
Abstract—This paper presents a comparison between

relational and graph-based database systems’ performance in a

modern web application recommendation system. The

comparison is conducted on five different queries starting with

simple ones, leading up to more complex queries, that are

performed in a typical web social application. The

implementation is done in C# using .NET framework and the

database systems used are SQL Server and Neo4j. For the

comparative study we used a database designed in the context

of a recommendation system for a culinary application. In

order to effectively test the performance of both graph and

relational database systems, tests were performed on four data

sets that contain 350.000, 700.000, 1.400.000 and 2.100.000

entries. The tests imply performing five different retrieval

queries taken in order of difficulty both in SQL and Neo4J.

I INTRODUCTION

EB applications and mobile applications have gained

popularity in recent years, being user-friendly,

offering commodity and an easy to use environment for

research, reading, buying and so on.

W

Considering the fact that users often prefer the use of a

mobile or a web application, over physical resources, for

quick information search, the creation of web applications

that rapidly deliver information based on user filtering seems

natural and has become well spread.

However, this might not be enough for users, who are

eager to rapidly learn about an item based on their

preferences, without having to search for particular criteria

lead the path for development of more complex

recommendation systems.

For a majority of people, especially individuals living in

an urban environment, time-consuming activities retain them

from spending time researching. This can be avoided by the

development of online web application that offers fast and

innovative ideas based on users’ habits. The

recommendations, in the form of responses to users, need to

be delivered fast, no matter how complex the application

becomes, as it is a requirement implied by the fast-paced

living era.

A critical aspect to consider is the database where the

information will be stored. There are classical solutions like

relational databases or the more recent NoSQL solutions, as

graph databases. A well conducted research is mandatory

when choosing the database fit for the application [1].

Different aspects such as what type of database will fit the

application, what kind of structure the database will have

and how fast will it be able to deliver data to the users

depending on its structure are important to be taken into

account.

Because in the literature we found few similar studies, we

decided to experiment with the use of both a relational

database and a graph type to analysis which is in this context

the appropriate solution.

The paper is thus organized: section 2 presents related

work, section 3 briefly introduces graph databases, section 4

contains the experiments and section 5 shows the

conclusions.

II RELATED WORK

In the last few years, the focus shifted from typical

applications to ones that are focused on the users and their

preferences. Clearly, the most used applications nowadays

are social media platforms, so the attention shifted from

relational databases to more appropriate database systems.

There is research done is this area, since graph databases are

gaining more and more ground every day and choosing the

proper system has an enormous impact on the application’s

functionality and response time [6].

Surajit Medhi and Hemanta K. Baruah in [7] create a

similar comparison between a relational and graph database

performance on a simple Cricket application reaching

similar results in favor of the Neo4J system. However, their

tests are performed on only 400 objects and 3 queries with a

decreased difficulty.

In [8] the authors present a similar comparative study in the

context of a cancer treatment application. They compared the

performance of a relational database implemented in MySQL

and a graph database implemented in Neo4J. The comparison

was made on twelve queries and three datasets: 1000, 10.000

Liana Stanescu
University of Craiova, Faculty of Automation, Computers and Electronics, Craiova, Romania

Email: stanescu@software.ucv.ro

A Comparison between a Relational and a Graph Database

in the Context of a Recommendation System

Position and Communication Papers of the 16
th Conference on

Computer Science and Intelligence Systems pp. 133±139

DOI: 10.15439/2021F33

ISSN 2300-5963 ACSIS, Vol. 26

©2021, PTI 133

and 100.000 records. The results indicate that MySQL

performs better than Neo4J in most cases, but Neo4J is better

when the queries involve multiple joins between tables and

the number of records is 100.000.

In [11] the authors review the literature of recent years that

have analyzed in detail the NoSQL databases and relational

ones in order to highlight the characteristics of each type of

database, especially for NoSQL technology that appears as a

new solution over relational databases.

Another article [10] presents the results of the comparison

between Oracle relational database and NoSQL graph

database. The comparison was made in two directions: the

first direction aimed at executing queries in the types of

databases and the second direction involved performing a

predictive analysis on the experimental results.

Given that both relational and graph databases can manage

both relational and graph data, other researchers have tried to

establish the limitations of these two technologies. In [9] they

present their conclusions of the experiments that involved a

unified benchmark for relational and graph databases over the

same datasets using the same queries and the same metrics.

 In a more recent article, the authors compared the

performance of MySQL and Neo4J databases regarding the

memory usage and execution time. The results highlighted the

following: MySQL has a faster execution time than Neo4J,

both these databases have the same time complexity, Neo4J

has a higher memory usage than MySQL and Neo4J has better

flexibility than MySQL [12].

This activity of comparing the relational and NoSQL

databases is a current concern, as it is clear that there are

applications for which relational databases are the best

solution, while for other types of applications, new NoSQL

technologies are preferred.

III. RELATIONAL DATABASES VS GRAPH DATABASES

Relational databases have been the basis of software

applications since the 1980s, and still are [5]. Relational

databases store data in a well-structured format within tables

consisting of columns of certain data types and rows of those

defined data types [5]. Relational databases require designers

and applications to strictly structure the data used in their

applications. Relational data is stored in tables, and the

relationships between them are made simply through

referential integrity which involves the presence of the

external key that refers to a primary key [5]. To retrieve the

data from several linked tables, the JOIN operation is used at

query time by matching primary and foreign keys of all rows

in the connected tables. These operations involve large

processing capacity and memory usage, having an

exponential cost [5]. If the data modeling implies the

existence of many to many relationships, in the relational

model will appear an additional table, a so called join table

with two, or more external keys, to the initial participating

tables, which further increases the cost of the JOIN operation

[5].

NoSQL databases have appeared, aiming to cover certain

requirements of users and applications, but many of them still

did not satisfy the data links optimally. Hence the need for

graph databases, that are the best choice for modeling the

modern world we live in [1], [5].

In the graph data model, the relationships are as important

as the data themselves. As a result, there is no need to

implement the links between the entities using additional

concepts, such as external keys [1], [5].

Graph databases allow the creation of models that map well

to the problems to be solved. In this type of database, the data

looks very similar to those in the modeled mini-world, small,

normalized and keeping connections. The user can query and

view the data from any point of view [1], [5].

In the graph database model, each node, either entity or

attribute, has a list of link records that model the links to other

nodes. These relationship records are organized by type and

direction and may have additional attributes. [1], [5].

This list is used by graph databases, when running an

operation equivalent to the JOIN operation in the relational

model, to access the connected nodes, eliminating expensive

computations. In graph databases, traversing the joins or

relationships is very fast because they are not calculated at

query time as they are persistent [1], [5].

Neo4J is a graph database system implemented in Java and

the access to data is done with Cypher Query [3], [4]. It is

an ACID-compliant transactional database with native graph

storage and processing [1], [5]. The relationships are

materialized at creation time, which results in no penalties for

complex runtime queries.

Neo4J implements the Property Graph Model in an

efficient way [3] (figure 1). The property graph model is an

extension of the graphs from mathematics. The following

concepts are used to model a property graph:

• Nodes that are the entities in the graph

• Labels that are used to represent the role of the node; a

node can have multiple labels at the same time

• Relationships that describe directed, semantically

connections between two nodes

• Properties that are key-value pairs that contain

information about the node or relationship.

Fig. 1. Block Diagram of System Modules

134 POSITION AND COMMUNICATION PAPERS OF THE FEDCSIS. ONLINE, 2021

The query of the relational databases is done with the help

of SQL – a declarative query language. SQL commands can

be used within the interfaces provided by relational database

management systems, or they can be nested in an application

and sent for execution to the database engine [5].

Cypher is also a declarative graph query language which is

based on the basic concepts and clauses of SQL but which

added a multitude of additional features specific to graphs to

make it easier to work with the graph model. For describing

visual patterns in graphs it uses ASCII-Art syntax. Using

Cypher users can build expressive and efficient queries on

graph databases [2], [5].

IV. EXPERIMENTS AND RESULTS

 In order to efficiently test the performances of both

graph and relational database systems, there were performed

tests on four data sets as in Table I. The tests represent

performing five different retrieval queries taken in order of

difficulty both in SQL and Neo4J.

TABLE I. Data Sets

Set Number Number of entries

1 350.000

2 700.000

3 1.400.000

4 2.100.000

The dataset on which the tests were performed is

represented by a culinary web application and its structure can

be seen in the figures below in both database systems: MS

SQL Server and Neo4J.

The implementation of the application began with the

development of the SQL database (figure 2) that was later

exported as CSV files and imported into Neo4J (figure 3).

The database contains tables that store data about different

types of ingredients, culinary recipes, and join tables that

resulted from many to many relationships between data

(figure 2).

Fig. 2. Culinary App database - MS SQL Server

LIANA STANESCU: A COMPARISON BETWEEN A RELATIONAL AND A GRAPH DATABASE IN THE CONTEXT OF A RECOMMENDATION SYSTEM 135

Fig. 3. A sample of Culinary App database - Neo4J

In this sample (figure 3) we can see a number of nodes and

edges that represent relationships. For example the node

,,Chicken Soup” is related by node ,,Soup” with an edge

called ,,is_from_category”, by node ,,Romanian” with the

relationship “is_from_cuisine”, etc.

The tests were performed on a personal computer, in the

application’s solution developed in Microsoft Visual Studio

2017. The running time of the methods was measured using

the Stopwatch class from the System Diagnostics namespace

in the .NET Framework.

PC Configuration:

• CPU: Intel I5 @ 3.40GHz

• RAM: 8.00 GB

• OS: Windows 10 x64

• SQL Database System – SQL SERVER 2019

• Graph Database System – Neo4J Database 4.0

The connection to the SQL Database was made using

Entity Framework and the connection to the Neo4J Database

was possible using Neo4J Driver and Neo4J Client libraries.

Experiment 1:

Query: Get all recipes containing “Bacon”

SQL Syntax

SELECT DISTINCT recipes

FROM Recipes IN Recipe TABLE

JOIN MeatRecipe IN MeatRecipe TABLE

ON RecipesId EQUALS MeatRecipe.RecipeId

WHERE MeatRecipe.MeatId EQUALS “Bacon”

Neo4j Syntax

MATCH (Recipe)- [CONTAINS MEAT]-> (Meat

{"Bacon"})

return Distinct Recipe

This query involves the join of two tables and a condition.

The results of the comparison appear in figure 4. It can be

seen that for all four data sets, the query execution was faster

in MS SQL server than in Neo4J.

Fig. 4. Experiment 1 results

Experiment 2:

Query: Get all recipes containing “Bacon” from the

“Italian” Cuisine

SQL Syntax

SELECT DISTINCT recipes

FROM Recipes IN Recipe TABLE

JOIN MeatRecipe IN MeatRecipe TABLE

ON RecipesId EQUALS MeatRecipe.RecipeId

WHERE MeatRecipe.MeatId EQUALS “Bacon”

JOIN RecipeCuisine IN RecipeCuisine TABLE

ON RecipesId EQUALS RecipeCuisine.RecipeId

WHERE RecipeCuisine.CuisineId EQUALS “Italian”

Neo4j Syntax

MATCH (Recipe)- [CONTAINS MEAT]-> (Meat

{"Bacon"}),

 (Recipe)- [IS_FROM_CUISINE]-> (Cuisine {"Italian"})

return Distinct Recipe

136 POSITION AND COMMUNICATION PAPERS OF THE FEDCSIS. ONLINE, 2021

Query number 2 involves the join of three tables and two

conditions on data. The results for this experiment appear in

figure 5. In this case, in which we increased the number of

joined tables, the execution time in Neo4j decreased a lot.

Neo4j outperformed MS SQL server. The gap between the

two systems grew larger as the number of records increased.

Fig. 5. Experiment 2 results

Experiment 3:

Query: Get all recipes containing “Bacon” from the

“Italian” Cuisine from the “Pasta” Category

SQL Syntax

SELECT DISTINCT recipes

FROM Recipes in Recipe TABLE

JOIN MeatRecipe in MeatRecipe TABLE

ON Recipes.Id equals MeatRecipe.RecipeId

WHERE MeatRecipe.MeatId EQUALS “Bacon”

JOIN RecipeCuisine in RecipeCuisine TABLE

ON Recipes.Id equals RecipeCuisine.RecipeId

WHERE RecipeCuisine.CuisineId EQUALS “Italian”

JOIN RecipeCategory in RecipeCategory TABLE

ON Recipes.Id equals RecipeCategory.RecipeId

WHERE RecipeCategory.CategoryId EQUALS “Pasta”

Neo4j Syntax

MATCH (Recipe)- [CONTAINS_MEAT]-> (Meat

{"Bacon"}),

(Recipe)- [IS_FROM_CUISINE]-> (Cuisine {"Italian"}),

(Recipe)-[:IS_FROM_CATEGORY]-> (Category

{"Pasta"})

return Distinct Recipe

Experiment number 3 represents an even more complex

query defined on four tables (three joins) and two conditions.

The results for experiment 3 appear in figure 6. The same

observation can be made as in experiment 2. Neo4j executes

the query much faster than MS SQL Server, and moreover,

the execution time decreases drastically for the graph

database system.

Fig. 6. Experiment 3 results

Experiment 4:

Query: Get all recipes similar to “Example Recipe”

containing “Tomato”

SQL Syntax

SELECT DISTINCT recipes

FROM Recipes IN Recipe TABLE

JOIN RecipesSimilarity IN RecipeRecipeSimilarity TABLE

ON Recipes.Id EQUALS RecipesSimilarity.RecipeTwoId

WHERE RecipesSimilarity.SimilarityId EQUALS

“Strong” AND RecipesSimilarity.RecipeOneId EQUALS

“Example Recipe” JOIN VegetableRecipe IN

VegetableRecipe TABLE ON Recipes.Id EQUALS

VegetableRecipe.RecipeId WHERE

VegetableRecipe.VegetableId EQUALS “Tomato”

Neo4j Syntax

MATCH (Recipe {“Example Recipe”})- [similarity:

IS_SIMILAR_TO {Similarity: "Strong"}]-> (Other

Recipe),

(Other Recipe)-[CONTAINS_VEGETABLE]-> (Vegetable

{"Tomato"})

 return Distinct Other Recipe

The results for experiment 4 appear in figure 7. Again,

Neo4J is superior to MS SQL server for all four data sets.

Fig. 7. Experiment 4 results

LIANA STANESCU: A COMPARISON BETWEEN A RELATIONAL AND A GRAPH DATABASE IN THE CONTEXT OF A RECOMMENDATION SYSTEM 137

Experiment 5:

Query: Get all recipes similar to “Example Recipe” that

have more than 100 likes containing “Tomato” from the

“Italian” or from the “Romanian” Cuisine

SQL Syntax

SELECT DISTINCT recipes

FROM Recipes IN Recipe TABLE

WHERE Recipes.Likes BIGGER THAN 100

JOIN RecipesSimilarity IN RecipeRecipeSimilarity TABLE

ON Recipes.Id EQUALS RecipesSimilarity.RecipeTwoId

WHERE RecipesSimilarity.SimilarityId EQUALS

“Strong” AND RecipesSimilarity.RecipeOneId EQUALS

“Example Recipe”

JOIN VegetableRecipe IN VegetableRecipe TABLE

ON Recipes.Id EQUALS VegetableRecipe.RecipeId

WHERE VegetableRecipe.VegetableId EQUALS

“Tomato” JOIN RecipeCuisine in RecipeCuisine TABLE

ON Recipes.Id equals RecipeCuisine.RecipeId

WHERE RecipeCuisine.CuisineId EQUALS “Italian” OR

RecipeCuisine.CuisineId EQUALS “Romanian”

Neo4j Syntax

MATCH (Recipe {"Example Recipe"})- [similarity:

IS_SIMILAR_TO {Similarity: "Strong"}] -> (Other

Recipe),

(Other Recipe)- [CONTAINS_VEGETABLE]->

(Vegetable {"Tomato"}),

 (Other Recipe)- [IS FROM CUISINE]-> (Cuisine)

where Cuisine EQUALS “Italian" OR Cuisine EQUALS

“Romanian" AND Other Recipe Likes BIGGER THAN 100

return Distinct Other Recipe

This query also involves four tables (three joins) and many

conditions expressed with “and” or “or” operators.

The results for experiment 5 appear in figure 8. The same

observation can be made. The query execution time that

involves many junctions between tables and multiple

conditions is much shorter in Neo4J than in the relational

system and has also very little value for all four datasets.

Fig. 8. Experiment 5 results

V. CONCLUSIONS

The idea of this experimental study started as a Web

Application that interacts with the end-user and quickly

delivers responses based on the requests performed.

However, nowadays, as the web applications are extensively

popular and often used as opposed to physical items like

books or magazines, they must adapt and be able to handle a

large number of data. As the trend is to use SQL databases,

that are the most popular databases worldwide, the

development started with such a database as data storage

‘device’.
When considering this from the future’s perspective, it is

interesting to analyze the manners in which they respond in

such an application type, where there are many relationships

between items and also, the recommending engine and how it

will respond.

As described before, the same structure of the database was

exported to a graph database, and for multiple sets of data,

tests were performed. These tests were designed based on

how users tend to interact with such a system.

As seen, for a slightly large number of records, where the

query has to perform search based on a limited number of

relationships SQL tend to perform better than the Neo4J

database. However, as the numbers get bigger the Neo4J

database appears to be superior when it comes to computing

time. For a low number of JOINs, the SQL database doesn’t
fall back so much even with large numbers of records, but for

this type of application, where items are strongly related

through relationships the graph database, it is safe to say, it is

clearly superior.

In conclusion, for applications that involve large number of

relationships between data, the graph databases are a suitable

choice. Such projects could be social media applications,

collaborative systems or libraries of any kind, books, music

or videos. Even though, relational databases are strong and

well-performing, so, there are cases where there is a (slightly)

better alternative for data storage.

Nowadays, many large companies world-wide have

migrated to NoSQL alternatives and the results are

astonishing. The performance of their applications is keeping

users interested and satisfied everyday by providing fast

responses to their requests and that is generating success.

When it comes to choosing what type of database should

be used, one must first perform a type of research activity,

read and most important perform tests on their applications

ahead of time, with large numbers of records to predict how

they will perform in the future.

Designing the application with a well-researched and well-

chosen alternative is a critical step in the early stages of

development. Performing changes along different

development cycles and stages, when the application has

already become complex, delivered and in use for users,

implies migrating data from one database to another, which is

a complex, time-consuming and high-risk task.

138 POSITION AND COMMUNICATION PAPERS OF THE FEDCSIS. ONLINE, 2021

REFERENCES

[1] J. J. Miller, “Graph Database Applications and Concepts with Neo4j”,

in Proceedings of the Southern Association for Information Systems

Conference, Atlanta, GA, USA. Vol. 2324, No. 36, 2013

[2] http://neo4j.com/developer/cypher/

[3] https://linkurio.us/using-neo4j-to-build-a-recommendation-engine-

based-on-collaborative-filtering/

[4] http://graphaware.com/neo4j/2013/10/11/neo4j-bidirectional-

relationships.html

[5] https://neo4j.com/developer/graph-db-vs-rdbms/

[6] https://sdtimes.com/databases/guest-view-relational-vs-graph-

databases-use/

[7] S. Medhi, and H. K. Baruah, “Relational Database And Graph

Database: A Comparative Analysis”, New Technologies, International

Vol. 5, No 2, 2017

[8] A. Martinez, R. Mora, D. Alvarado, G. Lopez, and S. Quiros, “ A

Comparison between a Relational Databases and a Graph Database in

the Context of a Personalized Cancer Treatment Application”, in

CEUR Workshop Proceedings, Vol. 1644, 2016,

http://ceur-ws.org/Vol-1644/paper37.pdf

[9] Y. Cheng, P. Ding,T. Wang, et al., “Which Category Is Better:

Benchmarking Relational and Graph Database Management

Systems”, Data Sci. Eng., vol.4, pp. 309–322, 2019

https://doi.org/10.1007/s41019-019-00110-3

[10] W. Khan, E. Ahmed, and W. Shahzad, “Predictive Performance

Comparison Analysis of Relational & NoSQL Graph Databases”,

International Journal of Advanced Computer Science and

Applications, vol. 8, no.5, 2017

[11] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi, and F. Ismaili,

“Comparison between relational and NOSQL databases”, in

Proceedings of MIPRO, pp. 0216-0221, 2018

[12] R. J. Sholichah, M. Imrona, and A. Alamsyah, “Performance Analysis

of Neo4j and MySQL Databases using Public Policies Decision

Making Data”, in Proceedings of ICITACEE, pp. 152-157, 2020

LIANA STANESCU: A COMPARISON BETWEEN A RELATIONAL AND A GRAPH DATABASE IN THE CONTEXT OF A RECOMMENDATION SYSTEM 139

