
Abstract—In workforce scheduling, shift generation is the

process of determining the shift structure, along with the tasks

to be carried out in particular shifts. Application areas of shift

generation include hospitals, retail stores, contact centers,

cleaning, home care, guarding, manufacturing and delivery of

goods. We present an extension to the Shift Minimization Per-

sonnel Task Scheduling Problem that is a problem in which a

set of tasks with fixed start and finish times have to be allocated

to a heterogeneous workforce. The objective in the SMPTSP is

to minimize the number of employees required to carry out the

given set of tasks. In the ESMPTSP, another objective is to

maximize the number of feasible (shift, employee) pairs. We

provide a mathematical formulation of the extended problem.

We present an efficient ruin and recreate heuristic along with

computational results for existing SMPTSP data sets and to a

new data set. The presented heuristic is suitable for application

in large real-world scenarios. The new instances, along with

our best solutions, have been made available online.

I. INTRODUCTION

HIFT generation is the process of transforming the deter-

mined workload into shifts as accurately as possible. For

labor-intensive industries, such as hospitals, retail stores,

contact centers, cleaning, home care, guarding, manufactur-

ing and delivery of goods, it is crucial to find a good match

between the predicted and scheduled workload. The gener-

ated shifts form an input for the staff rostering, where em-

ployees are assigned to the shifts (see e.g. [1], [2] and [3]).

S

The generation of shifts is based on either the varying

number of required employees working during the planning

horizon or the tasks that the shifts must cover. We call these

employee-based and task-based shift generation problems.

The first major contribution for the employee-based shift

generation problem was the study by Musliu et al. [4]. They

introduced a problem, in which the workforce requirements

for a certain period of time were given, along with

constraints about the possible start times and the length of

shifts, and an upper limit for the average number of duties

per week per employee. Di Gaspero et al. [5] proposed a

problem in which the most important issue was to minimize

the number of different kinds of shifts used.

Kyngäs et al. [6] introduced the unlimited shift generation

problem in which the most important goal is to minimize

understaffing and overstaffing. They define a strict version

of the problem, in the sense that each timeslot should be

exactly covered by the correct number of employees. In the

person-based multitask shift generation problem with breaks

presented in [7], employees can have their personal shift

length constraints and competences. The goal is to ensure

that the employees can execute the shifts later in the staff

rostering phase.

In the task-based shift generation problem the goal is to

create shifts and assign tasks to these shifts so that the

employees can be assigned to the shifts. The first major

contribution of the task-based problem was the study by

Dowling et al. [8]. They developed a day-to-day planning

tool and to estimate a minimal staff set capable of operating

as the ground staff of an international airport. Valls et al. [9]

introduced a model where they minimized the number of

workers required to perform a machine load plan. They

presented a coloring approach to identify possible

allocations along with bounds on the branch-and-bound

search tree.

Krishnamoorthy and Ernst [10] introduced a similar group

of problems, which they called Personnel Task Scheduling

Problems (PTSP). Given the staff that are rostered on a

particular day, the PTSP is to allocate each individual task,

with specified start and end times, to available staff who have

skills to perform the task. Later, Krishnamoorthy et al. [11]

introduced a special case referred as Shift Minimization

Personnel Task Scheduling Problem (SMPTSP) in which the

goal is to minimize the number of employees used to

perform the shifts. The SMPTSP has been studied under a

few other names. Jansen [12] called SMPTSP the license and

shift class design problem. Kroon et al. [13] called SMPTSP

tactical fixed interval scheduling problem, and showed that

solving it to optimality is NP-hard. The SMPTSP is also

similar to the basic interval scheduling problem presented in

[14] where the goal is to decide which jobs to process on

which machines.

The Extended Shift Minimization Personnel Task Scheduling

Problem

Nico Kyngäs
Satakunta University of Applied

Sciences, Satakunnankatu 23,

28130 Pori, Finland

Email: nico.kyngas@samk.fi

Kimmo Nurmi
Satakunta University of Applied

Sciences, Satakunnankatu 23,

28130 Pori, Finland

Email: nico.kyngas@samk.fi

Position and Communication Papers of the 16
th Conference on

Computer Science and Intelligence Systems pp. 65±74

DOI: 10.15439/2021F35

ISSN 2300-5963 ACSIS, Vol. 26

©2021, PTI 65

The General Task-based Shift Generation Problem

(GTSGP) was defined in [15]. Given the tasks that should be

rostered on a particular day, the GTSGP is to create

anonymous shifts and assign tasks to these shifts so that

employees can be assigned to the shifts. The targeted tasks

must be completed within a given time window. For

example, shelving in retail stores is often carried out in the

forenoon. Some tasks are so-called back-office tasks. For

example, in a contact center answering emails might require

a given number of working hours per day dedicated to the

activity but these tasks can be carried out any time of the

day.

The main contributions of this paper are the following:

− a mathematical formulation of the Extended Shift

Minimization Personnel Task Scheduling Problem

(ESMPTSP)

− a ruin and recreate heuristic, which can

successfully solve ESMPTSP instances

− a new benchmark set for the SMPTSP.

The paper is organized as follows. Section 2 first

describes the Shift Minimization Personnel Task Scheduling

Problem and the General Task-based Shift Generation

Problem. Then we define the Extended Shift Minimization

Personnel Task Scheduling Problem as an extension to the

SMPTSP and as a highly simplified version of the GTSGP.

In Section 3, we give the mathematical formulation of the

ESMPTSP. We also present a simplified instance of the

problem. Section 4 describes the most challenging SMPTSP

benchmark instances, which we solve as ESMPTSP

instances. Furthermore, we introduce a new benchmark

instance set for the SMPTSP. This data set is generated

especially for the ESMPTSP. In Section 5, we describe a

ruin and recreate heuristic, which can successfully solve

instances of SMPTSP, ESMPTSP and GTSGP. Finally,

Section 6 presents the first computational results for solving

the ESMPTSP. We also compare the results to the best-

known SMPTSP results.

II. PROBLEM DESCRIPTION

 The Shift Minimization Personnel Task Scheduling

Problem [11] can be defined formally as follows. A set of

tasks J = t1,...,tn needs to be allocated to a set of

heterogeneous employees E = e1,...,em over a specified

planning horizon. The processing time interval at which a

task t has to be performed is determined by a timetable with

fixed start time st and finish time ft. Each employee e has a

set of tasks Je ⊆ J that e can carry out. Each task t has a set

of employees Et ⊆ E that can carry out t. All sets Je and Et

are defined based on skills of employees/skill requirements

of tasks and availability of employees/time windows of tasks.

The objective is to minimize the number of employees

required to perform the given set of tasks. The following

basic assumptions hold:

A1. Preemption of tasks is not allowed.

A2. There are no precedence constraints among the

tasks.

A3. Each task is processed only once without

interruption.

A4. Each employee can execute only one task at a time.

The General Task-based Shift Generation Problem

(GTSGP) [15] has the same assumptions besides (A2).

However, the problem differs from the SMPTSP in several

important ways:

B1. Tasks are not explicitly assigned to employees.

B2. Tasks are not fixed in time.

B3. Tasks may have shift-local precedence constraints.

B4. Transition times between tasks are considered.

B5. Employees have total working time restrictions.

B6. Employees have availability restrictions.

The GTSGP is to create anonymous shifts and assign tasks

to these shifts so that employees can be assigned to the shifts.

Instead of minimizing the number of employees required to

carry out the given set of tasks, the objective is to maximize

the number of feasible (shift, employee) pairs. The

mathematical formulation of the problem was first given in

[16]. The idea is to ensure that the resulting set of shifts can

be carried out by the employees, i.e. each shift can be

assigned to an employee s.t. all shifts are assigned to

someone and no employee is assigned to multiple shifts.

In practical applications of the GTSGP, the full-time

permanent and temporary employees are expected to cover

100% of the total workload in the shift generation, and later

in the staff rostering phase. This is opposite to the idea

behind the SMPTSP, where a large pool of casual staff is

expected to be available and management would like to

minimize the pool usage.

By including only requirements (B1) and (B2), we obtain

the following simplified version of the GTSGP. The set of

shifts S is to be generated. A set of tasks T is to be assigned

to the shifts. Each task t has a duration dt (in timeslots) and a

time window [lbt, ubt]. A task t must not start before lbt and

must not end after ubt. Each task is related to the collection

of skills required by the tasks, which is a subset of the skill

set C. Respectively, each employee e from the set of

employees E has a collection Ke of skills. The number of

shifts is usually the same as the number of available

employees. In case of understaffing, additional pseudo

employees can be used.

A solution to the simplified GTSGP is feasible if the

following three hard constraints have no violations:

H1. The tasks in the shift do not overlap in time

(overlap).

H2. Each shift can be executed by one or more

employees, i.e. the skill set required by the tasks in

each shift is possessed by one or more employees

(shift).

H3. Each shift can be assigned to an employee s.t. all

shifts are assigned to someone and no employee is

assigned to multiple shifts (combination).

66 POSITION AND COMMUNICATION PAPERS OF THE FEDCSIS. ONLINE, 2021

Modifying (B2) to allow only fixed timetables for the

tasks, we have a further simplified version of the GTSGP.

We call this problem the Extended Shift Minimization

Personnel Task Scheduling Problem (ESMPTSP). The

objective is to first minimize the number of employees

required to carry out the given set of tasks and then to

maximize the number of feasible (shift, employee) pairs.

III. ESMPTSP FORMULATION

 In this section, we give the mathematical formulation of

the ESMPTSP. We also present a small instance of the

ESMPTSP along with an example solution. We start with

introducing some additional definitions and the decision

variables:

For w ≠ v, we call xjwv pseudoassignments of v to w with

respect to j, as they represent whether j could be assigned to

v assuming j is assigned to w. Similarly, we call ywv

pseudoassignments of v to w, as they represent whether all

the tasks (and thus the entire shift) assigned to w could be

assigned to v.

The objective function (Equation 1) consists of the

weighted sum of the number of used employees and the

number of able (employee, shift) pairs. The rest of the

equations ensure the following:

(2) Each task will be carried out by exactly one able

employee.

(3) No overlapping tasks are assigned to a single

employee, and the indicator for using an employee

indicates employee usage, i.e. that at least one task

is assigned to the employee.

(4) A shift cannot be pseudoassigned to an employee if

it has shifts the employee is unable to do.

(5) Empty shifts are not counted as pseudoassignments.

(6,7) Tasks are pseudoassigned according to both actual

assignments and the abilities of the employees.

(8,9) Variables must be binary.

Fig. 1 shows a small instance of the ESMPTSP along with

an example solution. The instance and the presented example

of feasible (shift, employee) pairs have the following

characteristics:

− The tasks in the shift do not overlap in time

(overlap).

− The planning period is divided into 18 timeslots.

− The number of tasks is 14 and the number of

employees is 7 (indicated by letters from A to G).

− The duration of the tasks is given by the length of

the corresponding rectangles.

− The employees able to carry out a task are

indicated by the letters in the rectangles.

− The parentheses indicate a (non-unique) feasible

assignment between tasks/shifts and employees.

− The colors indicate which tasks are assigned to the

same shift.

− The solution is clearly optimal in the number of

shifts, as at least 6 concurrent shifts are needed

during slot 12.

− Furthermore, employee E can carry out the blue

shift, A and C the brown shift, D and E the green

shift, E the yellow shift, B, D and F the violet shift,

and A, D and E the red shift, totalling 18 feasible

(shift, employee) pairs.

Fig. 1 A small instance of the ESMPTSP and a feasible solution. The

letters indicate employees able to carry out a task. The colors indicate

generated shifts.

NICO KYNG ÈAS, KIMMO NURMI: THE EXTENDED SHIFT MINIMIZATION PERSONNEL TASK SCHEDULING PROBLEM 67

IV. BENCHMARK INSTANCES

We have basically two possibilities to create benchmark

instances for the ESMPTSP: either to extend SMPTSP

instances or to simplify GTSGP instances. We use both

approaches. First, we use instances selected from the three

current SMPTSP data sets. This approach has two benefits.

The instances need no modifications whatsoever and a

significant number of studies and algorithms have been

designed to solve the problem. This enables the authors of

the current SMPTSP algorithms to try their ideas to the

ESMPTSP more easily. Second, we generate a new fourth

data set for the SMPTSP, which is derived from the

simplified GTSGP instances.

Krishnamoorthy et al. [11] presented the first data set of

137 instances for the SMPTSP. The data set is referred to as

KEB instances. They used a Lagrangian approach to solve

large instances of the SMPSTP. Smet et al. [17] generated

the second data set of ten instances, because they were able

to solve all KEB instances to optimality. The data set is

referred to as SWMB instances. Fages and Lapegue [18]

generated the third data set of 100 instances, because KEB

and SWMB instances were trivial with respect to finding

good quality lower bounds. This data set is referred to as FL

instances.

As the first benchmark set for the ESMPTSP, we decided

to select 56 very challenging instances from the three

SMPTSP data sets. From the KEB data set, we selected 25

instances based on the performance of the three heuristics on

the data set. An FL instance was selected if at least one of

the following criteria holds:

C1. The solution (number of employees) obtained by the

constructive heuristic of Lin and Ying [19] was at

least 7% inferior to the optimum solution.

C2. The solution obtained by the iterative heuristic of

Lin and Ying [19] was at least 2% inferior to the

optimum solution.

C3. The greedy heuristic of Hojati [20] was unable to

find the optimum solution.

Some of these instances are quite easy to solve as

SMPTSP instances. This enables the authors of the SMPTSP

algorithms to try their ideas to the ESMPTSP more easily.

Note however, that we are not aware of how easy or difficult

the instances are to solve as ESMPTSP instances.

From the SWMB data set, we selected all the ten

instances.

From FL instances, we selected the 21 instances. We

excluded instances #5 and #89, for which the minimum

number of shifts is not known. Note that the instances were

also unsolved by the Smet et al. method in [17]. An instance

was selected if either one of the following criteria holds:

D1. The solution obtained by Fages and Lapegue [18]

was at least 3% inferior to the known optimum

solution.

D2. The greedy heuristic of Hojati [20] was not able

find the optimum solution.

Tables I, II and III show the characteristics of the selected

instances. The number of shifts denotes the known optimum

value for the SMPTSP, i.e. the minimum number of shifts

derived from the recent paper by Chandrasekharan et al.

[21]. The @AVG measure indicates the estimated average

number of tasks per non-empty shift, i.e. the number of tasks

is divided by the minimum number of shifts.

The tightness level is defined as the total length of all

tasks as a percentage of the total availability of all

employees. The task skill level is defined as the average

percentage of the total number of tasks each employee is

qualified for. In addition to the task skill level, the shift skill

level describes, how qualified an average employee is to

carry out all the tasks of an average shift. We define shift

skill level = t
a
, where t = task skill level and a = @AVG. The

overlap level is the probability of two random tasks to

overlap. To calculate the probability, we need to iterate all

task pairs once to check whether they overlap or not.

In order to make an instance challenging, the following

guidelines can be drawn from the discussions and results in

[11, 17, 18, 19 and 20]:

− The number of tasks and the number of employees

influence the hardness of the instance, since they

enlarge the search space.

− The combinatorial search space increases when the

average number of tasks per shift increases.

− The tightness level should be closer to 90%.

− The task skill level should be at most 33%.

− The shift skill level should be way below 1%.

− The overlap level should be at most 40%.

However, these are general observations and no statistical

evidence can be drawn from the guidelines. We generated a

new fourth data set for the SMPTSP and the ESMPTSP

based on the above guidelines. We had two goals for the new

data set. First, the instances should be more challenging than

the existing ones, and second, the characteristics of the

instances should be distinctly different compared to the

current data sets.

We have created an elaborate random test instance

generator for the GTSGP (see [16]). The generator is guided

by five parameter sets having a total number of seventeen

parameters. We disabled and omitted most of the parameters

to generate SMPTSP and ESMPTSP instances. The

instances were generated using the following guidelines:

− The instances should be versatile.

− The minimum number of shifts should be the same

as the number of employees.

− The number of employees varies from 20 to 500.

− The average number of tasks per shift is close to 5.

This is about the same as the average in the other

data sets.

− The tightness level should be at least 93% and in

most of the cases close to 100%. This is clearly

higher than in the other data sets. The level should

decrease when the number of employees increases.

68 POSITION AND COMMUNICATION PAPERS OF THE FEDCSIS. ONLINE, 2021

− The task skill level should vary from 5% to 65%.

In some cases, the level should be clearly lower

than in the other data sets. A higher value should

increase the ESMPTSP solution value.

− The shift skill level should be at most 1%, and in

some cases less than 0.001%. The variation should

be about the same as in the other data sets

altogether. Note, that seven instances have values

close to 10%, which should increase the

ESMPTSP solution value.

− The overlap level should be between 30% and

40%. This is on average higher than in the other

data sets.

We decided to create two distinct instance sets. The first

set of instances should have a unique optimum SMPTSP

solution. When the objective is treated hierarchically, i.e.

α = m
2
 + 1 and β = 1, this results in a unique optimum

TABLE II.

THE CHARACTERISTICS OF THE SWMB INSTANCES

#Emps #Shifts

#Tasks @AVG Tightness

level

Task skill level Shift skill level Overlap

level

1 50 40 258 6.5 89.6 19.5 0.003 25.6

2 44 40 510 12.4 87.6 19.6 0.0000002 13.3

3 102 77 525 6.8 93.5 30.0 0.03 25.4

4 113 98 647 6.6 91.7 20.0 0.002 25.7

5 77 59 777 13.2 91.5 29.7 0,00001 13.2

6 135 116 777 6.7 92.9 19.9 0.002 25.8

7 70 59 781 13.2 88.5 19.9 0.00000006 13.1

8 88 79 1022 12.8 90.0 19.9 0,0000001 13.5

9 125 98 1308 13.2 90.9 19.8 0,00000005 13.2

10 153 116 1577 13.6 93.1 19.9 0,00000003 13.1

TABLE I.

THE CHARACTERISTICS OF THE SELECTED KEB INSTANCES

#Emps #Shifts

#Tasks @AVG Tightness

level

Task skill level Shift skill level Overlap

level

4 23 20 59 3.0 88.3 34.4 4.3 46.7

5 25 20 60 3.0 90.2 36.2 4.7 46.9

9 49 40 104 2.6 89.9 35.0 6.5 57.3

11 24 20 119 6.0 90.0 36.2 0.2 26.0

13 25 20 120 6.0 90.2 35.8 0.2 25.9

15 72 60 126 2.1 74.5 34.2 10.5 59.6

17 23 20 139 7.0 90.0 67.7 6.7 23.6

22 47 40 180 4.5 89.9 67.4 16.9 36.1

28 75 60 208 3.5 90.1 66.8 24.7 45.0

29 22 20 219 11.0 89.8 67.2 1.3 15.0

30 25 20 219 11.0 90.1 68.8 1.7 15.0

35 171 140 280 2.0 70.3 33.2 11.0 59.3

45 67 60 420 7.0 90.0 33.9 0.05 24.1

59 70 59 525 8.9 91.4 34.4 0.01 19.4

68 359 300 613 2.0 72.7 66.1 42.9 60.2

75 72 60 665 11.1 90.0 34.2 0.001 15.4

77 180 160 688 4.3 90.0 33.4 0.9 36.8

79 94 80 689 8.6 90.1 33.6 0.01 19.8

80 112 99 691 7.0 90.9 33.8 0.05 24.4

89 88 70 788 11.3 90.1 34.0 0.001 15.3

94 93 80 881 11.0 90.0 33.8 0.001 15.6

98 91 80 896 11.2 90.0 34.2 0.001 15.3

106 121 100 1096 11.0 90.0 33.3 0.001 15.6

107 114 100 1112 11.1 90.0 33.7 0.001 15.4

108 162 128 1115 8.7 91.4 33.6 0.008 19.9

NICO KYNG ÈAS, KIMMO NURMI: THE EXTENDED SHIFT MINIMIZATION PERSONNEL TASK SCHEDULING PROBLEM 69

TABLE III.

THE CHARACTERISTICS OF THE NEW KN INSTANCES. THE INSTANCES DENOTED BY * SHOULD HAVE

A UNIQUE OPTIMAL SMPTSP SOLUTION. LB = LOWER BOUND OBTAINED USING SOLYALI PROCEDURE.

#Emps #Shifts

LB

#Tasks @AVG Tightness

level

Task skill level Shift skill level Overlap

level

 1* 20 20 105 5.3 100 24.5 0.06 33.0

 2 25 25 125 5.0 93.9 19.8 0.03 32.8

 3* 30 30 146 4.9 100 60.3 8.5 35.9

 4 35 35 174 5.0 94.5 62.0 9.3 33.8

 5* 40 40 200 5.0 100 18.8 0.02 35.2

 6 45 45 216 4.8 95.5 17.7 0.02 35.2

 7* 50 50 266 5.3 100 32.1 0.2 33.5

 8 55 55 265 4.8 95.0 63.3 11.1 35.0

 9* 60 60 297 5.0 99.5 20.3 0.04 35.6

 10 65 65 335 5.2 95.5 54.9 4.6 33.2

 11* 70 70 352 5.0 99.5 19.8 0.03 35.2

 12 75 75 363 4.8 94.0 39.9 1.2 34.6

 13* 80 80 417 5.2 99.0 15.0 0.005 34.0

 14 85 85 434 5.1 95.0 36.5 0.6 33.3

 15* 100 100 506 5.1 98.5 10.8 0.001 34.7

 16 110 110 583 5.3 95.5 42.5 1.1 32.4

 17* 120 120 613 5.1 98.0 7.7 0.0002 34.4

 18 130 130 641 4.9 94.5 31.1 0.3 34.5

 19* 140 140 670 4.8 97.6 5.2 0.00007 36.4

 20 150 149 782 5.2 95.0 29.4 0.2 32.9

 21 160 160 802 5.0 97.3 62.7 9.6 34.8

 22 180 180 843 4.7 97.0 37.8 1.1 36.9

 23 200 199 967 4.8 95.0 19.9 0.04 35.3

 24 240 239 1157 4.8 96.6 57.9 7.1 35.9

 25 280 279 1419 5.1 96.3 32.5 0.3 34.3

 26 320 309 1611 5.0 95.0 5.4 0.00004 32.7

 27 360 356 1763 4.9 96.0 63.7 11.0 35.2

 28 400 399 2012 5.0 96.0 40.0 1.0 34.4

 29 450 443 2231 5.0 94.5 12.0 0.003 34.4

 30 500 488 2473 4.9 93.5 8.6 0.0005 34.1

TABLE IV.

THE CHARACTERISTICS OF THE SELECTED FL INSTANCES

#Emps #Shifts

#Tasks @AVG Tightness

level

Task skill level Shift skill level Overlap

level

28 262 105 402 3.8 19.1 26.0 0.6 11.0

29 248 95 355 3.7 18.5 28.3 0.9 11.6

31 290 116 488 4.2 21.0 25.7 0.3 10.4

33 338 132 534 4.0 20.3 25.7 0.4 10.8

35 308 118 469 4.0 19.8 26.6 0.5 11.1

39 284 108 446 4.1 19.8 25.7 0.4 10.6

45 376 144 586 4.1 20.5 27.0 0.5 11.4

46 409 157 635 4.0 20.2 26.6 0.5 11.2

54 498 190 850 4.5 22.5 25.8 0.2 10.7

60 443 173 783 4.5 21.9 27.0 0.3 10.7

61 551 222 891 4.0 20.0 26.3 0.5 11.0

62 610 262 1096 4.2 20.8 25.5 0.3 10.2

63 524 203 905 4.5 21.9 26.5 0.3 11.1

64 366 140 570 4.1 20.2 26.2 0.3 11.0

68 561 219 958 4.4 21.4 27.3 0.4 11.0

69 550 211 891 4.2 21.1 26.1 0.3 10.8

77 648 248 1123 4.5 22.1 26.6 0.3 10.7

79 638 246 1052 4.3 21.0 26.3 0.3 10.8

80 578 222 885 4.0 19.6 27.0 0.5 11.2

84 644 247 1121 4.5 21.9 26.1 0.2 10.4

94 812 313 1394 4.5 21.9 25.7 0.2 10.6

70 POSITION AND COMMUNICATION PAPERS OF THE FEDCSIS. ONLINE, 2021

ESMPTSP solution as well. The second set of instances can

have many different optimum SMPTSP solutions per

instance, from which we should find the best ESMPTSP

solution. These instances should be easier to solve as

tightness level decreases and shift skill level increases.

The generator creates instances where the minimum

number of shifts should be the same as the number of

employees. The basic idea is to construct an instance along

with a feasible solution. Applying the lower bounding

procedure of Solyali [22] confirmed this for 21 instances.

However, when the number of employees increases and the

tightness level decreases, the generator may create instances

where the minimum number of shifts is less than the number

of employees.

Table IV shows the characteristics of the thirty instances

generated. We refer to this data set as KN instances. The

characteristics clearly show that the instances are distinctly

different from the existing data sets. The instances denoted

by * belong to the first set of instances, which should have a

unique optimum SMPTSP solution.

The existing three data sets can be found in [23] and the

new KN data set in [24]. We provide the new KN instances

in the traditional SMPTSP format as well as in the GTGSP

format.

V. RUIN AND RECREATE HEURISTIC

We use a ruin and recreate heuristic similar to that

described in [25] to solve the ESMPTSP. Pseudo code for

the algorithm is given in Fig. 2. Our version of ruin and

recreate heuristic (2RH) has been created to solve practical

GTSGP instances. In practical applications of the GTSGP,

we should

− generate as versatile shifts as possible to

− ensure that the rostering of the staff can be

completed, so that

− the computation time is still acceptable considering

the release time of the rosters.

Therefore, we do not seek the fastest possible solution

method. Instead, it is advantageous to use more computation

time in order to achieve shifts that are more versatile.

The ruin operator first chooses a random task t0 assigned

to some shift s0 and removes a random sequence of adjacent

tasks from s0 containing t0. For each task sorted by closeness

to t0 w.r.t. time windows and skills, similar removal is done

if the corresponding shift has not been removed from yet.

The underlying idea is that by removing whole strings of

tasks from shifts at a time, room is created for new tasks to

be inserted, and due to the way removed tasks are selected,

at least some of them are more or less interchangeable

between shifts. When the total number of removed tasks

exceeds the given parameter, the ruin operator quits.

The recreate operator adds free tasks one by one to their

respective best positions in the incumbent solution. First, all

free tasks are sorted in order of how many times they have

been unassigned after recreation during the solution process.

This is done in order to emphasize tasks that seem more

difficult to place in the solution. For each task t, all feasible

addition positions in the incumbent solution are evaluated.

The concept of a position depends on the exact problem.

For the GTSGP, a position is determined by an immediate

predecessor, e.g. a task or an employee. Note that the tasks

can have wide time windows in the GTSGP, hence the order

of tasks within a shift is not predetermined. In the SMPTSP

there are no time windows, which fixes the order of tasks

within a shift. Task t is then added to the position that leads

to the best objective function value, with a small chance to

skip over to the next best position. Consecutive skipping is

not constrained in any way, so t might not get assigned even

if it has feasible addition positions. When all free tasks have

been processed, the recreate operator quits.

Essential parameters of 2RH and the values used in our

computational experiments include

− average number of tasks removed per ruin operator

(10),

− maximum length of task string to remove from a

single shift (8),

− recreate skipping chance (1%), and

− move skipping chance (1%).

Fig. 2 The pseudo-code of the ruin and recreate heuristic.

NICO KYNG ÈAS, KIMMO NURMI: THE EXTENDED SHIFT MINIMIZATION PERSONNEL TASK SCHEDULING PROBLEM 71

VI. COMPUTATIONAL RESULTS

This section presents our computational results for the

ESMPTSP benchmark instances introduced in Section 4. As

was stated in previous section, our implementation of 2RH

requires sufficient running time to tackle the largest practical

instances. For each ESMPTSP benchmark instance, we

execute eight parallel 2RH runs exactly four hours. We also

register the running time elapsed to reach the first solution to

the SMPTSP as well as the value for the ESMPTSP at that

time.

Note that our implementation of 2RH is such that the best

solution is generally reached at the later stages of the

optimization run. We could find the first solution to the

SMPTSP faster if we used less maximum running time for

2RH. It should also be noted here, that running parallel

2RHs one hour instead of four hours seems to weaken

ESMPTSP solutions only at most 5%. This could be

acceptable for practical applications, since after the shift

generation and staff rostering have completed, new tasks will

most certainly arise and some of the tasks need to be

changed or removed.

Tables V, VI, VII and VIII show our results for the

benchmark instances. We ran the instances using hierarchical

objective, i.e. α = m
2
 + 1 and β = 1, i.e. only solutions

optimal w.r.t. to the underlying SMPTSP need to be

considered. The optimum values for the underlying

SMPTSPs were derived from the recent paper by

Chandrasekharan et al. [21]. The test runs were carried out

on a workstation with AMD Ryzen 9 3950X 16-Core

Processor at 3.49GHz and with 64GB RAM running

Windows 10 using default settings. 2RH is implemented in

C++.

We used no domain specific knowledge in order to

generate better solutions, nor did we fine-tune any

parameter. However, we also experimented with different

numbers of parallel runs, different parameter values and

different running times. We publish the best solutions we

have found during these experiments, but we emphasize that

these solutions are shown only for comparison purposes. For

comparison purposes, we also conducted 30-minute test runs

with Gurobi 8.1. Gurobi was able to verify, that we have

found the optimum ESMPTSP solution for 16 instances. For

the other 70 instances, we do not know the optimum values.

Note that Gurobi was not able to find optimum solutions to

any of the SWMB and FL instances.

First, the results show that 2RH can solve the underlying

SMPTSP instances extremely well and sufficiently fast. With

respect to the SMPTSP, the heuristic can successfully solve

the most challenging existing benchmark instances as well as

the new KN instances. The SWMB instances are very

challenging. These instances have a high average number of

tasks per shift and low task skill levels, which implies very

low shift skill levels.

With respect to the running time required to reach the

SMPTSP optimum, SWMB4 and SWMB8 are easier, and

SWMB3 and SWMB6 harder. We could not solve SWMB7

and SWMB10 instances within the given time limit using the

given parameter set. However, we did find the SMPTSP

optimum by increasing the time limit.

The FL instances are quite easy to solve. The instances

have very low tightness levels and shift skill levels are not

too low. The KEB instances are easy to solve. This is true

even for those instances that have low shift skill levels. We

have no other reason for this than the high task skill levels.

With respect to the running time required to reach the

SMPTSP optimum, KEB080 and FL77 are the hardest ones.

Our goal in creating the KN data set was to generate

instances that are more challenging. The results indicate this

to be true at least for our ruin and recreate heuristic. There

are mainly two reasons for this: higher tightness levels and

lower task skill levels.

With respect to the running time required to reach the

SMPTSP optimum, the easiest instances are KN5 and KN19.

Among the instances with equal number of shifts and

employees, the hardest instances are KN7 and KN22. We

could not solve KN26, KN29 and KN30 instances to the

lower bound value. We suspect that our solutions to these

instances are not optimal.

We define the ratio r = e/s, where s = the best-known

SMPTSP value and e = the number of feasible pairs in the

best-known ESMPTSP solution. In general, we could argue

that instances with high r values should be easier to solve as

SMPTSP and as ESMPTSP instances, because several

employees may carry out several shifts. This seems to be

true, because the FL instances have a very high r value, and

the SWMB instances have r values very close to one.

However, for the KEB and KN instances, there is no

correlation between r values and hardness of instances.

We only know the optimum ESMPTSP values for 16 of

the 86 benchmark instances. It should be clear, that the

combinatorial search space for an ESMPTSP instance

increases when its r value increases. Therefore, we speculate

that our solution to the ESMPTSP should be closer to the

optimum value for those instances that have low r values.

The KN instances intended to have a unique optimum

SMPTSP solution turned out to be almost trivial for Gurobi.

The corresponding SMPTSP instances were solved in a few

seconds each. It seems likely that the instances are so heavily

constrained that methods focused on reducing the search

space are far superior to any pure heuristics.

VII. CONCLUSIONS

We presented a mathematical formulation of the Extended

Shift Minimization Personnel Task Scheduling Problem

(ESMPTSP), which in turn is a highly simplified version of

the GTSGP. We showed that the presented 2RH heuristic

can successfully solve ESMPTSP benchmark instances.

Furthermore, we showed that the heuristic was able to find

optimal solutions to the SMPTSP instances.

72 POSITION AND COMMUNICATION PAPERS OF THE FEDCSIS. ONLINE, 2021

We published a new data set for the SMPTSP and the

ESMPTSP. We provide the new instances in the traditional

SMPTSP format as well as in the GTGSP format. The

instances, along with our best solutions, have been made

available online [24].

This was the first encounter of solving the SMPTSP

instances as ESMPTSP instances. Even though the

computational results were encouraging, we suspect that

better solutions for most of the instances exist. Furthermore,

there should be room for both more efficient solution

methods and efficient lower bounding methods. These would

also bring more insight to the hardness of the problem as

well as to the hardness of the current benchmark instances.

No matter the point during the planning process at which

the problem is solved, there will always be changes, be it to

the tasks themselves due to e.g. changed customer

expectations or the employees at our disposal due to e.g. sick

leaves. In practice, solutions with equal number of shifts and

larger number of feasible pairs are better because the

flexibility of the assignment of the shifts is increased, making

it easier to assign existing shifts to different employees. This

justifies the ESMPTSP in the big picture of the workforce

optimization and the real-world workforce scheduling

process. We believe that the presented method is suitable for

application in large real-world scenarios.

TABLE V.

THE RESULTS FOR KEB INSTANCES. TIMES GIVEN IN MINUTES.

THE FINAL ESMPTSP SOLUTION IS THE BEST OF EIGHT FOUR-

HOUR PARALLEL 2RH RUNS. THE BEST SOLUTIONS WE HAVE

FOUND IN OUR OTHER TEST RUNS ARE ALSO REPORTED.

THE SOLUTIONS DENOTED BY
O

 ARE OPTIMUM.

SMPTSP

optimum

Time to reach

the SMPTSP

optimum

of

feasible

pairs at

that time

Final # of

feasible

pairs

Best #

we have

found

4 20 0.001 30 53 o

5 20 0.001 41 62 o

9 40 0.06 161 233

11 20 0.03 20 29 30 o

13 20 0.03 20 31 32 o

15 60 0.02 506 684 694

17 20 0.1 58 97

22 40 0.1 351 518 524

28 60 0.3 1152 1489 1497

29 20 0.2 33 68 69

30 20 0.3 31 78

35 140 0.06 2701 3534 3558

45 60 2 63 110 114

59 59 1.7 60 79 85

68 300 0.2 46422 49448 49539

75 60 3 60 76 84

77 160 1.8 485 1021 1053

79 80 3 84 127 131

80 99 9 121 214 219

89 70 0.9 70 92 95

94 80 4 80 110 115

98 80 6 81 109 113

106 100 3 100 140 146

107 100 4 100 140 146

108 128 7 136 220 232

TABLE VII.

THE RESULTS FOR FL INSTANCES. TIMES GIVEN IN MINUTES. THE

FINAL ESMPTSP SOLUTION IS THE BEST OF EIGHT FOUR-HOUR

PARALLEL 2RH RUNS. THE BEST SOLUTIONS WE HAVE FOUND IN

OUR OTHER TEST RUNS ARE ALSO REPORTED.

SMPTSP

optimum

Time to reach

the SMPTSP

optimum

of

feasible

pairs at

that time

Final # of

feasible

pairs

Best #

we have

found

28 105 0.1 3181 4034 4051

29 95 0.1 3389 4285 4296

31 116 0.1 3614 4505 4535

33 132 0.2 4728 5915 5933

35 118 0.1 4418 5374 5393

39 108 0.2 3318 4215 4224

45 144 0.3 6526 8456 8461

46 157 0.7 7306 9699 9702

54 190 1 9560 11321

60 173 0.6 8102 9648 9698

61 222 2 14084 17590 17646

62 262 3 16776 19419 19497

63 203 1 11140 13088 13191

64 140 0.3 5981 7499 7524

68 219 2 14331 18576 18682

69 211 1 12506 15945 16045

77 248 14 17619 20824 20986

79 246 2 16974 21917 22056

80 222 1 16096 20034 20154

84 247 4 17515 21953 22110

94 313 6 25574 30006 30342

TABLE VI.

THE RESULTS FOR SWMB INSTANCES. TIMES GIVEN IN MINUTES.

THE FINAL ESMPTSP SOLUTION IS THE BEST OF EIGHT FOUR-

HOUR PARALLEL 2RH RUNS. THE BEST SOLUTIONS WE HAVE

FOUND IN OUR OTHER TEST RUNS ARE ALSO REPORTED. SWMB7

AND SWMB10 COULD NOT BE SOLVED WITHIN THE GIVEN TIME

LIMIT.

SMPTSP

optimum

Time to reach

the SMPTSP

optimum

of

feasible

pairs at

that time

Final # of

feasible

pairs

Best #

we have

found

1 40 67 40 41 45

2 40 30 40 41 42

3 77 139 83 101 117

4 98 15 98 111 114

5 59 86 59 60

6 116 207 116 129

7 59 * * * 59

8 79 30 79 80

9 98 102 98 99

10 116 * * 116

NICO KYNG ÈAS, KIMMO NURMI: THE EXTENDED SHIFT MINIMIZATION PERSONNEL TASK SCHEDULING PROBLEM 73

REFERENCES

[1] A.T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff
scheduling and rostering: A review of applications, methods and
models”, European Journal of Operational Research vol. 153, no. 1,
pp. 3-27, 2004.

[2] J. Van den Bergh, J. Belin, P. De Bruecker, E. Demeulemeester and L.
De Boeck, “Personnel scheduling: A literature review”, European
Journal of Operational Research vol. 226, no. 3, pp 367-385, 2013.

[3] L. Kletzander and N. Musliu, “Solving the General Employee
Scheduling Problem”, Computers and Operations Research, vol. 13:
104794, 2020.

[4] N. Musliu, A. Schaerf and W. Slany, “Local search for shift design”,
European Journal of Operational Research, vol. 153, no. 1, pp. 51-64,
2004.

[5] L. Di Gaspero, J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf and W.
Slany, “The minimum shift design problem", Annals of Operations
Research, vol. 155, no. pp. 79-105, 2007.

[6] N. Kyngäs, D. Goossens, K. Nurmi and J. Kyngäs, “Optimizing the
unlimited shift generation problem”, In: Di Chio C. et al. (eds)
Applications of Evolutionary Computation. EvoApplications, Lecture
Notes in Computer Science, vol. 7248, pp. 508-518, 2012.

[7] N. Kyngäs, K. Nurmi and J. Kyngäs, “Solving the person-based
multitask shift generation problem with breaks”, Proceedings of the
5th International Conference On Modeling, Simulation And Applied
Optimization, pp. 1-8, 2013.

[8] D. Dowling, M. Krishnamoorthy, H. Mackenzie and H. Sier, “Staff
rostering at a large international airport”, Annals of Operations
Research vol. 72, pp. 125-147, 1997.

[9] V. Valls, A. Perez and S. Quintanilla, ”A graph colouring model for
assigning a heterogenous workforce to a given schedule”, European
Journal of Operations Research vol. 90, pp. 285-302, 1996.

[10] M. Krishnamoorthy and A.T. Ernst, “The personnel task scheduling
problem”, Optimization Methods and Applications, pp. 343–367,
2001.

[11] M. Krishnamoorthy, A.T. Ernst and D. Baatar, “Algorithms for large
scale Shift Minimisation Personnel Task Scheduling Problems”,
European Journal of Operational Research, vol. 219, no. 1, pp. 34-48,
2012.

[12] K. Jansen, “An approximation algorithm for the license and shift class
design problem”, European Journal of Operational Research vol. 73,
pp. 127-131, 1994.

[13] L.G. Kroon, M. Salomon and L.N. Van Wassenhove, “Exact and
approximation algorithms for the tactical fixed interval scheduling
problem”, Operations Research vol. 45, no. 4, pp. 624-638, 1997.

[14] A.W.J. Kolen, J.K. Lenstra, C.H. Papadimitriou and F.C.R. Spieksma,
“Interval Scheduling: A Survey”, Naval Research Logistics vol. 54,
no. 5, pp. 530-543, 2007.

[15] K. Nurmi, N. Kyngäs and J. Kyngäs, "Workforce Optimization: the
General Task-based Shift Generation Problem", IAENG International
Journal of Applied Mathematics, vol. 49, no. 4, pp. 393-400, 2019.

[16] N. Kyngäs, K. Nurmi and D. Goossens, “The General Task-based
Shift Generation Problem: Formulation and Benchmarks”,
Proceedings of the 9th Multidisciplinary International Scheduling
Conference: Theory and Applications (MISTA), pp. 301-319, 2019.

[17] P. Smet, T. Wauters, M. Mihaylov and G. Vanden Berghe, “The shift
minimization personnel task scheduling problem: A new hybrid
approach and computational insights”, Omega vol. 46, pp. 64-73,
2014.

[18] J.G. Fages and T. Lapegue, “Filtering Atmostnvalue with Difference
Constraints: Application to the Shift Minimisation Personnel Task
Scheduling Problem”, Lecture Notes in Computer Science, vol. 8124,
pp. 63-79, 2013.

[19] S.-W. Lin and K.-C. Ying, “Minimizing Shifts for Personnel task
Scheduling Problems: A three-Phase Algorithm”, European Journal of
Operational Research vol. 237, pp. 323-334, 2014.

[20] M. Hojati, “A greedy heuristic for shift minimization personnel task
scheduling problem”, Computers and Operations Research vol. 100,
pp. 66-76, 2018.

[21] R. Chirayil Chandrasekharan, P. Smet, and T. Wauters, “An automatic
constructive matheuristic for the shift minimization personnel task
scheduling problem”, J Heuristics, Feb. 2020, doi: 10.1007/s10732-
020-09439-9.

[22] O. Solyali, “The Shift Minimization Personnel Task Scheduling
Problem: An Effective Lower Bounding Procedure”, Hacettepe
Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 34, no. 2,
Jun. 2016, doi: 10.17065/huniibf.259136.

[23] T. Lapègue: “Personnel Task Scheduling Problem Library", [Online].
Available: https://sites.google.com/site/ptsplib/smptsp/instances, (Last
access 15-January-2021).

[24] K. Nurmi: “The General Task-based Shift Generation Problem -
Benchmark Instances", [Online]. Available: http://web.samk.fi/public/
tkiy/GTSGP/, (Last update 26-July-2021).

[25] K. Sörensen, M. Sevaux and F. Glover, “A History of Metaheuristics”,
In: R. Martí, P. Pardalos and M. Resende (eds) Handbook of
Heuristics, pp. 791-808, 2018.

TABLE VIII.

THE RESULTS FOR KN INSTANCES. THE INSTANCES DENOTED BY *

SHOULD HAVE A UNIQUE OPTIMAL SMPTSP SOLUTION. TIMES GIVEN IN

MINUTES (X = NOT FOUND WITHIN THE GIVEN TIME LIMIT). THE FINAL

ESMPTSP SOLUTION IS THE BEST OF EIGHT FOUR-HOUR PARALLEL

2RH RUNS. THE BEST SOLUTIONS WE HAVE FOUND IN OUR OTHER TEST

RUNS ARE ALSO REPORTED. KN26, KN29 AND KN30 COULD NOT BE

SOLVED WITHIN THE GIVEN TIME LIMIT. THE SOLUTIONS DENOTED BY O

ARE OPTIMUM.

#
Best

found
SMPTSP
solution

Time to reach
the best found

SMPTSP
solution

of
feasible
pairs at

that time

Final # of
feasible

pairs

Best #
we have
found

 1* 20 0.002 43 43 o

 2 25 0.03 55 57 o

 3* 30 26 235 235 o

 4 35 1 365 456
 5* 40 0.08 89 89 o

 6 45 0.3 96 101o

 7* 50 192 147 147 o

 8 55 0.6 1063 1369 1375
 9* 60 21 76 76 o

 10 65 3.8 753 1259 1271
 11* 70 36 118 118 o

 12 75 0.9 945 1361 1378
 13* 80 43 220 220 o

 14 85 29 791 1106 1160
 15* 100 37 128 128 o

 16 110 34 1446 2562 2621
 17* 120 11 131 131 o

 18 130 10 1471 3012 3150
 19* 140 1 152 152 o

 20 149 128 1620 2513 2933
 21 160 42 8473 11858 12101
 22 180 179 4411 5952 6888
 23 199 148 1852 2163 2654
 24 239 92 18041 24858 25835
 25 279 110 6452 9674 11778
 26 316 * * * 795
 27 356 156 47213 63392 66171
 28 399 92 24160 44071 51277
 29 445 * * * 5190
 30 495 * * * 2731

74 POSITION AND COMMUNICATION PAPERS OF THE FEDCSIS. ONLINE, 2021

