to quantify the risk

induced by an additional vehicle, which enters into the

transit network and is asked to follow a given trajectory. We

are not going to directly address this issue, which is complex

(see [18, 23]). Instead, we are going to suppose that, at the

time when we are trying to schedule this vehicle, we are

provided with a procedure which, to any arc (x, y) of the

transit network and any time value t, computes an estimation

of the risk resulting from the presence of our vehicle on arc e

at time t. Then our goal becomes to compute and schedule

the route  of our vehicle, in such a way that its riding time

is minimized and that induced risk estimation does not

exceed some threshold Risk_Max. For the sake of simplicity,

we shall limit ourselves to a one task tour, which means that

 will be constrained by its starting point o and its

destination point d. Described this way, our problem might

be view as the search for a constrained shortest path [7].

But the fact that both risk and arc traversal times are time

dependent makes the problem significantly more difficult

(see [7]). By the same way, the on line feature of a system

such that an autonomous vehicle fleet keeps us from relying

on heavy mathematic machinery like MILP models or time

expanded networks [9], and impose us to design ad hoc fast

heuristics.

According to this purpose, we propose here 2 algorithms:

The first one is a bi-level heuristic one, whose structure

may be compared to the structure of Split algorithms which

are used in Route First Cluster Second algorithms for

Vehicle Routing problems. This algorithm iteratively acts on

the topology of the route  and next schedule the vehicle

along this route according to a filtered dynamic

programming procedure. The second one is a A* tree search

algorithm [14], which explores a risk expanded network.

Both algorithms are designed in order to induce small

computing costs and both perform a kind of auto-adaptative

reinforcement learning scheme [3, 10, 13, 22], which aim at

estimating a good conversion ratio time versus risk.

So the paper is organized as follows: in Section II we

formally describe our model and state some structural

results. In Section III we describe the bilevel local search

heuristic [19], while in Section IV we describe the A* like

algorithm. Section V is devoted to numerical experiments.

II. THE MODEL

A. Transit Network and Risk Function

Transit Network and Risk Function. We suppose that

our fleet of vehicles moves inside a simple planar transit

network G = (N, A), N denoting the nodes of G, and A its

arcs, likely to represent for instance a warehouse (see figure

3 below).

Fig. 3. A Warehouse like Transit Network.

154 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

Every arc e = (x, y) is provided with a maximal speed

V_Maxe and a length De. We denote by TIME the shortest

path distance induced by shortest traversal time values

De/V_Maxe. At the time t = 0 when the global supervisor of

the fleet needs to take a decision about target vehicle VEH,

he knows about routes followed by the other vehicles and the

tasks they are going to perform. So he is provided, for any

arc e = (x, y) and any future instant t > 0, with an estimation

of the number of vehicles and obstacles which are going to

be located in e at time t. This allows him to derive a risk

estimation e(t) whose meaning is:

 For any small value dt, e(t).dt is the Expected

Damage between time t and time t+dt in case VEH

moves at maximal speed V_Maxe along e during this

period.

Since we practically derive [18] any function e from a

finite (small) set of possible activity configurations related to

arc e, we suppose that this function, which translates those

configurations into risk, is piecewise linear (see figure 4).

We call break points of e(t) the values t when the value of

e(t) changes.

Fig. 4. A Piecewise Function .

Then we assume that, if VEH traverses arc e during some

interval [t, t+ dt] at speed v ≤ V_Maxe, then related Expected

Damage is given by a formula:

 Riske(v, t) = (v/V_Maxe).e(t).dt, where  is a convex

increasing function with values in [0, 1] and such that

for any value u, (u) is significantly smaller than u.

Those condition are imposed in order to confirm the

intuition which tells that that the slower the vehicle

moves, the smaller is resulting risk. In our experiments,

we shall use function (u) = u2.

 It comes that if vehicle VEH moves across arc e between

time T and time T + , according to speed function t -> v(t),

then related Expected Damage is:

[T, T+ ] (v(t)/V_Maxe).e(t) dt.

B. Routing Strategies and SPRC Model

 Let us suppose now that origin o and destination d are

given, as nodes of the transit network G = (N, A). A routing

strategy for our vehicle, is going to be a pair (, v), where 

is a path in the network G, and v is a speed function, which,

to any time value t ≥ 0, makes corresponds the speed v(t) of

the vehicle. Clearly, if at time t, VEH in located on arc e  ,

then v(t) must not exceed V_Maxe.

Path  may be viewed in a standard way as a sequence e1,

…, en of arcs of G. If we set T(0)= 0 and denote by T(i) the

time when VEH arrives to the end-node of ei, then values T(i)

are completely determined speed function t -> v(t). Then we

set:

 G_Time(, v) = T(n) = global duration of the

routing strategy (, v);

 G_Risk(, v) =  i [T(i-1), T(i)] (v(t)/ V_Maxe).e(t) dt

= global risk of the routing strategy (, v).

The SPRC: Shortest Path Under Risk Constraint

Model: Then our purpose becomes in a natural way to make

vehicle VEH move from o to d while achieving small

G_Time(, v) and G_Risk(, v) values. This looks a kind of

bi-objective formulation. As a matter of fact, risk and time

play very different roles inside a real industrial system, and

so the risk is usually managed as a constraint: some threshold

Risk_Max is given and the trajectory (, v) of vehicle VEH is

required to be such that resulting risk G_Risk(, v) does not

exceed threshold Risk_Max. It comes that our SPRC:

Shortest Path Under Risk Constraint model comes in a

natural way as follows:

SPRC: Shortest Path Under Risk Constraint:{Given the

threshold Risk_Max, compute a routing strategy (, v)

such that G_Risk(, v) ≤ Risk_Max and G_Time(, v) is

the smallest possible}

C. Structural Results

The time dependence of the transit network together with

the proximity of the SPRC model with Shortest Path

Constraint models suggests that SPRC is a complex

problem. As a matter of fact, we may state:

Proposition 1: SPRC is NP-Hard. Even if  is fixed,

computing speed function t -> v(t) is also NP-Hard.

Sketch of the proof: SPRC can be reduced to the

Constrained Shortest Path problem [6]. If we fix , then we

can reduce resulting problem to Knapsack. ฀

Still, as we shall see now, SPRC may be simplified. Let

us suppose that we are provided with an optimal routing

strategy (, v). One easily checks that:

Proposition 2: If VEH is running along some arc e during

time T and time T + , and if e(t) is constant between T and

T + , then we may do in such a way that optimal speed v(t)

is constant on]T, T + [.

It comes that we may impose function v to be piecewise

constant, with break points which follow the arc e of  and

the break points of functions t -> e(t).

ALAIN QUILLIOT ET AL.: ALGORITHMS FOR THE SAFE MANAGEMENT OF AUTONOMOUS VEHICLES 155

Also, we may notice that in general, (, v) will achieve

exactly the risk threshold Risk_Max:

Proposition 3: If it happens, at some time t, that VEH is

running inside an arc e in such a way that v(t) ≠ V_Maxe,

then G_Risk(, v) = Risk_Max.

Sketch of Proof: We suppose the converse, and check that it

is possible to make G_Risk(, v) decrease by augmenting the

speed, and so the resulting risk, on some arc e of . ฀

As it is the case in multi-objective optimization, a natural

question arises now about a possible conversion of risk into

time, which could allow us to deal with a mono-objective

problem. When talking about risk into time conversion, we

mean a coefficient  which would tell us that adding dr to

G_Risk(, v) would be equivalent to adding .dt to

G_Risk(, v). If it were existing, coefficient  would be a

risk per time coefficient, that means a risk speed. Such a

conversion is not possible in the general case (else our

problem would be almost time-polynomial). Still, it is

possible in a local way, that means inside any given arc e 

 such that v(t) ≠ V_Maxe, and also in the stationary case

when every function t -> e(t) is constant. More precisely, if,

at some time t, we are located inside an arc e, then we define

what we call the Risk Speed rte(t) (rt as risk per time) of our

routing strategy (, v):

 rte(t) = (v(t)/V_Maxe).e(t).

Then we may state:

Proposition 4: If, at some time t, VEH is running inside an

arc e at speed v(t) ≠ V_Maxe, and if t is not a break point for

piecewise function e then the quantity rte(t) is independent

on t (but not on e). Besides, in the specific case when

functions e are constant for any arc e in , then rte(t) is

independent on t and e, as soon as constant speed ve = v(t) is

different from V_Maxe.

Sketch of the Proof: It is a matter of applying Kuhn-Tucker

local optimality conditions for constrained optimization, to

the gradient vectors of quantities G_Risk(, v) and

G_Time(, v). ฀

Remark 1: Above value rte(t), computed for t such that is

VEH is located on e at time t with v(t) ≠ V_Maxe, is

independent on t but dependent on e, as we may see through

the following example (Figure 5):

 Path  contains 2 arcs, e1 and e2, both with length 1 and

maximal speed 2. Function e2 is constant and equal to

1. Function e1 takes value 2 for 0 ≤ t ≤ 1, and a very
large value M (for instance 100) for t > 1 (see figure 5).

Risk_Max = 3/4; Function  is: u -> (u) = u2.

Fig. 5. Functions and .

 Then we see that VEH must go fast all along the arc e1,

in order to get out of e1 before this arc becomes very

risky. That means that its speed is equal to 1 on e1, and

that its risk speed is equal to ½. Next it puts the brake,

in the sense that its speed remains equal to 1 but its risk

speed decreases to ¼. It is easy to check that this

routing strategy is the best one, with G_Risk(, v) = ¾

and G_Time(, v) = 2.

D. Risk Driven Reformulation of the SPRC Model

Above results allow us to significantly simplify our SPRC

model by replacing the search for speed t -> v(t), likely to be

volatile, by the search for risk speed e -> rt*e, where is the

risk speed value which corresponds to arc e in  according to

the first part of Proposition 4. It comes that we define a risk

driven routing strategy as a pair (, rt*) where:

  is a path, that means a sequence {e1,…, en}of arcs,

which connects origin node o do destination node d;

 rt* associates, with any arc e in , related risk speed

value rt*e which is the unique value (v(t)

V_Maxe).e(t) for any t such that VEH is located inside

arc ei and v(t) ≠ V_Maxe. Notice that if v(t) = V_Maxe

then rt(t) = e(t).

Reconstructing a routing strategy (, v) from a risk

driven routing strategy (, rt*). Let us suppose that we

know value rt*e related to arc e of . Then, at any time t

when VEH is inside arc e, and which is not a break point for

function e, we have: (E1)

 v(t) = V_Maxe and dR(t)/dt = rt(t) = e(t), where R(t)

denotes the cumulative risk between 0 and t.

or

 v(t) = V_Maxe and rt*e = (v(t)/ V_Maxe).e(t) and

dR(t)/dt = rt(t) = rt*e..

Speed v(t) is obtained by solving the equation rt*e =

(v(t)/V_Maxe).e(t) and next comparing it with V_Max.

Since both v(t) and rt(t) are piecewise constant on e, we see

that we may scan the arc sequence {e1,…, en}and get,

156 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

through a simple iterative process, both time T(i) when VEH

arrives at the end-node of ei and related cumulative risk

R(T(i)). That means that the knowledge of (, rt*) allows us

to reconstruct standard routing strategy (, v*).

According to this and proposition 4, SPRC may be

rewritten as follows (we extend previous notations

G_Time(, v*) and G_Risk(, v*) by denoting by G_Time(,

rt*) and G_Risk(, rt*) respectively the time value and risk

value of a risk driven routing strategy (, rt*):

SPRC Risk Driven Reformulation: {Compute risk

driven routing strategy (, rt*) such that G_Risk(, rt*)

≤ Risk_Max and G_Time(, rt*) is the smallest possible}.

III. A FIRST BILEVEL ALGORITHM

We discuss here a bi-level heuristic algorithm [19] whose

main iterative loop works in 2 steps:

BL_RCSP Algorithm.

 Intialize some path from o to d; Not Stop;

While Not Stop do

1st step: Schedule ; (*Low level step*)

2nd step: Improve ; (*Top level step*)

 If Fail(Improve) then Stop;

Keep the best solution  ever obtained.

The Schedule step considers path  as being fixed, and

deals with the problem of computing values rt*e, e in .

Let us recall (Proposition 1) that this problem is NP-Hard.

As a matter of fact, this Schedule step will contain the most

important features of the BL_RCSP algorithm, namely those

related to reinforcement learning. We shall describe it in

section III.2. Meanwhile, we are going to briefly describe the

Improve step, designed in order to modify  and improve its

quality, and which works in a more classical way.

A. Top Level Improve Step

We suppose that some proximity threshold S_Prox has

been fixed, and that for any two nodes x, y of the transit

network G such that TIME(x, y) ≤ S_Prox, we are provided

with a collection Path(x, y) of elementary path j
, j  J(x, y)

from x to y. Construction of collections Path(x, y), x, y  X

such that TIME(x, y) ≤ S_Prox, may have been previously

achieved though some preprocess. This allows us to

introduce the following local transformation operator

Detour(, x, y, j), which acts on any path  through

parameters x, y and j: x and y are 2 nodes of , such that

TIME(x, y) ≤ S_Prox and x is located before y on ; j

belongs to J(x, y).

 Then Detour replace the restriction x,y of  from x to

y by path j
  Path(x, y).

Performing the pre-process which perform the constructions

of path collections Path(x, y), x, y  X such that TIME(x, y)

≤ S_Prox, allows us not to take care about path search when

trying to modify , and so speed the Improve step in a

significant way.

Fig. 6. Detour Operator

Improve step is going to drive operator Detour according

to some standard descent process:

Improve Step:

Not Stop1;

While Not Stop1 do

Generate 3-uple (x, y, j),

Schedule Detour(, x, y, j);

If Detour(, x, y, j) is better than  then

Stop1;

Replace  by Detour(, x, y, j)

Else Update Stop1;

What remains to be told is the way we generate

parameters (x, y, j) for the operator Detour. Once  has been

scheduled, we are provided, for any node x in the support

X() of , with:

 The time Tx, when VEH arrives in x, together with

related cumulated risk value Rx;

Then, above Generate instruction focuses on 3-uples (x, y,

j) such that:

o Ratio (Ry – Rx)/(Ty – Tx) is large with respect to

G_Risk(, rt*)/G_Time(, rt*), which suggests that

sub-path x,y is somewhat crowded;

o Path j
 is not very crowed between time Tx and time

Ty, or in other words, the sum, for the arcs e of j
, of

mean e(t) value between time Tx and time Ty is

significantly smaller than the same quantity for sub-

path x,y.

B. Low Level Schedule Step

As told before, it means the key point inside our

algorithm. Basically, it consists in a dynamic programming

procedure DP_Schedule whose main features come as

follows:

ALAIN QUILLIOT ET AL.: ALGORITHMS FOR THE SAFE MANAGEMENT OF AUTONOMOUS VEHICLES 157

 We denote by e1,…, en the arcs of current path , and

by x0, …, xn related nodes of the node support X() of

.

 So the time space of DP_Schedule comes in a natural

way as the set {0, 1,…, n} and a state (or label) at i is a

pair (T, R), where T means the time when VEH arrives

in xi, and R the cumulated risk at this time. For any i,

we shall denote as State(i) the set of states computed in

relation with i. Those states will be used in order to

move along arc ei. Clearly, initial state is (0, 0) and

final state (G_Time(, v*), G_Risk(, v*)) is going to

be the pair (T, R) in State(n) with smallest T value and

such that R ≤ Risk_Max.

 Then a decision at i comes as a value rt*e with arc e =

ei+1. We denote by DEC(i) he set of decisions which are

tried at i. Resulting transition derives from equation

(E1), which allows us to compute time value T1 and

risk value R1 when we arrive in xi+1. Clearly, decision

rt*e will be feasible only if R1 ≤ Risk_Max.

 According to this, applying Bellman principle means

eliminating from State(i+1), states (T1, R1) which are

not Pareto optimal, that means which are such that there

exists (T2, R2) in State(i+1), such that T2 ≤ T1 and R2

≤ R1, one at least of those inequalities being strict.

The Filtering Issue: A Learning through

Reinforcement Device ([3, 10, 13, 22]). As told in the

introduction, SPRC puts computing costs are at stake. Above

low level DP_Schedule procedure should run very fast, and

so State(i), as well as the set DEC(i) of tried decisions rt*e

should remain (very) small, and this in spite of the fact that

the number of potential vales rt*e may be high, and even

infinite if we suppose that we are dealing with rational

numbers. In order to handle this issue, we use the second

part of proposition 4 and the fact that, in perfect cases, rt*e

might be considered as a risk per time price, taking a same

theoretical value rt_perfect all along path . This suggests us

to do as if such a theoretical value rt_perfect were existing

and try to learn it through the Reinforcement Principle (see

[2, 17]), that means while moving along path  and

performing (possibly several times) our BL_RCSP

algorithm. More precisely:

 We fix the number M of possible decisions rt*e, and

impose a threshold State_Max on the size of any state

subset State(i). Those 2 values M and State_Max

become parameters of the BL_RCSP algorithm.

 According to this, we manage, all along the process,

two quantities rt_min and rt_max, respectively

pessimistic and optimistic estimations of ideal value

rt_perfect, and which are going to be the target of the

learning process. We do in such a way that, for any

value i during the DP process, decisions rt*e which are

going to be tried can be written rt*e = rt_min +

m.rt_max/(M-1), m = 0,…, M-1.

 Then we drive rt_min and rt_max values in an auto-

adaptative way (learning through reinforcement):

applying decisions rt*e from state subset State(i) and

filtering them through Bellman principle provides us

with a state subset State(i+1) whose size is likely to

exceed State_Max. Since our interpretation of rt_min

and rt_max values is that r-midst = (rt_min + rt_max

)/2 might be considered as the kind of theoretical risk

versus time price rt_perfect we have just been talking

above, we rank states (T, R) of State(i+1) according to

rt_midst.T + R values. Ideally, states (T, R) ordered this

way should make best states (T, R) be balanced in the

sense that the ratio R/Risk_Max should be centered

around the ratio TIME(o, xi+1)/TIME(o, d) and that the

entropy of those best states should not be too large. If,

for instance, those values are centered significantly

above this ratio, then we deduce that we are moving in

a too risky way and must make rt_min and rt_max

decrease. Conversely, if those best values are centered

above this ratio, then we are too careful. More

precisely, we perform a kind of statistical analysis of

those best values in State(i+1), and derive, from those

best states (T, R), several indicators:

o Risk_Balance: It takes values {Risky, Normal,

Careful} depending on the way the mean R/Risk_Max

value is located with respect to

 TIME(o, xi+1)/TIME(o, d).

o Entropy: It takes values {Large, Normal, Small}

depending on the scope of R/Risk_Max values.

Then Clean_Learn procedure below performs the

filtering&learning process:

Clean_Learn Procedure:

Rank states (T, R) of State(i+1) according to

rt_midst.T + R values;

Select best State_Max (T, R) according to this ranking

and compute Risk_Balance and Entropy;

If Risk_Balance = Normal then

Keep only the State_Max best states in

State(i+1);

If Entropy = Small (Large) then Enlarge

(Shorten) the interval [rt_min, rt_max] while

keeping rt_midst unchanged;

If Risk_Balance = Risky then

Split State(i+1) into 2 subsets S1 and S2 with

same size: S1 is made of the best states (S, R)

according to our ranking and S2 = S – S1;

Clean State(i+1) in order to keep the

State_Max/2 best states in both S1 and S2;

Make rt_max and rt_min decrease;

If Entropy = Small (Large) then Enlarge

(Shorten) the interval [rt_min, rt_max] while

keeping rt_midst unchanged;

158 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

If Risk_Balance = Careful then proceed the same way

as in previous case, while making rt_min and rt_max

increase.

C. Greedy Algorithm GR_RCSP

We turn above BL_RCSP algorithm into a greedy one, by

removing the top level Improve loop. That means that we

choose  as the shortest path from o to d in the TIME sense,

and apply DP_Schedule.

IV. A A* LIKE ALGORITHM

Let us first recall that well-know A* algorithm [14] is an

extension of Dijsktra algorithm for the search of a shortest

path in a graph, which was introduced in order to deal with

very large networks. Nodes of such a network are usually

defined in an implicit way, as possible configurations for the

state of a system (for instance a robot). It is typically our

case here, since we are searching a path in a risk expanded

network, whose nodes are all pairs (x, R), x beings a node of

the transit network G = (N, A) and R a risk value between 0

and Risk_Max.

As in III, we are still willing to design a fast and flexible

algorithm. But our approach is different from Section III, in

the sense that: Algorithm A*_RCSP is going to work while

simultaneously looking for a path  and a schedule rt* for

this path. Roughly, at any time during A*_RCSP process, we

are going to be provided with:

 A current value T_Curr, computed by GR_RCSP.

 An expansion list LS of state 3-uples (x, T, R), where:

o x is a node of the transit network.

o T and R are respectively the time and risk value

which were required in order to arrive in x.

o LS is ordered according to values

 V = T + TIME(x, d). (E2)

The first element in LS is called current Pivot state.

Explanation of (E2): TIME(x, d) is a lower bound

for the time that the vehicle VEH has to spend

running before achieving its journey. So V is a lower

bound for value G_Time(, rt*) in case routing

strategy (, rt*) extends current position (x, T, R).

 A list L_PIVOT, which contains all 3-uple (x, T, R)

which have formerly been used a Pivot state.

We do in such a way that:

 All elements in LS  L_PIVOT are Pareto optimal in

the sense that, for a given x, there does not exist T, R,

T1, R1 such that both (x, T, R) and (x, T1, R1) are in

LS  L_PIVOT, with T ≤ T1 and R ≤ R1. (E3)

Then Algorithm A*_RCSP removes Pivot = (x0, T0, R0)

from LS, puts it into L_Pivot, and perform the expansion

step, that is:

 For any arc e = (x0, x), with origin in x0, it generates a

set DECe
Pivot of decisions rte* (risk speeds) in the same

sense as in BL_RCSP algorithm; (DECIDE)

 For any arc e = (x0, x) and any decision rte* (risk

speed) it generates resulting state (x, T, R); Then

A*_RCSP inserts state (x, T, R) into LS and manages in

such a way that (E2) be satisfied;

 For any x such that (x0, x) is an arc of the transit

network, it filters states (x, T, R) which are currently in

LS, in order to meet requirement (E3). (FILTER)

The Filtering Issue: Learning through Reinforcement.

Once again, since we want our algorithm to run fast, we

impose a threshold M on the number of possible decisions

rte*. Besides, we impose a parameter State_Max, with the

meaning: (E4)

 For any x, the number of states (x, T, R) which are

contained into LS  L_PIVOT never exceeds parameter

Max_State.

In order to go further with this filtering issue, we must now

explain the way instructions FILTER and DECIDE work,

since we see that, as for the BL_RCSP algorithm, the key

point in this A*_RCSP algorithm lies on the way we perform

those instructions. Since we are provided with a current

solution T_Curr, we may of course apply standard

Branch/Bound filtering technique, and kill candidate state (x,

T, R) if related value V = T + TIME(x, d) ≥ T_Curr. But it is

clearly not enough in order to ensure that (E4) is satisfied.

So we proceed the same way as in the case of BL_RCSP:

 At any time during the process, we are provided with

two quantities rt_min and rt_max;

 Then we use rt_min and rt_max in order to generate

(Instruction DECIDE) decisions rt* exactly as in

BL_RCSP:

o We rank candidate states (x, T, R), resulting from

all decisions rt*e, e = (x0, x) as in III.2, while

using rt_midst = (rt_max + rt_min)/2.

o We compute the Risk_Balance and Entropy

quantities.

o Then we update values rt_min and rt_max as in

III.2, and apply the same technique in order to

ensure that, for any x, the number of states (x, T,

R) in LS  L_PIVOT does not exceed State_Max.

V. NUMERICAL EXPERIMENTS

Goal: We have been performing numerical experiments

with the purpose of getting information about the following

points:

 The ability of the different algorithms to get good

solutions under small computational costs, and the

dependence of their behavior to the size of the transit

network;

ALAIN QUILLIOT ET AL.: ALGORITHMS FOR THE SAFE MANAGEMENT OF AUTONOMOUS VEHICLES 159

 The sensitivity of those algorithms to the parameter

State_Max and M, which bounds, for every algorithm,

the numbers of possible states and decisions;

 The sensitivity of our algorithms to the structure of

the piecewise constant functions e, and on the

intensity of current traffic inside the transit network at

the time when the algorithms are applied.

In order to do it, we used the A* like algorithm, run with

large State_Max and M values as an almost exact algorithm,

which provided us with reference results.

Technical Context: Algorithms were implemented in

C++, on a computer running Windows 10 Operating system

with an IntelCore i5-6500@3.20 GHz CPU, 16 Go RAM

and Visual Studio 2017 compiler.

Instances: We generated networks (N, A) as connected

symmetric partial grids, which means grids n*m, modified

through removal of a percentage  of nodes and arcs and the

introduction of one-way arcs (we break the symmetry of the

grid). Those partial grids are summarized through their

number N of nodes and their number A of arcs. The time

value TIMEx,y of any arc (x, y) is 1, as well as related v_max

value. Function  is taken as function u -> (u) = u2.

Function e are generated by fixing a time horizon T_Max,

fixing a mean number B of break points ti
e in [0, T_Max] per

time unit, and an average value  for value (u). Then, for

any e, we randomly generate break points ti
e and values

e(ti
e), while imposing those values to belong a finite 5

values set {2, 3/2, , /2, 0}. Finally, we fix the threshold

Risk_Max value. TIMEo,d is also a parameter.

We present here results for 10 instances, whose

characteristics come as follows:

TABLE I.

CHARACTERISTICS OF THE INSTANCES

Instance N A B  Risk_Max TIMEo,d

1 22 65 1 0.2 1 6

2 18 61 2 0.6 1 7

3 19 65 3 1 1 5

4 54 159 1 0.2 2 9

5 58 182 2 0.6 2 9

6 51 175 3 1 2 8

7 88 285 1 0.2 3 12

8 92 268 2 0.6 3 11

9 83 250 2 0.6 3 10

10 86 262 3 1 3 11

Outputs: For every instance we compute:

 The Risk value R_BL, the Time value T_BL

computed by the bi-level BL_RCSP algorithm, the

number of iterations ITER of its main loop

(modification of ) and related CPU time Time_BL.

 The Risk value R_A*, the Time value T_A*

computed by the A*_RCSP algorithm, the number

Node of visited nodes and related CPU time

Time_BL.

 The Risk value R_GR, the Time value T_GR

computed by the greedy algorithm GR_RCSP,

together with related CPU time CPU_GR.

 Almost exact Risk value and Time value R_Opt,

T_Opt computed by the A*_RCSP algorithm,

performed with large State_Max and M values,

together with related CPU time CPU_Opt.

Obtained results are summarized in the following tables:

 CPU times are in seconds

TABLE 2.

REFERENCE VALUES AND GR_RCSP BEHAVIOR (STATE_MAX = 10 AND

M = 5)

Instance R_Opt T_Opt CPU_Opt R_GR T-GR CPU_GR

1 0.98 7.5 459.6 0.91 11.5 0.01

2 0.99 13.0 524.9 0.94 13.8 0.01

3 0.98 15.5 312.4 0.95 18.2 0.01

4 1.97 9.6 988.7 1.78 12.7 0.02

5 1.98 16.9 1044.2 1.92 24.9 0.02

6 1.98 18.4 857.5 1.88 24.1 0.02

7 2.98 11.0 2209.3 2.84 12.4 0.03

8 2.96 16.7 1858.0 2.81 22.7 0.03

9 2.99 18.9 1977.8 2.80 28.6 0.03

10 2.98 37.5 2033.5 2.68 54.2 0.03

TABLE 3.1.

BL_RCSP BEHAVIOR WITH STATE_MAX = 10 AND M = 5

Instance R_BL T-BL CPU_BL ITER

1 0.92 8.3 0.05 3

2 0.93 14.0 0.02 1

3 0.91 17.1 0.03 2

4 1.84 10.8 0.05 2

5 1.90 17.7 0.14 5

6 1.82 20.7 0.11 4

7 2.74 12.2 0.08 2

8 2.80 19.4 0.13 3

9 2.87 19.5 0.35 8

10 2.78 40.5 0.24 6

TABLE 3.2.

BL_RCSP BEHAVIOR WITH STATE_MAX = 50 AND M = 10

Instance R_BL T-BL CPU_BL ITER

1 0.96 8.0 0.64 3

2 0.95 13.7 0.79 3

3 0.95 16.3 0.93 4

4 1.88 10.4 0.59 2

5 1.91 17.5 1.3 4

6 1.92 19.4 0.11 5

7 2.87 11.9 2.1 4

8 2.90 18.6 1.5 4

9 2.89 19.4 2.9 6

10 2.85 39.5 3.6 7

160 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

TABLE 4.1

A*_RCSP BEHAVIOR WITH STATE_MAX = 10 AND M = 5

Instance R_A* T_A* CPU_A* Node

1 0.95 7.9 0.15 11

2 0.92 13.8 0.13 10

3 0.97 15.9 0.14 10

4 1.80 10.9 0.35 20

5 1.88 17.7 0.39 18

6 1.86 20.0 0.45 19

7 2.75 11.9 0.95 25

8 2.66 18.0 1.0 28

9 2.80 19.5 1.1 30

10 2.84 38.6 1.2 28

TABLE 4.2

A*_RCSP BEHAVIOR WITH STATE_MAX = 50 AND M = 10

Instance R_A* T_A* CPU_A* Node

1 0.98 7.7 1.2 9

2 0.96 13.6 1.3 10

3 0.98 15.7 1.5 10

4 1.87 10.5 3.2 19

5 1.90 17.5 4.2 17

6 1.93 19.2 4.0 17

7 2.85 11.6 9.8 25

8 2.77 17.6 10.5 28

9 2.88 19.2 10.3 29

10 2.87 38.4 9.9 26

Comments: Results obtained through GR_RCSP are

rather erratic, because this algorithm relies on the current

state of shortest path  from o to d, which can be bad at the

time when we launch the algorithm. A*_RCSP tends

performs better than BL_RCSP as for the accuracy, but is

more time consuming. Depending on the cases, results may

be significantly impacted by parameters values State_Max

and M. Finally, we also notice that obtaining almost exact

optimal values is rather time costly, even on small instances.

In order to improve it, we should find a way to provide a

criterion which could identify, at any times, whether a

decision rt*e has to be tried or not. Notice also that Risk_Opt

is almost never equal to Risk_Max, in spite of proposition 2,

because of the bias due to the discretization of the rt*e.

VI. CONCLUSION

We have been dealing here with a shortest path problem

with risk constraints, which we handled under the prospect of

fast, reactive and interactive computational requirements.

But, the true practical problem is supposed to be a pick up

and delivery one, simultaneously involving several tasks and

vehicles. It comes that a future challenge is to adapt the

algorithms which we just described here to such a more

general PDP context. Also, there exist a demand from

industrial players to use those algorithms as a tool for

strategic decision, in order to estimate convenient size of the

AGV fleet, together with the number of autonomous vehicles

inside this fleet. We plan addressing those issues in the next

months.

ACKNOWLEDGMENT

Present work was funded by French ANR: National

Agency for Research, and Labex IMOBS3, as well as by

Region AURA: Auvergne Rhône Alpes.

REFERENCES

[1] Amazon.com, inc. amazon prime air. [online]., Available

:http://www.amazon.com/primeair (2013).

[2] C.Artigues, E.Hébrard, A.Quilliot, H.Toussaint: “Models and

algorithms for natural disaster evacuation problems”. Proceedings of

the 2019 FEDCSIS WCO Conference, p 143-146, (2019). DOI:
http://dx.doi.org/10.15439/978-83-952357-8-8

[3] B. Bakker, S. Whiteson, L. J. Kester, F. Groen: “Traffic light control
by multi-agent reinforcement learning systems”; In Interactive

Collaborative Information Systems, (2010). DOI: 10.1007/978-3-

642-11688-9_18

[4] B. Berbeglia, J-F. Cordeau, J-F., I. Gribkovskaïa, G. Laporte: “Static
pick up and delivery problems : a classification scheme and survey”.
TOP: An Official Journal of the Spanish Society of Statistics and

Operations Research 15, p 1-31, (2007). DOI: 10.1007/s11750-007-

0009-0

[5] L. Chen, C. Englund: “Cooperative intersection management: a
survey”; IEEE Transactions on Intelligent Transportation Systems

17-2, p 570-586, (2016). DOI: 10.1109/TITS.2015.2471812

[6] D. Duque, L.Lozano, A.L.Medaglia. An exact method for the

biobjective shortest path problemfor large-scale road network. EJOR

242, p 788-795, (2015). http://dx.doi.org/10.1016/j.ejor.2014.11.003

[7] S.Fidanova, O.Roeva, M.Ganzha: “ Ant colony optimization

algorithm for fuzzy transport modelling “. Proceedings of the 2020

FEDCSIS WCO Conference, p 237-240, (2020). DOI:

http://dx.doi.org/10.15439/978-83-955416-7-4

[8] A. Franceschetti, E. Demir, D. Honhon, T. Van Woensel, G. Laporte,

and M. Stobbe. “A metaheuristic for the time dependent pollution-

routing problem”; European Journal of Operational Research, 259

(3): 972 – 991, (2017). DOI: 10.1016/j.ejor.2016.11.026

[9] S. Bsaybes, A.Quilliot, A.Wagler: “Fleet management for

autonomous vehicles using multicommodity coupled flows in time-

expanded networks”; 17th International Symposium on Experimental

Algorithms (SEA 2018) (LIPIcs) 103, (2018). DOI:

10.4230/LIPIcs.SEA.2018.25

[10] M.Krzyszton: “Adapative supervison: method of reinforcement

learning fault elimination by application of supervised learning”.

Proceedings of the 2018 FEDCSIS AI Conference, p 139-149,

(2018). DOI: http://dx.doi.org/10.15439/978-83-949419-5-6

[11] J. Kumar, V. V. Ranga: “Multi-robot coordination analysis,

taxonomy, challenge and future scope”; Journal of Intelligent and

Robotic Systems, 102:10, (2021). https://doi.org/10.1007/s10846-

021-01378-2

[12] T. Le-Anh, M. B. De Koster:: “A review of design and control of
automated guided vehicle systems” European Journal of Operational

Research, 171, 1-23, (2006).

https://doi.org/10.1016/j.ejor.2005.01.036

[13] Y.Li, E.Fadda, D.Manerba, R.Tadei, O.Terzo: “ Reinforcement

learning algorithms for online single machine scheduling“.

Proceedings of the 2020 FEDCSIS WCO Conference, p 277-283,

(2020). DOI: http://dx.doi.org/10.15439/978-83-949419-5-6

[14] Nilsson, J.: Artificial Intelligence; SpringerY, (1982). ISBN 978-3-

540-11340-9

[15] Philippe, C., Adouane, L., Tsourdos, A., Shin, H.S., Thuilot, B. :

“Probability collective algorithm applied to decentralized
coordination of autonomous vehicles”; 2019 IEEE Intelligent

Vehicles Symp., 1928–34. IEEE, Paris (2019).

DOI:10.1109/IVS.2019.8813827

[16] V. Pimenta, A. Quilliot, H. Toussaint, D. Vigo: “Models and
algorithms for reliability oriented DARP with autonomous vehicles”;

ALAIN QUILLIOT ET AL.: ALGORITHMS FOR THE SAFE MANAGEMENT OF AUTONOMOUS VEHICLES 161

European Journ. of Operat. Res., 257, 2, p 601-613, (2016). doi:

10.1016/j.ejor.2016.07.037.

[17] Y. Rizk, M. Awad, E. Tunstel: “Cooperative heterogenous mutlti-

robot systems: a survey”; ACM Computing Surveys 29, (2019).

https://doi.org/10.1145/3303848

[18] C. Ryan, F. Murphy, F., Mullins, M.: “Spatial risk modelling of

behavioural hotspots: Risk aware paths planning for autonomous

vehicles”; Transportation Research A 134, p 152-163 (2020).

[19] DOI: 10.1016/j.tra.2020.01.024

[20] K.Stoilova, T.Stoilov: “Bi-level optimization application for urban

traffic management”. Proceedings of the 2020 FEDCSIS WCO

Conference, p 327-336, (2020). DOI: http://dx.doi.org/10.15439/978-

83-949419-5-6

[21] K. C. Vivaldini, G. Tamashiro, J. Martins Junior, M. Becker:

“Communication infrastructure in the centralized management system

for intelligent warehouses”. In: Neto, P., Moreira, A.P., et al. (eds.)

WRSM 2013. CCIS, vol. 371, pp. 127–136. Springer, (2013)

[22] I. F. Vis: “Survey of research in the design and control of AGV

systems”. European Journal of Operations Research 170:677–709,

(2016). DOI: 10.1016/j.ejor.2004.09.020

[23] J. Wojtuziak, T. Warden, O. Herzog: “Machine learning in agent

based stochastic simulation: Inferential theory and evaluation in

transportation logistics”; Computer and Mathematics with

Applications 64, p 3658-3665, (2012).

[24] https://doi.org/10.1016/j.camwa.2012.01.079

[25] M. Zhang, R. Batta, R. Nagi R (2008): “Modeling of workflow

congestion and optimization of flow routing in a

manufacturing/warehouse facility”. Management Sciences 55:267–

280, (2008). DOI: 10.1287/mnsc.1080.0916

162 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

