
Abstract—In  workforce  scheduling,  shift  generation  is  the

process of determining the shift structure, along with the tasks

to be carried out in particular shifts. Application areas of shift

generation  include  hospitals,  retail  stores,  contact  centers,

cleaning, home care, guarding, manufacturing and delivery of

goods. We present an extension to the Shift Minimization Per-

sonnel Task Scheduling Problem that is a problem in which a

set of tasks with fixed start and finish times have to be allocated

to a heterogeneous workforce. The objective in the SMPTSP is

to minimize the number of employees required to carry out the

given set  of  tasks.  In the ESMPTSP,  another  objective  is  to

maximize the number of  feasible (shift,  employee)  pairs.  We

provide a mathematical formulation of the extended problem.

We present an efficient ruin and recreate heuristic along with

computational results for existing SMPTSP data sets and to a

new data set. The presented heuristic is suitable for application

in large  real-world  scenarios.  The  new instances,  along with

our best solutions, have been made available online.

I. INTRODUCTION

HIFT generation is the process of transforming the deter-

mined workload into shifts as accurately as possible. For

labor-intensive  industries,  such  as  hospitals,  retail  stores,

contact centers, cleaning, home care, guarding, manufactur-

ing and delivery of goods, it is crucial to find a good match

between the predicted and scheduled workload. The gener-

ated shifts form an input for the staff rostering, where em-

ployees are assigned to the shifts (see e.g. [1], [2] and [3]).

S

The generation  of  shifts  is  based  on  either  the  varying

number of required employees working during the planning

horizon or the tasks that the shifts must cover. We call these

employee-based  and task-based  shift  generation  problems.

The  first  major  contribution  for  the  employee-based  shift

generation problem was the study by Musliu et al. [4]. They

introduced a problem, in which the workforce requirements

for  a  certain  period  of  time  were  given,  along  with

constraints about the possible start times and the length of

shifts, and an upper limit for the average number of duties

per  week per  employee.  Di Gaspero et al.  [5]  proposed a

problem in which the most important issue was to minimize

the number of different kinds of shifts used. 

Kyngäs et al. [6] introduced the unlimited shift generation

problem in which the most important goal is to minimize

understaffing and overstaffing. They define a strict version

of the problem,  in the sense that  each  timeslot  should  be

exactly covered by the correct number of employees. In the

person-based multitask shift generation problem with breaks

presented  in  [7],  employees  can  have  their  personal  shift

length constraints  and competences.  The goal is to ensure

that the employees can execute the shifts later in the staff

rostering phase.

In the task-based shift generation problem the goal is to

create  shifts  and  assign  tasks  to  these  shifts  so  that  the

employees  can  be  assigned  to  the  shifts.  The  first  major

contribution  of  the  task-based  problem  was  the  study  by

Dowling et al. [8].  They developed a day-to-day planning

tool and to estimate a minimal staff set capable of operating

as the ground staff of an international airport. Valls et al. [9]

introduced  a model  where  they  minimized  the  number  of

workers  required  to  perform  a  machine  load  plan.  They

presented  a  coloring  approach  to  identify  possible

allocations  along  with  bounds  on  the  branch-and-bound

search tree. 

Krishnamoorthy and Ernst [10] introduced a similar group

of problems, which they called Personnel Task Scheduling

Problems  (PTSP).  Given  the  staff  that  are  rostered  on  a

particular day, the PTSP is to allocate each individual task,

with specified start and end times, to available staff who have

skills to perform the task. Later, Krishnamoorthy et al. [11]

introduced  a  special  case  referred  as  Shift  Minimization

Personnel Task Scheduling Problem (SMPTSP) in which the

goal  is  to  minimize  the  number  of  employees  used  to

perform the shifts. The SMPTSP has been studied under a

few other names. Jansen [12] called SMPTSP the license and

shift class design problem. Kroon et al. [13] called SMPTSP

tactical fixed interval scheduling problem, and showed that

solving  it  to  optimality  is  NP-hard.  The  SMPTSP is  also

similar to the basic interval scheduling problem presented in

[14] where the goal is to decide which jobs to process on

which machines.
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The General Task-based Shift Generation Problem 

(GTSGP) was defined in [15]. Given the tasks that should be 

rostered on a particular day, the GTSGP is to create 

anonymous shifts and assign tasks to these shifts so that 

employees can be assigned to the shifts. The targeted tasks 

must be completed within a given time window. For 

example, shelving in retail stores is often carried out in the 

forenoon. Some tasks are so-called back-office tasks. For 

example, in a contact center answering emails might require 

a given number of working hours per day dedicated to the 

activity but these tasks can be carried out any time of the 

day. 

The main contributions of this paper are the following: 

− a mathematical formulation of the Extended Shift 

Minimization Personnel Task Scheduling Problem 

(ESMPTSP) 

− a ruin and recreate heuristic, which can 

successfully solve ESMPTSP instances 

− a new benchmark set for the SMPTSP. 

The paper is organized as follows. Section 2 first 

describes the Shift Minimization Personnel Task Scheduling 

Problem and the General Task-based Shift Generation 

Problem. Then we define the Extended Shift Minimization 

Personnel Task Scheduling Problem as an extension to the 

SMPTSP and as a highly simplified version of the GTSGP. 

In Section 3, we give the mathematical formulation of the 

ESMPTSP. We also present a simplified instance of the 

problem. Section 4 describes the most challenging SMPTSP 

benchmark instances, which we solve as ESMPTSP 

instances. Furthermore, we introduce a new benchmark 

instance set for the SMPTSP. This data set is generated 

especially for the ESMPTSP. In Section 5, we describe a 

ruin and recreate heuristic, which can successfully solve 

instances of SMPTSP, ESMPTSP and GTSGP. Finally, 

Section 6 presents the first computational results for solving 

the ESMPTSP. We also compare the results to the best-

known SMPTSP results. 

II. PROBLEM DESCRIPTION 

 The Shift Minimization Personnel Task Scheduling 

Problem [11] can be defined formally as follows. A set of 

tasks J = t1,...,tn needs to be allocated to a set of 

heterogeneous employees E = e1,...,em over a specified 

planning horizon. The processing time interval at which a 

task t has to be performed is determined by a timetable with 

fixed start time st and finish time ft. Each employee e has a 

set of tasks Je ⊆ J that e can carry out. Each task t has a set 

of employees Et ⊆ E that can carry out t. All sets Je and Et 

are defined based on skills of employees/skill requirements 

of tasks and availability of employees/time windows of tasks.  

The objective is to minimize the number of employees 

required to perform the given set of tasks. The following 

basic assumptions hold: 

A1. Preemption of tasks is not allowed. 

A2. There are no precedence constraints among the 

tasks. 

A3. Each task is processed only once without 

interruption.  

A4. Each employee can execute only one task at a time. 

The General Task-based Shift Generation Problem 

(GTSGP) [15] has the same assumptions besides (A2). 

However, the problem differs from the SMPTSP in several 

important ways: 

B1.  Tasks are not explicitly assigned to employees. 

B2.  Tasks are not fixed in time. 

B3.  Tasks may have shift-local precedence constraints. 

B4.  Transition times between tasks are considered. 

B5.  Employees have total working time restrictions.  

B6.  Employees have availability restrictions. 

The GTSGP is to create anonymous shifts and assign tasks 

to these shifts so that employees can be assigned to the shifts. 

Instead of minimizing the number of employees required to 

carry out the given set of tasks, the objective is to maximize 

the number of feasible (shift, employee) pairs. The 

mathematical formulation of the problem was first given in 

[16]. The idea is to ensure that the resulting set of shifts can 

be carried out by the employees, i.e. each shift can be 

assigned to an employee s.t. all shifts are assigned to 

someone and no employee is assigned to multiple shifts.  

In practical applications of the GTSGP, the full-time 

permanent and temporary employees are expected to cover 

100% of the total workload in the shift generation, and later 

in the staff rostering phase. This is opposite to the idea 

behind the SMPTSP, where a large pool of casual staff is 

expected to be available and management would like to 

minimize the pool usage. 

By including only requirements (B1) and (B2), we obtain 

the following simplified version of the GTSGP. The set of 

shifts S is to be generated. A set of tasks T is to be assigned 

to the shifts. Each task t has a duration dt (in timeslots) and a 

time window [lbt, ubt]. A task t must not start before lbt and 

must not end after ubt. Each task is related to the collection 

of skills required by the tasks, which is a subset of the skill 

set C. Respectively, each employee e from the set of 

employees E has a collection Ke of skills. The number of 

shifts is usually the same as the number of available 

employees. In case of understaffing, additional pseudo 

employees can be used. 

A solution to the simplified GTSGP is feasible if the 

following three hard constraints have no violations: 

H1.  The tasks in the shift do not overlap in time 

(overlap). 

H2.  Each shift can be executed by one or more 

employees, i.e. the skill set required by the tasks in 

each shift is possessed by one or more employees 

(shift). 

H3.  Each shift can be assigned to an employee s.t. all 

shifts are assigned to someone and no employee is 

assigned to multiple shifts (combination). 
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Modifying (B2) to allow only fixed timetables for the 

tasks, we have a further simplified version of the GTSGP. 

We call this problem the Extended Shift Minimization 

Personnel Task Scheduling Problem (ESMPTSP). The 

objective is to first minimize the number of employees 

required to carry out the given set of tasks and then to 

maximize the number of feasible (shift, employee) pairs. 

III. ESMPTSP FORMULATION 

 In this section, we give the mathematical formulation of 

the ESMPTSP. We also present a small instance of the 

ESMPTSP along with an example solution. We start with 

introducing some additional definitions and the decision 

variables: 

 

 

For w ≠ v, we call xjwv pseudoassignments of v to w with 

respect to j, as they represent whether j could be assigned to 

v assuming j is assigned to w. Similarly, we call ywv  

pseudoassignments of v to w, as they represent whether all 

the tasks (and thus the entire shift) assigned to w could be 

assigned to v. 

 

 

The objective function (Equation 1) consists of the 

weighted sum of the number of used employees and the 

number of able (employee, shift) pairs. The rest of the 

equations ensure the following: 

(2) Each task will be carried out by exactly one able 

employee.  

(3) No overlapping tasks are assigned to a single 

employee, and the indicator for using an employee 

indicates employee usage, i.e. that at least one task 

is assigned to the employee.   

(4) A shift cannot be pseudoassigned to an employee if 

it has shifts the employee is unable to do.  

(5) Empty shifts are not counted as pseudoassignments. 

(6,7) Tasks are pseudoassigned according to both actual 

assignments and the abilities of the employees. 

(8,9) Variables must be binary. 

Fig. 1 shows a small instance of the ESMPTSP along with 

an example solution. The instance and the presented example 

of feasible (shift, employee) pairs have the following 

characteristics:  

− The tasks in the shift do not overlap in time 

(overlap). 

− The planning period is divided into 18 timeslots. 

− The number of tasks is 14 and the number of 

employees is 7 (indicated by letters from A to G). 

− The duration of the tasks is given by the length of 

the corresponding rectangles. 

− The employees able to carry out a task are 

indicated by the letters in the rectangles. 

− The parentheses indicate a (non-unique) feasible 

assignment between tasks/shifts and employees. 

− The colors indicate which tasks are assigned to the 

same shift. 

− The solution is clearly optimal in the number of 

shifts, as at least 6 concurrent shifts are needed 

during slot 12. 

− Furthermore, employee E can carry out the blue 

shift, A and C the brown shift, D and E the green 

shift, E the yellow shift, B, D and F the violet shift, 

and A, D and E the red shift, totalling 18 feasible 

(shift, employee) pairs. 

 

 

Fig.  1 A small instance of the ESMPTSP and a feasible solution. The 

letters indicate employees able to carry out a task. The colors indicate 

generated shifts. 
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IV. BENCHMARK INSTANCES 

We have basically two possibilities to create benchmark 

instances for the ESMPTSP: either to extend SMPTSP 

instances or to simplify GTSGP instances. We use both 

approaches. First, we use instances selected from the three 

current SMPTSP data sets. This approach has two benefits. 

The instances need no modifications whatsoever and a 

significant number of studies and algorithms have been 

designed to solve the problem. This enables the authors of 

the current SMPTSP algorithms to try their ideas to the 

ESMPTSP more easily. Second, we generate a new fourth 

data set for the SMPTSP, which is derived from the 

simplified GTSGP instances. 

Krishnamoorthy et al. [11] presented the first data set of 

137 instances for the SMPTSP. The data set is referred to as 

KEB instances. They used a Lagrangian approach to solve 

large instances of the SMPSTP. Smet et al. [17] generated 

the second data set of ten instances, because they were able 

to solve all KEB instances to optimality. The data set is 

referred to as SWMB instances. Fages and Lapegue [18] 

generated the third data set of 100 instances, because KEB 

and SWMB instances were trivial with respect to finding 

good quality lower bounds. This data set is referred to as FL 

instances.  

As the first benchmark set for the ESMPTSP, we decided 

to select 56 very challenging instances from the three 

SMPTSP data sets. From the KEB data set, we selected 25 

instances based on the performance of the three heuristics on 

the data set. An FL instance was selected if at least one of 

the following criteria holds: 

C1.  The solution (number of employees) obtained by the 

constructive heuristic of Lin and Ying [19] was at 

least 7% inferior to the optimum solution. 

C2. The solution obtained by the iterative heuristic of 

Lin and Ying [19] was at least 2% inferior to the 

optimum solution. 

C3. The greedy heuristic of Hojati [20] was unable to 

find the optimum solution. 

Some of these instances are quite easy to solve as 

SMPTSP instances. This enables the authors of the SMPTSP 

algorithms to try their ideas to the ESMPTSP more easily. 

Note however, that we are not aware of how easy or difficult 

the instances are to solve as ESMPTSP instances. 

From the SWMB data set, we selected all the ten 

instances. 

From FL instances, we selected the 21 instances. We 

excluded instances #5 and #89, for which the minimum 

number of shifts is not known. Note that the instances were 

also unsolved by the Smet et al. method in [17]. An instance 

was selected if either one of the following criteria holds: 

D1. The solution obtained by Fages and Lapegue [18] 

was at least 3% inferior to the known optimum 

solution. 

D2.  The greedy heuristic of Hojati [20] was not able 

find the optimum solution. 

Tables I, II and III show the characteristics of the selected 

instances. The number of shifts denotes the known optimum 

value for the SMPTSP, i.e. the minimum number of shifts 

derived from the recent paper by Chandrasekharan et al. 

[21]. The @AVG measure indicates the estimated average 

number of tasks per non-empty shift, i.e. the number of tasks 

is divided by the minimum number of shifts. 

The tightness level is defined as the total length of all 

tasks as a percentage of the total availability of all 

employees. The task skill level is defined as the average 

percentage of the total number of tasks each employee is 

qualified for. In addition to the task skill level, the shift skill 

level describes, how qualified an average employee is to 

carry out all the tasks of an average shift. We define shift 

skill level = t
a
, where t = task skill level and a = @AVG. The 

overlap level is the probability of two random tasks to 

overlap. To calculate the probability, we need to iterate all 

task pairs once to check whether they overlap or not. 

In order to make an instance challenging, the following 

guidelines can be drawn from the discussions and results in 

[11, 17, 18, 19 and 20]: 

− The number of tasks and the number of employees 

influence the hardness of the instance, since they 

enlarge the search space. 

− The combinatorial search space increases when the 

average number of tasks per shift increases. 

− The tightness level should be closer to 90%. 

− The task skill level should be at most 33%. 

− The shift skill level should be way below 1%. 

− The overlap level should be at most 40%. 

However, these are general observations and no statistical 

evidence can be drawn from the guidelines. We generated a 

new fourth data set for the SMPTSP and the ESMPTSP 

based on the above guidelines. We had two goals for the new 

data set. First, the instances should be more challenging than 

the existing ones, and second, the characteristics of the 

instances should be distinctly different compared to the 

current data sets. 

We have created an elaborate random test instance 

generator for the GTSGP (see [16]). The generator is guided 

by five parameter sets having a total number of seventeen 

parameters. We disabled and omitted most of the parameters 

to generate SMPTSP and ESMPTSP instances. The 

instances were generated using the following guidelines: 

− The instances should be versatile. 

− The minimum number of shifts should be the same 

as the number of employees. 

− The number of employees varies from 20 to 500. 

− The average number of tasks per shift is close to 5. 

This is about the same as the average in the other 

data sets. 

− The tightness level should be at least 93% and in 

most of the cases close to 100%. This is clearly 

higher than in the other data sets. The level should 

decrease when the number of employees increases. 
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− The task skill level should vary from 5% to 65%. 

In some cases, the level should be clearly lower 

than in the other data sets. A higher value should 

increase the ESMPTSP solution value.  

− The shift skill level should be at most 1%, and in 

some cases less than 0.001%. The variation should 

be about the same as in the other data sets 

altogether. Note, that seven instances have values 

close to 10%, which should increase the 

ESMPTSP solution value. 

− The overlap level should be between 30% and 

40%. This is on average higher than in the other 

data sets. 

 

We decided to create two distinct instance sets. The first 

set of instances should have a unique optimum SMPTSP 

solution. When the objective is treated hierarchically, i.e. 

α = m
2
 + 1 and β = 1, this results in a unique optimum 

TABLE II. 

THE CHARACTERISTICS OF THE SWMB INSTANCES 

# #Emps #Shifts 

 

#Tasks @AVG Tightness 

level 

Task skill level Shift skill level Overlap 

level 

1 50 40 258 6.5 89.6 19.5 0.003 25.6 

2 44 40 510 12.4 87.6 19.6 0.0000002 13.3 

3 102 77 525 6.8 93.5 30.0 0.03 25.4 

4 113 98 647 6.6 91.7 20.0 0.002 25.7 

5 77 59 777 13.2 91.5 29.7 0,00001 13.2 

6 135 116 777 6.7 92.9 19.9 0.002 25.8 

7 70 59 781 13.2 88.5 19.9 0.00000006 13.1 

8 88 79 1022 12.8 90.0 19.9 0,0000001 13.5 

9 125 98 1308 13.2 90.9 19.8 0,00000005 13.2 

10 153 116 1577 13.6 93.1 19.9 0,00000003 13.1 

 

TABLE I. 

THE CHARACTERISTICS OF THE SELECTED KEB INSTANCES 

# #Emps #Shifts 

 

#Tasks @AVG Tightness 

level 

Task skill level Shift skill level Overlap 

level 

4 23 20 59 3.0 88.3 34.4 4.3 46.7 

5 25 20 60 3.0 90.2 36.2 4.7 46.9 

9 49 40 104 2.6 89.9 35.0 6.5 57.3 

11 24 20 119 6.0 90.0 36.2 0.2 26.0 

13 25 20 120 6.0 90.2 35.8 0.2 25.9 

15 72 60 126 2.1 74.5 34.2 10.5 59.6 

17 23 20 139 7.0 90.0 67.7 6.7 23.6 

22 47 40 180 4.5 89.9 67.4 16.9 36.1 

28 75 60 208 3.5 90.1 66.8 24.7 45.0 

29 22 20 219 11.0 89.8 67.2 1.3 15.0 

30 25 20 219 11.0 90.1 68.8 1.7 15.0 

35 171 140 280 2.0 70.3 33.2 11.0 59.3 

45 67 60 420 7.0 90.0 33.9 0.05 24.1 

59 70 59 525 8.9 91.4 34.4 0.01 19.4 

68 359 300 613 2.0 72.7 66.1 42.9 60.2 

75 72 60 665 11.1 90.0 34.2 0.001 15.4 

77 180 160 688 4.3 90.0 33.4 0.9 36.8 

79 94 80 689 8.6 90.1 33.6 0.01 19.8 

80 112 99 691 7.0 90.9 33.8 0.05 24.4 

89 88 70 788 11.3 90.1 34.0 0.001 15.3 

94 93 80 881 11.0 90.0 33.8 0.001 15.6 

98 91 80 896 11.2 90.0 34.2 0.001 15.3 

106 121 100 1096 11.0 90.0 33.3 0.001 15.6 

107 114 100 1112 11.1 90.0 33.7 0.001 15.4 

108 162 128 1115 8.7 91.4 33.6 0.008 19.9 
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TABLE III. 

THE CHARACTERISTICS OF THE NEW KN INSTANCES.  THE INSTANCES DENOTED BY * SHOULD HAVE 

A UNIQUE OPTIMAL SMPTSP SOLUTION. LB = LOWER BOUND OBTAINED USING SOLYALI PROCEDURE. 

# #Emps #Shifts 

LB 

#Tasks @AVG Tightness 

level 

Task skill level Shift skill level Overlap 

level 

    1* 20 20 105 5.3 100 24.5 0.06 33.0 

    2 25 25 125 5.0 93.9 19.8 0.03 32.8 

    3* 30 30 146 4.9 100 60.3 8.5 35.9 

    4 35 35 174 5.0 94.5 62.0 9.3 33.8 

    5* 40 40 200 5.0 100 18.8 0.02 35.2 

    6 45 45 216 4.8 95.5 17.7 0.02 35.2 

    7* 50 50 266 5.3 100 32.1 0.2 33.5 

    8 55 55 265 4.8 95.0 63.3 11.1 35.0 

    9* 60 60 297 5.0 99.5 20.3 0.04 35.6 

   10 65 65 335 5.2 95.5 54.9 4.6 33.2 

   11* 70 70 352 5.0 99.5 19.8 0.03 35.2 

   12 75 75 363 4.8 94.0 39.9 1.2 34.6 

   13* 80 80 417 5.2 99.0 15.0 0.005 34.0 

   14 85 85 434 5.1 95.0 36.5 0.6 33.3 

   15* 100 100 506 5.1 98.5 10.8 0.001 34.7 

   16 110 110 583 5.3 95.5 42.5 1.1 32.4 

   17* 120 120 613 5.1 98.0 7.7 0.0002 34.4 

   18 130 130 641 4.9 94.5 31.1 0.3 34.5 

   19* 140 140 670 4.8 97.6 5.2 0.00007 36.4 

   20 150 149 782 5.2 95.0 29.4 0.2 32.9 

   21 160 160 802 5.0 97.3 62.7 9.6 34.8 

   22 180 180 843 4.7 97.0 37.8 1.1 36.9 

   23 200 199 967 4.8 95.0 19.9 0.04 35.3 

   24 240 239 1157 4.8 96.6 57.9 7.1 35.9 

   25 280 279 1419 5.1 96.3 32.5 0.3 34.3 

   26 320 309 1611 5.0 95.0 5.4 0.00004 32.7 

   27 360 356 1763 4.9 96.0 63.7 11.0 35.2 

   28 400 399 2012 5.0 96.0 40.0 1.0 34.4 

   29 450 443 2231 5.0 94.5 12.0 0.003 34.4 

   30 500 488 2473 4.9 93.5 8.6 0.0005 34.1 

 

TABLE IV. 

THE CHARACTERISTICS OF THE SELECTED FL INSTANCES 

# #Emps #Shifts 

 

#Tasks @AVG Tightness 

level 

Task skill level Shift skill level Overlap 

level 

28 262 105 402 3.8 19.1 26.0 0.6 11.0 

29 248 95 355 3.7 18.5 28.3 0.9 11.6 

31 290 116 488 4.2 21.0 25.7 0.3 10.4 

33 338 132 534 4.0 20.3 25.7 0.4 10.8 

35 308 118 469 4.0 19.8 26.6 0.5 11.1 

39 284 108 446 4.1 19.8 25.7 0.4 10.6 

45 376 144 586 4.1 20.5 27.0 0.5 11.4 

46 409 157 635 4.0 20.2 26.6 0.5 11.2 

54 498 190 850 4.5 22.5 25.8 0.2 10.7 

60 443 173 783 4.5 21.9 27.0 0.3 10.7 

61 551 222 891 4.0 20.0 26.3 0.5 11.0 

62 610 262 1096 4.2 20.8 25.5 0.3 10.2 

63 524 203 905 4.5 21.9 26.5 0.3 11.1 

64 366 140 570 4.1 20.2 26.2 0.3 11.0 

68 561 219 958 4.4 21.4 27.3 0.4 11.0 

69 550 211 891 4.2 21.1 26.1 0.3 10.8 

77 648 248 1123 4.5 22.1 26.6 0.3 10.7 

79 638 246 1052 4.3 21.0 26.3 0.3 10.8 

80 578 222 885 4.0 19.6 27.0 0.5 11.2 

84 644 247 1121 4.5 21.9 26.1 0.2 10.4 

94 812 313 1394 4.5 21.9 25.7 0.2 10.6 
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ESMPTSP solution as well. The second set of instances can 

have many different optimum SMPTSP solutions per 

instance, from which we should find the best ESMPTSP 

solution. These instances should be easier to solve as 

tightness level decreases and shift skill level increases. 

The generator creates instances where the minimum 

number of shifts should be the same as the number of 

employees. The basic idea is to construct an instance along 

with a feasible solution. Applying the lower bounding 

procedure of Solyali [22] confirmed this for 21 instances. 

However, when the number of employees increases and the 

tightness level decreases, the generator may create instances 

where the minimum number of shifts is less than the number 

of employees. 

Table IV shows the characteristics of the thirty instances 

generated. We refer to this data set as KN instances. The 

characteristics clearly show that the instances are distinctly 

different from the existing data sets. The instances denoted 

by * belong to the first set of instances, which should have a 

unique optimum SMPTSP solution. 

The existing three data sets can be found in [23] and the 

new KN data set in [24]. We provide the new KN instances 

in the traditional SMPTSP format as well as in the GTGSP 

format. 

V.  RUIN AND RECREATE HEURISTIC 

We use a ruin and recreate heuristic similar to that 

described in [25] to solve the ESMPTSP. Pseudo code for 

the algorithm is given in Fig. 2. Our version of ruin and 

recreate heuristic (2RH) has been created to solve practical 

GTSGP instances. In practical applications of the GTSGP, 

we should 

 

− generate as versatile shifts as possible to  

− ensure that the rostering of the staff can be 

completed, so that 

− the computation time is still acceptable considering 

the release time of the rosters. 

 

Therefore, we do not seek the fastest possible solution 

method. Instead, it is advantageous to use more computation 

time in order to achieve shifts that are more versatile.  

The ruin operator first chooses a random task t0 assigned 

to some shift s0 and removes a random sequence of adjacent 

tasks from s0 containing t0. For each task sorted by closeness 

to t0 w.r.t. time windows and skills, similar removal is done 

if the corresponding shift has not been removed from yet. 

The underlying idea is that by removing whole strings of 

tasks from shifts at a time, room is created for new tasks to 

be inserted, and due to the way removed tasks are selected, 

at least some of them are more or less interchangeable 

between shifts. When the total number of removed tasks 

exceeds the given parameter, the ruin operator quits. 

The recreate operator adds free tasks one by one to their 

respective best positions in the incumbent solution. First, all 

free tasks are sorted in order of how many times they have 

been unassigned after recreation during the solution process. 

This is done in order to emphasize tasks that seem more 

difficult to place in the solution. For each task t, all feasible 

addition positions in the incumbent solution are evaluated.  

The concept of a position depends on the exact problem. 

For the GTSGP, a position is determined by an immediate 

predecessor, e.g. a task or an employee. Note that the tasks 

can have wide time windows in the GTSGP, hence the order 

of tasks within a shift is not predetermined. In the SMPTSP 

there are no time windows, which fixes the order of tasks 

within a shift. Task t is then added to the position that leads 

to the best objective function value, with a small chance to 

skip over to the next best position. Consecutive skipping is 

not constrained in any way, so t might not get assigned even 

if it has feasible addition positions. When all free tasks have 

been processed, the recreate operator quits. 

Essential parameters of 2RH and the values used in our 

computational experiments include  

 

− average number of tasks removed per ruin operator 

(10), 

− maximum length of task string to remove from a 

single shift (8), 

− recreate skipping chance (1%), and 

− move skipping chance (1%). 

 

 
Fig.  2 The pseudo-code of the ruin and recreate heuristic. 
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VI.  COMPUTATIONAL RESULTS 

This section presents our computational results for the 

ESMPTSP benchmark instances introduced in Section 4. As 

was stated in previous section, our implementation of 2RH 

requires sufficient running time to tackle the largest practical 

instances. For each ESMPTSP benchmark instance, we 

execute eight parallel 2RH runs exactly four hours. We also 

register the running time elapsed to reach the first solution to 

the SMPTSP as well as the value for the ESMPTSP at that 

time. 

Note that our implementation of 2RH is such that the best 

solution is generally reached at the later stages of the 

optimization run. We could find the first solution to the 

SMPTSP faster if we used less maximum running time for 

2RH. It should also be noted here, that running parallel 

2RHs one hour instead of four hours seems to weaken 

ESMPTSP solutions only at most 5%. This could be 

acceptable for practical applications, since after the shift 

generation and staff rostering have completed, new tasks will 

most certainly arise and some of the tasks need to be 

changed or removed. 

Tables V, VI, VII and VIII show our results for the 

benchmark instances. We ran the instances using hierarchical 

objective, i.e. α = m
2
 + 1 and β = 1, i.e. only solutions 

optimal w.r.t. to the underlying SMPTSP need to be 

considered. The optimum values for the underlying 

SMPTSPs were derived from the recent paper by 

Chandrasekharan et al. [21]. The test runs were carried out 

on a workstation with AMD Ryzen 9 3950X 16-Core 

Processor at 3.49GHz and with 64GB RAM running 

Windows 10 using default settings. 2RH is implemented in 

C++. 

We used no domain specific knowledge in order to 

generate better solutions, nor did we fine-tune any 

parameter. However, we also experimented with different 

numbers of parallel runs, different parameter values and 

different running times. We publish the best solutions we 

have found during these experiments, but we emphasize that 

these solutions are shown only for comparison purposes. For 

comparison purposes, we also conducted 30-minute test runs 

with Gurobi 8.1. Gurobi was able to verify, that we have 

found the optimum ESMPTSP solution for 16 instances. For 

the other 70 instances, we do not know the optimum values. 

Note that Gurobi was not able to find optimum solutions to 

any of the SWMB and FL instances. 

First, the results show that 2RH can solve the underlying 

SMPTSP instances extremely well and sufficiently fast. With 

respect to the SMPTSP, the heuristic can successfully solve 

the most challenging existing benchmark instances as well as 

the new KN instances. The SWMB instances are very 

challenging. These instances have a high average number of 

tasks per shift and low task skill levels, which implies very 

low shift skill levels.  

With respect to the running time required to reach the 

SMPTSP optimum, SWMB4 and SWMB8 are easier, and 

SWMB3 and SWMB6 harder. We could not solve SWMB7 

and SWMB10 instances within the given time limit using the 

given parameter set. However, we did find the SMPTSP 

optimum by increasing the time limit. 

The FL instances are quite easy to solve. The instances 

have very low tightness levels and shift skill levels are not 

too low. The KEB instances are easy to solve. This is true 

even for those instances that have low shift skill levels. We 

have no other reason for this than the high task skill levels. 

With respect to the running time required to reach the 

SMPTSP optimum, KEB080 and FL77 are the hardest ones. 

Our goal in creating the KN data set was to generate 

instances that are more challenging. The results indicate this 

to be true at least for our ruin and recreate heuristic. There 

are mainly two reasons for this: higher tightness levels and 

lower task skill levels. 

With respect to the running time required to reach the 

SMPTSP optimum, the easiest instances are KN5 and KN19. 

Among the instances with equal number of shifts and 

employees, the hardest instances are KN7 and KN22. We 

could not solve KN26, KN29 and KN30 instances to the 

lower bound value. We suspect that our solutions to these 

instances are not optimal. 

We define the ratio r = e/s, where s = the best-known 

SMPTSP value and e = the number of feasible pairs in the 

best-known ESMPTSP solution. In general, we could argue 

that instances with high r values should be easier to solve as 

SMPTSP and as ESMPTSP instances, because several 

employees may carry out several shifts. This seems to be 

true, because the FL instances have a very high r value, and 

the SWMB instances have r values very close to one.  

However, for the KEB and KN instances, there is no 

correlation between r values and hardness of instances. 

We only know the optimum ESMPTSP values for 16 of 

the 86 benchmark instances. It should be clear, that the 

combinatorial search space for an ESMPTSP instance 

increases when its r value increases. Therefore, we speculate 

that our solution to the ESMPTSP should be closer to the 

optimum value for those instances that have low r values.  

The KN instances intended to have a unique optimum 

SMPTSP solution turned out to be almost trivial for Gurobi. 

The corresponding SMPTSP instances were solved in a few 

seconds each. It seems likely that the instances are so heavily 

constrained that methods focused on reducing the search 

space are far superior to any pure heuristics. 

VII.  CONCLUSIONS 

We presented a mathematical formulation of the Extended 

Shift Minimization Personnel Task Scheduling Problem 

(ESMPTSP), which in turn is a highly simplified version of 

the GTSGP. We showed that the presented 2RH heuristic 

can successfully solve ESMPTSP benchmark instances. 

Furthermore, we showed that the heuristic was able to find 

optimal solutions to the SMPTSP instances. 
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We published a new data set for the SMPTSP and the 

ESMPTSP. We provide the new instances in the traditional 

SMPTSP format as well as in the GTGSP format. The 

instances, along with our best solutions, have been made 

available online [24].  

This was the first encounter of solving the SMPTSP 

instances as ESMPTSP instances. Even though the 

computational results were encouraging, we suspect that 

better solutions for most of the instances exist. Furthermore, 

there should be room for both more efficient solution 

methods and efficient lower bounding methods. These would 

also bring more insight to the hardness of the problem as 

well as to the hardness of the current benchmark instances. 

No matter the point during the planning process at which 

the problem is solved, there will always be changes, be it to 

the tasks themselves due to e.g. changed customer 

expectations or the employees at our disposal due to e.g. sick 

leaves. In practice, solutions with equal number of shifts and 

larger number of feasible pairs are better because the 

flexibility of the assignment of the shifts is increased, making 

it easier to assign existing shifts to different employees. This 

justifies the ESMPTSP in the big picture of the workforce 

optimization and the real-world workforce scheduling 

process. We believe that the presented method is suitable for 

application in large real-world scenarios. 

 

 

 

 

  

 

 

  

TABLE V. 

THE RESULTS FOR KEB INSTANCES. TIMES GIVEN IN MINUTES. 

THE FINAL ESMPTSP SOLUTION IS THE BEST OF EIGHT FOUR-

HOUR PARALLEL 2RH RUNS. THE BEST SOLUTIONS WE HAVE 

FOUND IN OUR OTHER TEST RUNS ARE ALSO REPORTED.  

THE SOLUTIONS DENOTED BY 
O

 ARE OPTIMUM. 

 

# 

SMPTSP 

optimum 

Time to reach  

the SMPTSP 

optimum 

# of 

feasible 

pairs at 

that time 

Final # of  

feasible 

pairs 

Best #  

we have 

found 

4 20 0.001 30 53 o  

5 20 0.001 41 62 o  

9 40 0.06 161 233  

11 20 0.03 20 29 30 o 

13 20 0.03 20 31 32 o 

15 60 0.02 506 684 694 

17 20 0.1 58 97  

22 40 0.1 351 518 524 

28 60 0.3 1152 1489 1497 

29 20 0.2 33 68 69 

30 20 0.3 31 78  

35 140 0.06 2701 3534 3558 

45 60 2 63 110 114 

59 59 1.7 60 79 85 

68 300 0.2 46422 49448 49539 

75 60 3 60 76 84 

77 160 1.8 485 1021 1053 

79 80 3 84 127 131 

80 99 9 121 214 219 

89 70 0.9 70 92 95 

94 80 4 80 110 115 

98 80 6 81 109 113 

106 100 3 100 140 146 

107 100 4 100 140 146 

108 128 7 136 220 232 

 

TABLE VII. 

THE RESULTS FOR FL INSTANCES. TIMES GIVEN IN MINUTES. THE 

FINAL ESMPTSP SOLUTION IS THE BEST OF EIGHT FOUR-HOUR 

PARALLEL 2RH RUNS. THE BEST SOLUTIONS WE HAVE FOUND IN 

OUR OTHER TEST RUNS ARE ALSO REPORTED. 

 

# 

SMPTSP 

optimum 

Time to reach  

the SMPTSP 

optimum 

# of 

feasible 

pairs at 

that time 

Final # of  

feasible 

pairs 

Best #  

we have 

found 

28 105 0.1 3181 4034 4051 

29 95 0.1 3389 4285 4296 

31 116 0.1 3614 4505 4535 

33 132 0.2 4728 5915 5933 

35 118 0.1 4418 5374 5393 

39 108 0.2 3318 4215 4224 

45 144 0.3 6526 8456 8461 

46 157 0.7 7306 9699 9702 

54 190 1 9560 11321  

60 173 0.6 8102 9648 9698 

61 222 2 14084 17590 17646 

62 262 3 16776 19419 19497 

63 203 1 11140 13088 13191 

64 140 0.3 5981 7499 7524 

68 219 2 14331 18576 18682 

69 211 1 12506 15945 16045 

77 248 14 17619 20824 20986 

79 246 2 16974 21917 22056 

80 222 1 16096 20034 20154 

84 247 4 17515 21953 22110 

94 313 6 25574 30006 30342 

 

TABLE VI. 

THE RESULTS FOR SWMB INSTANCES. TIMES GIVEN IN MINUTES. 

THE FINAL ESMPTSP SOLUTION IS THE BEST OF EIGHT FOUR-

HOUR PARALLEL 2RH RUNS. THE BEST SOLUTIONS WE HAVE 

FOUND IN OUR OTHER TEST RUNS ARE ALSO REPORTED. SWMB7 

AND SWMB10 COULD NOT BE SOLVED WITHIN THE GIVEN TIME 

LIMIT. 

 

# 

SMPTSP 

optimum 

Time to reach  

the SMPTSP 

optimum 

# of 

feasible 

pairs at 

that time 

Final # of  

feasible 

pairs 

Best #  

we have 

found 

1 40 67 40 41 45 

2 40 30 40 41 42 

3 77 139 83 101 117 

4 98 15 98 111 114 

5 59 86 59 60  

6 116 207 116 129  

7 59 * * * 59 

8 79 30 79 80  

9 98 102 98 99  

10 116 * * 116  
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TABLE VIII.

THE RESULTS FOR KN  INSTANCES.  THE INSTANCES DENOTED BY *

SHOULD HAVE A UNIQUE OPTIMAL SMPTSP SOLUTION. TIMES GIVEN IN

MINUTES (X = NOT FOUND WITHIN THE GIVEN TIME LIMIT). THE FINAL

ESMPTSP  SOLUTION IS THE BEST OF EIGHT FOUR-HOUR PARALLEL

2RH RUNS. THE BEST SOLUTIONS WE HAVE FOUND IN OUR OTHER TEST

RUNS ARE ALSO REPORTED. KN26, KN29 AND KN30 COULD NOT BE

SOLVED WITHIN THE GIVEN TIME LIMIT. THE SOLUTIONS DENOTED BY O

ARE OPTIMUM.

#
Best

found
SMPTSP
solution

Time to reach 
the best found

SMPTSP
solution

# of
feasible
pairs at

that time

Final # of 
feasible

pairs

Best # 
we have
found

    1* 20 0.002 43 43 o

    2 25 0.03 55 57 o

    3* 30 26 235 235 o

    4 35 1 365 456
    5* 40 0.08 89 89 o

    6 45 0.3 96 101o

    7* 50 192 147 147 o

    8 55 0.6 1063 1369 1375
    9* 60 21 76 76 o

   10 65 3.8 753 1259 1271
   11* 70 36 118 118 o

   12 75 0.9 945 1361 1378
   13* 80 43 220 220 o

   14 85 29 791 1106 1160
   15* 100 37 128 128 o

   16 110 34 1446 2562 2621
   17* 120 11 131 131 o

   18 130 10 1471 3012 3150
   19* 140 1 152 152 o

   20 149 128 1620 2513 2933
   21 160 42 8473 11858 12101
   22 180 179 4411 5952 6888
   23 199 148 1852 2163 2654
   24 239 92 18041 24858 25835
   25 279 110 6452 9674 11778
   26 316 * * * 795
   27 356 156 47213 63392 66171
   28 399 92 24160 44071 51277
   29 445 * * * 5190
   30 495 * * * 2731
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