
 Abstract—We deal here with a fleet of autonomous vehicles

which  is  required  to  perform  internal  logistics  tasks  inside

some protected area. This fleet is supposed to be ruled by a hi-

erarchical supervision architecture, which, at the top level dis-

tributes and schedules  Pick up and Delivery tasks, and, at the

lowest level, ensures safety at the crossroads and controls the

trajectories. We focus here on the top level, while introducing a

time dependent estimation of the risk induced by the traversal

of any arc at a given time. We set a model, state some struc-

tural results, and design, in order to route and schedule the ve-

hicles according to a well-fitted compromise between speed and

risk, a bi-level algorithm and a A* algorithm which both relies

on a reinforcement learning scheme.

I. INTRODUCTION

NTELLIGENT vehicles, provided with an ability to move

with some level of autonomy, are the new hot spot in Mo-

bility [1]. Still, determining what can be exactly done with

new generations of autonomous or  semi-autonomous vehi-

cles able to follow their own way without being physically

tied to any kind of track (cable, rail, …) remains an issue.

Most people are doubtful about the prospect of seeing such

vehicles moving without any external control inside crowded

urban areas.

I

Fig.  1 An Autonomous Vehicle

Instead they foresee that the use of those vehicles is likely

to be restricted to protected areas and professional purposes:

moving  free  access  vehicles  inside  large  parking  areas,

performing  rural  or  urban  logistics  or  replacing  too

 This work was supported by ANR, Labex IMOBS3

constrained  AGV   (Autonomous  Guided  Vehicles)  inside

warehouses or industrial structures (see [1]). 

This point of view raises the general challenge of moni-

toring a fleet of such a vehicles, required to perform internal

logistics  tasks  while  safely  interacting  with  workers,  ma-

chines  and  standard  vehicles.  Related decisional  problems

are at the intersection of Robotics and Operations Research.

When  it  comes  to  the  management  of  such  systems,

current  trend  is  to  the  implementation  of  a  hierarchical

supervision architecture, relying on 2 or 3 levels:  

 The first  level,  or  embedded  level,  is  defined by the

monitoring and  sensing devices  which are embedded

inside  the  vehicles,  compute  the  trajectories  in  real

time and adapt them to the possible presence of obsta-

cles: currently, most effort from the robotics commu-

nity remains devoted to this embedded level (see [9,

12,  13,  17]),  which  mostly  involves  optimal  control

and artificial perception techniques;

 The second one, or midle one, is in charge of the super-

vision of small tricky areas, like for instance crossroads

or loading/unloading spots (see Figure 2). 

Fig.  2 A Hierarchical Supervision Architecture

Working  as  a  mediator  agent,  it  sends  signals  and

instructions  to  the  vehicles  in  order  to  regulate  their

transit  and  to  avoid  them  to  collide  when  they  get

through those areas. This level have been motivating a
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rise in interest for the last years (see [5, 11, 15]), and 

sometimes a confusion with the embedded level:  in 

many cases, hypothesis is set that all vehicles involved 

are run by the same embedded software and exchange 

perfect information; this become equivalent to 

supposing the existence of a local external mediator.    

 The third one, or global one, consists in tactical 

dynamic planning and routing of the fleet, and the 

distribution of Pick up and Delivery (PDP) tasks 

among the vehicles  (see [4, 7, 12, 21]).  

 

Depending on the complexity and the size of the system, 

the second level may merge with either the first one or the 

last one. In any case, a true challenge is about the 

synchronization of those monitoring levels, which 

correspond to distinct time scales and purposes, and the 

design of communication protocols which will allow them to 

interact.   

Our goal here is to deal with the Global Monitoring 

level. By some aspects, related problems may be viewed as 

cases of well-known Pick up and Delivery problem (see [4]), 

since in most cases a task will consist for a vehicle in moving 

to some place, performing some loading or unloading 

transaction and keep on. But two specific features are going 

to bring its specificity to this PDP variant: 

 The time horizon of autonomous or semi-autonomous 

vehicles is usually somewhat short: decisions have to 

be taken fast, in a dynamic context, and decisional 

processes must take into account the communication 

infrastructure [20] and the way the global supervisor 

can be provided, at any time, with a representation of 

the current state of the system and its short term 

evolution; 

 As soon as autonomous or semi-autonomous vehicles 

are involved, safety is at stake (see [2, 16, 17, 18]). The 

global supervisor must compute and schedule routes in 

such a way that not only tasks are going to be 

performed fast (standard industrial efficiency) but also 

that local and embedded supervisors will perform their 

job more easily. In other words, risk minimization 

should be a criterion for a good schedule.  

A consequence is that performing the top level 

supervision of a fleet of autonomous vehicles requires 

disposing at any time of an accurate representation of the 

current state of the system and its short term evolution. This 

representation should enable us able to quantify the risk 

induced by an additional vehicle, which enters into the 

transit network and is asked to follow a given trajectory. We 

are not going to directly address this issue, which is complex 

(see [18, 23]). Instead, we are going to suppose that, at the 

time when we are trying to schedule this vehicle, we are 

provided with a procedure which, to any arc (x, y) of the 

transit network and any time value t, computes an estimation 

of the risk resulting from the presence of our vehicle on arc e 

at time t. Then our goal becomes to compute and schedule 

the route  of our vehicle, in such a way that its riding time 

is minimized and that induced risk estimation does not 

exceed some threshold Risk_Max. For the sake of simplicity, 

we shall limit ourselves to a one task tour, which means that 

 will be constrained by its starting point o and its 

destination point d. Described this way, our problem might 

be view as the search for a constrained shortest path [7].  

But the fact that both risk and arc traversal times are time 

dependent makes the problem significantly more difficult 

(see [7]). By the same way, the on line feature of a system 

such that an autonomous vehicle fleet keeps us from relying 

on heavy mathematic machinery like MILP models or time 

expanded networks [9], and impose us to design ad hoc fast 

heuristics.  

According to this purpose, we propose here 2 algorithms: 

The first one  is  a bi-level heuristic one, whose structure 

may be compared to the structure of Split algorithms which 

are used in Route First Cluster Second algorithms for 

Vehicle Routing problems. This algorithm iteratively acts on 

the topology of the route  and next schedule the vehicle 

along this route according to a filtered dynamic 

programming procedure. The second one is a A* tree search 

algorithm [14], which explores a risk expanded network.   

Both algorithms are designed in order to induce small 

computing costs and both perform a kind of auto-adaptative 

reinforcement learning scheme [3, 10, 13, 22], which aim at 

estimating a good conversion ratio time versus risk.   

So the paper is organized as follows: in Section II we 

formally describe our model and state some structural 

results. In Section III we describe the bilevel local search 

heuristic [19], while in Section IV we describe the A* like 

algorithm.  Section V is devoted to numerical experiments. 

II. THE MODEL 

A. Transit Network and Risk Function 

Transit Network and Risk Function. We suppose that 

our fleet of vehicles moves inside a simple planar transit 

network G = (N, A), N denoting the nodes of G, and A its 

arcs, likely to represent for instance a warehouse (see figure 

3 below).  

 

Fig.  3. A Warehouse like Transit Network.   
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Every arc e = (x, y) is provided with a maximal speed 

V_Maxe and a length De. We denote by TIME the shortest 

path distance induced by shortest traversal time values 

De/V_Maxe. At the time t = 0 when the global supervisor of 

the fleet needs to take a decision about target vehicle VEH, 

he knows about routes followed by the other vehicles and the 

tasks they are going to perform. So he is provided, for any 

arc e = (x, y) and any future instant t > 0, with an estimation 

of the number of vehicles and obstacles which are going to 

be located in e at time t. This allows him to derive a risk 

estimation e(t) whose meaning is: 

 For any small value dt, e(t).dt is the Expected 

Damage between time t and time t+dt in case VEH 

moves at maximal speed V_Maxe along e during this 

period. 

Since we practically derive [18] any function e from a 

finite (small) set of possible activity configurations related to 

arc e, we suppose that this function, which translates those 

configurations into risk, is piecewise linear (see figure 4). 

We call break points of e(t) the values t when the value of 

e(t) changes.  

 

Fig.  4. A Piecewise Function .   

 

Then we assume that, if VEH traverses arc e during some 

interval [t, t+ dt] at speed v ≤ V_Maxe, then related Expected 

Damage is given by a formula:  

 Riske(v, t) = (v/V_Maxe).e(t).dt, where  is a convex 

increasing function with values in [0, 1] and such that 

for any value u, (u) is significantly smaller than u.  

Those condition are imposed in order to confirm the 

intuition which tells that that the slower the vehicle 

moves, the smaller is resulting risk. In our experiments, 

we shall use function (u) = u2. 

 It comes that if vehicle VEH moves across arc e between 

time T and time T + , according to speed function t -> v(t), 

then related Expected Damage is:  

[T, T+  ] (v(t)/V_Maxe).e(t) dt. 

B. Routing Strategies and SPRC Model 

 Let us suppose now that origin o and destination d are 

given, as nodes of the transit network G = (N, A). A routing 

strategy for our vehicle, is going to be a pair (, v), where  

is a path in the network G, and v is a speed function, which, 

to any time value t ≥ 0, makes corresponds the speed v(t) of 

the vehicle. Clearly, if at time t, VEH in located on arc e  , 

then v(t)  must not exceed V_Maxe.  

Path  may be viewed in a standard way as a sequence e1, 

…, en of arcs of G. If we set T(0)= 0 and denote by T(i) the 

time when VEH arrives to the end-node of ei, then values T(i) 

are completely determined speed function t -> v(t). Then we 

set: 

 G_Time(, v) = T(n) =  global duration of the 

routing strategy (, v);   

 G_Risk(, v) =  i  [T(i-1), T(i)] (v(t)/ V_Maxe).e(t) dt 

= global risk of the routing strategy (, v). 

 

The SPRC: Shortest Path Under Risk Constraint 

Model: Then our purpose becomes in a natural way to make 

vehicle VEH move from o to d while achieving small 

G_Time(, v) and G_Risk(, v) values. This looks a kind of 

bi-objective formulation. As a matter of fact, risk and time 

play very different roles inside a real industrial system, and 

so the risk is usually managed as a constraint: some threshold 

Risk_Max is given and the trajectory (, v) of vehicle VEH is 

required to be such that  resulting risk G_Risk(, v) does not 

exceed threshold Risk_Max. It comes that our SPRC: 

Shortest Path Under Risk Constraint model comes in a 

natural way as follows: 

 

SPRC: Shortest Path Under Risk Constraint:{Given the 

threshold Risk_Max, compute a routing strategy (, v) 

such that G_Risk(, v) ≤ Risk_Max and G_Time(, v) is 

the smallest possible} 

C. Structural Results 

The time dependence of the transit network together with 

the proximity of the SPRC model with Shortest Path 

Constraint models suggests that SPRC is a complex 

problem. As a matter of fact, we may state:    

 

Proposition 1: SPRC is NP-Hard. Even if  is fixed, 

computing speed function t -> v(t) is also NP-Hard. 

 

Sketch of the proof: SPRC can be reduced to the 

Constrained Shortest Path problem [6]. If we fix , then we 

can reduce resulting problem to Knapsack. ฀ 

 

Still, as we shall see now, SPRC may be simplified. Let 

us suppose that we are provided with an optimal routing 

strategy (, v). One easily checks that: 

 

Proposition 2:  If VEH is running along some arc e during 

time T and time T + , and if e(t) is constant between T and 

T + , then we may do in such a way that optimal speed v(t) 

is constant on ]T, T + [.  

 

It comes that we may impose function v to be piecewise 

constant, with break points which follow the arc e of  and 

the break points of functions t -> e(t).    
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Also, we may notice that in general, (, v) will achieve 

exactly the risk threshold Risk_Max: 

 

Proposition 3: If it happens, at some time t, that VEH is 

running inside an arc e in such a way that v(t) ≠ V_Maxe, 

then G_Risk(, v) = Risk_Max. 

 

Sketch of Proof: We suppose the converse, and check that it 

is possible to make G_Risk(, v) decrease by augmenting the 

speed, and so the resulting risk, on some arc e of . ฀ 

 

As it is the case in multi-objective optimization, a natural 

question arises now about a possible conversion of risk into 

time, which could allow us to deal with a mono-objective 

problem. When talking about risk into time conversion, we 

mean a coefficient  which would tell us that adding dr to 

G_Risk(, v) would be equivalent to adding .dt to 

G_Risk(, v).  If it were existing, coefficient  would be a 

risk per time coefficient, that means a risk speed.  Such a 

conversion is not possible in the general case (else our 

problem would be almost time-polynomial). Still, it is 

possible in a local way, that means inside any given arc e  

 such that v(t) ≠ V_Maxe, and also in the stationary case 

when every function t -> e(t) is constant. More precisely, if, 

at some time t, we are located inside an arc e, then we define 

what we call the Risk Speed rte(t) (rt as risk per time) of our 

routing strategy (, v):  

 rte(t) = (v(t)/V_Maxe).e(t). 

Then we may state: 

 

Proposition 4:  If, at some time t, VEH is running inside an 

arc e at speed v(t) ≠ V_Maxe, and if t is not a break point for 

piecewise function e then the quantity rte(t) is independent 

on t (but not on e). Besides, in the specific case when 

functions e are constant for any arc e in , then rte(t) is 

independent on t and e, as soon as constant speed ve = v(t) is 

different from V_Maxe.   

 

Sketch of the Proof: It is a matter of applying Kuhn-Tucker 

local optimality conditions for constrained optimization, to 

the gradient vectors of quantities G_Risk(, v) and 

G_Time(, v). ฀   

 

Remark 1: Above value rte(t), computed for t such that  is 

VEH is located on e at time t with v(t) ≠ V_Maxe, is 

independent on t but dependent on e, as we may see through 

the following example (Figure 5): 

 Path  contains 2 arcs, e1 and e2, both with length 1 and 

maximal speed 2. Function e2 is constant and equal to 

1. Function e1 takes value 2 for 0 ≤ t ≤ 1, and a very 
large value M (for instance 100) for t > 1 (see figure 5). 

Risk_Max = 3/4; Function  is: u -> (u) = u2. 

 

 

Fig.  5. Functions and .   

 

 Then we see that VEH must go fast all along the arc e1, 

in order to get out of e1 before this arc becomes very 

risky. That means that its speed is equal to 1 on e1, and 

that its risk speed is equal to ½. Next it puts the brake, 

in the sense that its speed remains equal to 1 but its risk 

speed decreases to ¼. It is easy to check that this 

routing strategy is the best one, with  G_Risk(, v) = ¾ 

and G_Time(, v) = 2. 

D. Risk Driven Reformulation of the SPRC Model 

Above results allow us to significantly simplify our SPRC 

model by replacing the search for speed t -> v(t), likely to be 

volatile, by the search for risk speed e -> rt*e, where is the 

risk speed value which corresponds to arc e in  according to 

the first part of Proposition 4. It comes that we define a risk 

driven routing strategy as a pair (, rt*) where: 

  is a path, that means a sequence {e1,…, en}of arcs, 

which connects origin node o do destination node d; 

 rt* associates, with any arc e in , related risk speed 

value rt*e which is the unique value (v(t) 

V_Maxe).e(t) for any t such that VEH is located inside 

arc ei and v(t) ≠ V_Maxe.  Notice that if v(t) = V_Maxe 

then rt(t) = e(t). 

 

Reconstructing a routing strategy (, v) from a risk 

driven routing strategy (, rt*). Let us suppose that we 

know value rt*e related to arc e of . Then, at any time t 

when VEH is inside arc e, and which is not a break point for 

function e, we have:              (E1) 

 v(t) = V_Maxe and dR(t)/dt = rt(t) = e(t), where R(t) 

denotes the cumulative risk between 0 and t.  

or  

 v(t) = V_Maxe  and  rt*e = (v(t)/ V_Maxe ).e(t) and 

dR(t)/dt = rt(t) = rt*e.. 

Speed v(t) is obtained by solving the equation rt*e = 

(v(t)/V_Maxe).e(t) and next comparing it with V_Max. 

Since both v(t) and rt(t) are piecewise constant on e, we see 

that we may scan the arc sequence {e1,…, en}and get, 
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through a simple iterative process, both time T(i) when VEH 

arrives at the end-node of ei and related cumulative risk 

R(T(i)). That means that the knowledge of (, rt*) allows us 

to reconstruct standard routing strategy (, v*). 

 

According to this and proposition 4, SPRC may be 

rewritten as follows (we extend previous notations 

G_Time(, v*) and G_Risk(, v*) by denoting by G_Time(, 

rt*) and G_Risk(, rt*) respectively the time value and risk 

value of a risk driven routing strategy (, rt*): 

 
SPRC Risk Driven Reformulation: {Compute risk 

driven routing strategy (, rt*) such that G_Risk(, rt*) 

≤ Risk_Max and G_Time(, rt*) is the smallest possible}. 

III. A FIRST BILEVEL ALGORITHM 

We discuss here a bi-level heuristic algorithm [19] whose 

main iterative loop works in 2 steps: 

 

BL_RCSP Algorithm. 

 Intialize some path from o to d; Not Stop; 

While Not Stop do 

1st step: Schedule ;  (*Low level step*) 

2nd step: Improve ;  (*Top level step*) 

     If Fail(Improve) then Stop; 

Keep the best solution  ever obtained.  

 

The Schedule step considers path  as being fixed, and 

deals with the problem of computing values rt*e, e in .    

Let us recall (Proposition 1) that this problem is NP-Hard. 

As a matter of fact, this Schedule step will contain the most 

important features of the BL_RCSP algorithm, namely those 

related to reinforcement learning. We shall describe it in 

section III.2. Meanwhile, we are going to briefly describe the 

Improve step, designed in order to modify  and improve its 

quality, and which works in a more classical way. 

A. Top Level Improve Step 

We suppose that some proximity threshold S_Prox has 

been fixed, and that for any two nodes x, y of the transit 

network G such that TIME(x, y) ≤ S_Prox, we are provided 

with a collection Path(x, y) of elementary path j
, j  J(x, y) 

from x to y. Construction of collections Path(x, y), x, y  X 

such that TIME(x, y) ≤ S_Prox, may have been previously 

achieved though some preprocess. This allows us to 

introduce the following local transformation operator 

Detour(, x, y, j), which acts on any path  through 

parameters x, y and j: x and y are 2 nodes of , such that 

TIME(x, y) ≤ S_Prox and x is located before y on ;  j 

belongs to J(x, y). 

 Then Detour replace the restriction x,y of  from x to 

y  by  path j
   Path(x, y). 

Performing the pre-process which perform the constructions 

of path collections Path(x, y), x, y  X such that TIME(x, y) 

≤ S_Prox, allows us not to take care about path search when 

trying to modify , and so speed the Improve step in a 

significant way.  

 

 
Fig.  6. Detour Operator 

 

Improve step is going to drive operator Detour according 

to some standard descent process:  

 

Improve Step:  

Not Stop1;  

While Not Stop1 do 

Generate 3-uple (x, y, j), 

Schedule Detour(, x, y, j); 

If Detour(, x, y, j) is better than  then 

Stop1;  

Replace  by Detour(, x, y, j)  

Else Update Stop1;   

 

What remains to be told is the way we generate 

parameters (x, y, j) for the operator Detour. Once  has been 

scheduled, we are provided, for any node x in the support 

X() of , with: 

 The time Tx, when VEH arrives in x, together with 

related cumulated risk value Rx; 

Then, above Generate instruction focuses on 3-uples (x, y, 

j) such that: 

o Ratio (Ry – Rx)/(Ty – Tx) is large with respect to 

G_Risk(, rt*)/G_Time(, rt*), which suggests that 

sub-path x,y is somewhat crowded; 

o Path j
  is not very crowed between time Tx and time 

Ty, or in other words, the sum, for the arcs e of  j
, of 

mean e(t) value between time Tx and time Ty is 

significantly smaller than the same quantity for sub-

path x,y. 

B. Low Level Schedule Step 

As told before, it means the key point inside our 

algorithm. Basically, it consists in a dynamic programming 

procedure DP_Schedule whose main features come as 

follows: 
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 We denote by e1,…, en the arcs of current path , and 

by x0, …, xn related nodes of the node support X() of 

. 

 So the time space of DP_Schedule comes in a natural 

way as the set {0, 1,…, n} and a state (or label) at i is a 

pair (T, R), where T means the time when VEH arrives 

in xi, and R the cumulated risk at this time. For any i, 

we shall denote as State(i) the set of states computed in 

relation with i. Those states will be used in order to 

move along arc ei. Clearly, initial state is (0, 0) and 

final state (G_Time(, v*), G_Risk(, v*)) is going to 

be the pair (T, R) in State(n) with smallest T value and 

such that R ≤ Risk_Max. 

 Then a decision at i comes as a value rt*e with arc e = 

ei+1. We denote by DEC(i) he set of decisions which are 

tried at i. Resulting transition derives from equation 

(E1), which allows us to compute time value T1 and 

risk value R1 when we arrive in xi+1. Clearly, decision 

rt*e will be feasible only if R1 ≤ Risk_Max. 

 According to this, applying Bellman principle means 

eliminating from State(i+1), states (T1, R1) which are 

not Pareto optimal, that means which are such that there 

exists (T2, R2) in State(i+1), such that T2 ≤ T1 and R2 

≤ R1, one at least of those inequalities being strict. 

 

The Filtering Issue: A Learning through 

Reinforcement Device ([3, 10, 13, 22]). As told in the 

introduction, SPRC puts computing costs are at stake. Above 

low level DP_Schedule procedure should run very fast, and 

so State(i), as well as the set DEC(i) of tried decisions rt*e 

should remain (very) small, and this in spite of the fact that 

the number of potential vales rt*e may be high, and even 

infinite if we suppose that we are dealing with rational 

numbers. In order to handle this issue, we use the second 

part of proposition 4 and the fact that, in perfect cases, rt*e 

might be considered as a risk per time price, taking a same 

theoretical value rt_perfect all along path . This suggests us 

to do as if such a theoretical value rt_perfect were existing 

and try to learn it through the Reinforcement Principle (see 

[2, 17]), that means while moving along path  and 

performing (possibly several times) our BL_RCSP 

algorithm. More precisely: 

 We fix the number M of possible decisions rt*e, and 

impose a threshold State_Max on the size of any state 

subset State(i). Those 2 values M and State_Max 

become parameters of the BL_RCSP algorithm. 

 According to this, we manage, all along the process, 

two quantities rt_min and rt_max, respectively 

pessimistic and optimistic estimations of ideal value 

rt_perfect, and which are going to be the target of the 

learning process. We do in such a way that, for any 

value i during the DP process, decisions rt*e which are 

going to be tried can be written rt*e = rt_min + 

m.rt_max/(M-1), m = 0,…, M-1. 

 Then we drive rt_min and rt_max values in an auto-

adaptative way (learning through reinforcement): 

applying decisions rt*e from state subset State(i) and 

filtering them through Bellman principle provides us 

with a state subset State(i+1) whose size is likely to 

exceed State_Max. Since our interpretation of rt_min 

and rt_max values is that r-midst = (rt_min + rt_max 

)/2 might be considered as the kind of theoretical risk 

versus time price rt_perfect we have just been talking 

above, we rank states (T, R) of State(i+1) according to 

rt_midst.T + R values. Ideally, states (T, R) ordered this 

way should make best states (T, R) be balanced in the 

sense that the ratio R/Risk_Max should be centered 

around the ratio TIME(o, xi+1)/TIME(o, d) and that the 

entropy of those best states should not be too large. If, 

for instance, those values are centered significantly 

above this ratio, then we deduce that we are moving in 

a too risky way and must make rt_min and rt_max 

decrease. Conversely, if those best values are centered 

above this ratio, then we are too careful. More 

precisely, we perform a kind of statistical  analysis of 

those best values in State(i+1), and derive, from those 

best states (T, R), several indicators:  

o Risk_Balance: It takes values {Risky, Normal, 

Careful} depending on the way the mean R/Risk_Max 

value is located with respect to  

         TIME(o, xi+1)/TIME(o, d). 

o Entropy: It takes values {Large, Normal, Small} 

depending on the scope of R/Risk_Max values. 

Then Clean_Learn procedure below performs the 

filtering&learning process:  

 

Clean_Learn Procedure: 

Rank states (T, R) of State(i+1) according to 

rt_midst.T + R values; 

Select best State_Max (T, R) according to this ranking 

and compute Risk_Balance and Entropy; 

If Risk_Balance = Normal then  

Keep only the State_Max best states in 

State(i+1); 

If Entropy =  Small (Large) then Enlarge 

(Shorten) the interval [rt_min, rt_max] while 

keeping rt_midst unchanged;  

If Risk_Balance = Risky then  

Split State(i+1) into 2 subsets S1 and S2 with 

same size: S1 is made of the best states (S, R) 

according to our ranking and S2 = S – S1;  

Clean State(i+1) in order to keep the 

State_Max/2 best states in both S1 and S2; 

Make rt_max and rt_min decrease; 

If Entropy =  Small (Large) then Enlarge 

(Shorten) the interval [rt_min, rt_max] while 

keeping rt_midst unchanged;  
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If Risk_Balance = Careful then proceed the same way 

as in previous case, while making rt_min and rt_max 

increase. 

C. Greedy Algorithm GR_RCSP 

We turn above BL_RCSP algorithm into a greedy one, by 

removing the top level Improve loop. That means that we 

choose  as the shortest path from o to d in the TIME sense, 

and apply DP_Schedule. 

IV. A A* LIKE ALGORITHM  

Let us first recall that well-know A* algorithm [14] is an 

extension of Dijsktra algorithm for the search of a shortest 

path in a graph, which was introduced in order to deal with 

very large networks. Nodes of such a network are usually 

defined in an implicit way, as possible configurations for the 

state of a system (for instance a robot). It is typically our 

case here, since we are searching a path in a risk expanded 

network, whose nodes are all pairs (x, R), x beings a node of 

the transit network G = (N, A) and R a risk value between 0 

and Risk_Max.  

 

As in III, we are still willing to design a fast and flexible 

algorithm. But our approach is different from Section III, in 

the sense that: Algorithm A*_RCSP is going to work while 

simultaneously looking for a path  and a schedule rt* for 

this path. Roughly, at any time during A*_RCSP process, we 

are going to be provided with: 

 A current value T_Curr, computed by GR_RCSP. 

 An expansion list LS of state 3-uples (x, T, R), where: 

o x is a node of the transit network. 

o T and R are respectively the time and risk value 

which were required in order to arrive in x. 

o LS is ordered according to values  

    V =  T + TIME(x, d).       (E2) 

The first element in LS is called current Pivot state. 

Explanation of (E2):  TIME(x, d) is a lower bound 

for the time that the vehicle VEH has to spend 

running before achieving its journey. So V is a lower 

bound for value G_Time(, rt*) in case routing 

strategy (, rt*) extends current position (x, T, R). 

 A list L_PIVOT, which contains all 3-uple (x, T, R) 

which have formerly been used a Pivot state.  

We do in such a way that: 

 All elements in LS  L_PIVOT are Pareto optimal in 

the sense that, for a given x, there does not exist T, R, 

T1, R1 such that both (x, T, R) and (x, T1, R1) are in 

LS  L_PIVOT, with T ≤ T1 and R ≤ R1.   (E3) 

          

Then Algorithm A*_RCSP removes Pivot = (x0, T0, R0) 

from LS, puts it into L_Pivot, and perform the expansion 

step, that is: 

 For any arc e = (x0, x), with origin in x0, it generates a 

set DECe
Pivot of decisions rte* (risk speeds) in the same 

sense as in BL_RCSP algorithm;   (DECIDE) 

 For any arc e = (x0, x) and any decision rte*  (risk 

speed) it generates resulting state (x, T, R); Then 

A*_RCSP inserts state (x, T, R) into LS and manages in 

such a way that (E2) be satisfied; 

 For any x such that (x0, x) is an arc of the transit 

network, it filters states (x, T, R) which are currently in 

LS, in order to meet requirement (E3).   (FILTER) 

 

The Filtering Issue: Learning through Reinforcement. 

Once again, since we want our algorithm to run fast, we 

impose a threshold M on the number of possible decisions 

rte*. Besides, we impose a parameter State_Max, with the 

meaning:                 (E4) 

 For any x, the number of states (x, T, R) which are 

contained into LS  L_PIVOT never exceeds parameter 

Max_State.    

In order to go further with this filtering issue, we must now 

explain the way instructions FILTER and DECIDE work, 

since we see that, as for the BL_RCSP algorithm, the key 

point in this A*_RCSP algorithm lies on the way we perform 

those instructions. Since we are provided with a current 

solution T_Curr, we may of course apply standard 

Branch/Bound filtering technique, and kill candidate state (x, 

T, R) if related value V = T + TIME(x, d) ≥ T_Curr.  But it is 

clearly not enough in order to ensure that (E4) is satisfied. 

So we proceed the same way as in the case of BL_RCSP:   

 At any time during the process, we are provided with 

two quantities rt_min and rt_max; 

 Then we use rt_min and rt_max in order to generate 

(Instruction DECIDE) decisions rt* exactly as in 

BL_RCSP: 

o We rank candidate states (x, T, R), resulting from 

all decisions rt*e, e = (x0, x) as in III.2, while 

using rt_midst = (rt_max + rt_min)/2. 

o We compute the Risk_Balance and Entropy 

quantities.   

o Then we update values rt_min and rt_max as in 

III.2, and apply the same technique in order to 

ensure that, for any x, the number of states (x, T, 

R) in LS  L_PIVOT  does not exceed State_Max. 

V. NUMERICAL EXPERIMENTS 

Goal: We have been performing numerical experiments 

with the purpose of getting information about the following 

points: 

 The ability of the different algorithms to get good 

solutions under small computational costs, and the 

dependence of their behavior to the size of the transit 

network; 
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 The sensitivity of those algorithms to the parameter 

State_Max and M, which bounds, for every algorithm, 

the numbers of possible states and decisions; 

 The sensitivity of our algorithms to the structure of 

the piecewise constant functions e, and on the 

intensity of current traffic inside the transit network at 

the time when the algorithms are applied. 

In order to do it, we used the A* like algorithm, run with 

large State_Max and M values as an almost exact algorithm, 

which provided us with reference results. 

 

Technical Context: Algorithms were implemented in 

C++, on a computer running Windows 10 Operating system 

with an IntelCore i5-6500@3.20 GHz CPU, 16 Go RAM 

and Visual Studio 2017 compiler. 

 

Instances: We generated networks (N, A) as connected 

symmetric partial grids, which means grids n*m, modified 

through removal of a percentage  of nodes and arcs and the 

introduction of one-way arcs (we break the symmetry of the 

grid). Those partial grids are summarized through their 

number N of nodes and their number A of arcs. The time 

value TIMEx,y of any arc (x, y) is 1, as well as related v_max 

value. Function  is taken as function u -> (u) = u2. 

Function e are generated by fixing a time horizon T_Max, 

fixing a mean number B of break points ti
e in [0, T_Max] per 

time unit, and an average value  for value (u). Then, for 

any e, we randomly generate break points ti
e and values 

e(ti
e), while imposing those values to belong a finite 5 

values set {2, 3/2, , /2, 0}. Finally, we fix the threshold 

Risk_Max value. TIMEo,d is also a parameter. 

 

We present here results for 10 instances, whose 

characteristics come as follows: 

 

TABLE I. 

CHARACTERISTICS OF THE INSTANCES 

Instance N A B  Risk_Max TIMEo,d 

1 22 65 1 0.2 1 6 

2 18 61 2 0.6 1 7 

3 19 65 3 1 1 5 

4 54 159 1 0.2 2 9 

5 58 182 2 0.6 2 9 

6 51 175 3 1 2 8 

7 88 285 1 0.2 3 12 

8 92 268 2 0.6 3 11 

9 83 250 2 0.6 3 10 

10 86 262 3 1 3 11 

 

Outputs: For every instance we compute: 

 The Risk value R_BL, the Time value T_BL 

computed by the bi-level BL_RCSP algorithm, the 

number of iterations ITER of its main loop 

(modification of ) and related CPU time Time_BL. 

 The Risk value R_A*, the Time value T_A* 

computed by the A*_RCSP algorithm, the number 

Node of visited nodes and related CPU time 

Time_BL. 

 The Risk value R_GR, the Time value T_GR 

computed by the greedy algorithm GR_RCSP, 

together with related CPU time CPU_GR. 

 Almost exact Risk value and Time value R_Opt, 

T_Opt computed by the A*_RCSP algorithm, 

performed with large State_Max and M values, 

together with related CPU time CPU_Opt. 

 

Obtained results are summarized in the following tables:  

 CPU times are in seconds 

 

TABLE 2. 

REFERENCE VALUES AND GR_RCSP BEHAVIOR (STATE_MAX = 10 AND 

M =  5) 

Instance R_Opt T_Opt CPU_Opt R_GR T-GR CPU_GR 

1 0.98 7.5 459.6 0.91 11.5 0.01 

2 0.99 13.0 524.9 0.94 13.8 0.01 

3 0.98 15.5 312.4 0.95 18.2 0.01 

4 1.97 9.6 988.7 1.78 12.7 0.02 

5 1.98 16.9 1044.2 1.92 24.9 0.02 

6 1.98 18.4 857.5 1.88 24.1 0.02 

7 2.98 11.0 2209.3 2.84 12.4 0.03 

8 2.96 16.7 1858.0 2.81 22.7 0.03 

9 2.99 18.9 1977.8 2.80 28.6 0.03 

10 2.98 37.5 2033.5 2.68 54.2 0.03 

 

 

TABLE 3.1. 

BL_RCSP BEHAVIOR WITH STATE_MAX = 10 AND M =  5 

Instance R_BL T-BL CPU_BL ITER 

1 0.92 8.3 0.05 3 

2 0.93 14.0 0.02 1 

3 0.91 17.1 0.03 2 

4 1.84 10.8 0.05 2 

5 1.90 17.7 0.14 5 

6 1.82 20.7 0.11 4 

7 2.74 12.2 0.08 2 

8 2.80 19.4 0.13 3 

9 2.87 19.5 0.35 8 

10 2.78 40.5 0.24 6 

 

 

TABLE 3.2. 

BL_RCSP BEHAVIOR WITH STATE_MAX = 50 AND M =  10 

Instance R_BL T-BL CPU_BL ITER 

1 0.96 8.0 0.64 3 

2 0.95 13.7 0.79 3 

3 0.95 16.3 0.93 4 

4 1.88 10.4 0.59 2 

5 1.91 17.5 1.3 4 

6 1.92 19.4 0.11 5 

7 2.87 11.9 2.1 4 

8 2.90 18.6 1.5 4 

9 2.89 19.4 2.9 6 

10 2.85 39.5 3.6 7 
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TABLE 4.1 

A*_RCSP BEHAVIOR WITH STATE_MAX = 10 AND M = 5 

Instance R_A* T_A* CPU_A* Node 

1 0.95 7.9 0.15 11 

2 0.92 13.8 0.13 10 

3 0.97 15.9 0.14 10 

4 1.80 10.9 0.35 20 

5 1.88 17.7 0.39 18 

6 1.86 20.0 0.45 19 

7 2.75 11.9 0.95 25 

8 2.66 18.0 1.0 28 

9 2.80 19.5 1.1 30 

10 2.84 38.6 1.2 28 

 

TABLE 4.2 

A*_RCSP BEHAVIOR WITH STATE_MAX = 50 AND M = 10 

Instance R_A* T_A* CPU_A* Node 

1 0.98 7.7 1.2 9 

2 0.96 13.6 1.3 10 

3 0.98 15.7 1.5 10 

4 1.87 10.5 3.2 19 

5 1.90 17.5 4.2 17 

6 1.93 19.2 4.0 17 

7 2.85 11.6 9.8 25 

8 2.77 17.6 10.5 28 

9 2.88 19.2 10.3 29 

10 2.87 38.4 9.9 26 

 

Comments: Results obtained through GR_RCSP are 

rather erratic, because this algorithm relies on the current 

state of shortest path  from o to d, which can be bad at the 

time when we launch the algorithm. A*_RCSP tends 

performs better than BL_RCSP as for the accuracy, but is 

more time consuming. Depending on the cases, results may 

be significantly impacted by parameters values State_Max 

and M. Finally, we also notice that obtaining almost exact 

optimal values is rather time costly, even on small instances. 

In order to improve it, we should find a way to provide a 

criterion which could identify, at any times, whether a 

decision rt*e has to be tried or not. Notice also that Risk_Opt 

is almost never equal to Risk_Max, in spite of proposition 2, 

because of the bias due to the discretization of the rt*e. 

  

VI. CONCLUSION 

We have been dealing here with a shortest path problem 

with risk constraints, which we handled under the prospect of 

fast, reactive and interactive computational requirements. 

But, the true practical problem is supposed to be a pick up 

and delivery one, simultaneously involving several tasks and 

vehicles. It comes that a future challenge is to adapt the 

algorithms which we just described here to such a more 

general PDP context. Also, there exist a demand from 

industrial players to use those algorithms as a tool for 

strategic decision, in order to estimate convenient size of the 

AGV fleet, together with the number of autonomous vehicles 

inside this fleet.   We plan addressing those issues in the next 

months. 
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