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Abstract—In this work we investigate advanced stochastic
methods for solving a specific multidimensional problem re-
lated to neural networks. Monte Carlo and quasi-Monte Carlo
techniques have been developed over many years in a range
of different fields, but have only recently been applied to the
problems in neural networks. As well as providing a consistent
framework for statistical pattern recognition, the stochastic
approach offers a number of practical advantages including a
solution to the problem for higher dimensions. For the first time
multidimensional integrals up to 100 dimensions related to this
area will be discussed in our numerical study.

I. INTRODUCTION

IN 2011 Shaowei Lin in his works [5],[6] consider the prob-

lem of evaluating multidimensional integrals in Bayesian

statistics which are used in neural networks. The first has the

form ∫

Ω

pu1

1 (x) . . . pus

s (x)dx, (1)

where Ω ∈ Rs, x = (x1, . . . , xs), pi(x) are polynomials and

ui are integers. The second kind of integrals has the form
∫

Ω

e−Nf(x)φ(x)dx, (2)

where f(x) and φ(x) are multidimensional polynomials and

N is an integer number. These integrals are evaluated unsatis-

factory with deterministic [11] and algebraic methods [9] up to

now, and it is known that Monte Carlo methods [3] outperform

these methods especially for high dimensions [12].

We will now give a brief explanation which demonstrates

the strength of the MC and QMC approach [3]. According to

[3] we will choose 100 nodes on the each of the coordinate

axes in the s-dimensional cube G = Es and we have to

Venelin Todorov is supported by the Bulgarian National Science Fund under
Project KP-06-M32/2 - 17.12.2019 ”Advanced Stochastic and Deterministic
Approaches for Large-Scale Problems of Computational Mathematics” and by
the National Scientific Program ”Information and Communication Technolo-
gies for a Single Digital Market in Science, Education and Security (ICT
in SES)”, contract No DO1-205/23.11.2018, financed by the Ministry of
Education and Science in Bulgaria. The work is also supported by Bulgarian
National Science Fund under Project DN 12/5-2017 ”Efficient Stochastic
Methods and Algorithms for Large-Scale Problems” and by the Project
KP-06-Russia/17 ”New Highly Efficient Stochastic Simulation Methods and
Applications” funded by the National Science Fund - Bulgaria.

evaluate about 10100 values of the function f(x). Assume a

time of 10−7s is necessary for calculating one value of the

function [3]. So, a time of order 1093s will be necessary for

computation of the integral, and 1 year has 31536× 103s.

Now MC approach consists of generating N pseudo random

values (points) (PRV) in G; in evaluating the values of f(x)
at these points; and averaging the computed values of the

function. For each uniformly distributed random (UDR) point

in G we have to generate 100 UDR numbers in [0, 1]. Assume

that the expression in front of h−6 is of order 1 [3]. Here

h = 0.1, and we have N ≈ 106; so, it will be necessary to

generate 100 × 106 = 10 × 107 PRV. Usually, 2 operations

are sufficient to generate a single PRV. According to [3] the

time required to generate one PRV is the same as that for

computation the value of f(x). So, in order to solve the task

with the same accuracy, a time of

10× 107 × 2× 10−7 ≈ 20s

will be necessary. We summarize that in the case of 100-

dimensional integral it is 5 × 1091 times faster than the

deterministic one. That motivates our study on the new highly

efficient stochastic approaches for the problem under consid-

eration.

II. THE NEW STOCHASTIC APPROACH

We will use this rank-1 lattice sequence [10]:

xk =

{

k

N
z

}

, k = 1, . . . , N, (3)

where N is an integer, N ≥ 2, z = (z1, z2, . . . zs) is the

generating vector and {z} denotes the fractional part of z. For

the definition of the Eα
s (c) and Pα(z,N) see [10] and for

more details, see also [1].

Definition 1: Consider the point set X = {xi | i =
1, 2, . . . N} in [0, 1)s and N > 1. Denote by xi =

(x
(1)
i , x

(2)
i , . . . , x

(s)
i ) and J(v) = [0, v1)×[0, v2)×. . .×[0, vs).

Then the discrepancy of the set is defined as

D∗
N := sup

0≤vj≤1

∣

∣

∣

∣

∣

∣

#{xi ∈ J(v)}

N
−

s
∏

j=1

vj

∣

∣

∣

∣

∣

∣

. (4)
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In 1959 Bahvalov proved that [1] there exists an optimal

choice of the generating vector z:

∣

∣

∣

∣

∣

∣

∣

1

N

N
∑

k=1

f

({

k

N
z

})

−

∫

[0,1)s

f(u)du

∣

∣

∣

∣

∣

∣

∣

≤ cd(s, α)
(logN)β(s,α)

Nα
,

(5)

for the function f ∈ Eα
s (c), α > 1 and d(s, α), β(s, α) does

not depend on N .

The generating vector z which satisfies (5), is an optimal

generating vector [10] and while the existence of optimal

generating vectors is proved by the theoretical result, the main

bottleneck lies in the construction of the optimal vectors,

especially for very high dimensions [3].

The first generating vector in our study is the generalized

Fibonacci numbers of the corresponding dimension:

z = (1, F (s)
n (2), . . . , F (s)

n (s)), (6)

where we use that F
(s)
n (j) := F

(s)
n+j−1 −

j−2
∑

i=0

F
(s)
n+i and F

(s)
n+l

(l = 0, . . . , j − 1, j is an integer, 2 ≤ j ≤ s) is the term of

the s-dimensional Fibonacci sequence [10].

If we change the generating vector to be optimal in the way

described in [4] we have improved the lattice sequence. We

will now give the description of the steps of our algorithms.

At the beginning of the algorithm the input is the number of

dimensionality s and the number of samples N . At the first

step of the algorithm s dimensional optimal generating vector

z = (z1, z2, . . . zs) (7)

is generated by the fast construction method described by

Dirk Nuyens [4]. The second step of the algorithm includes

generating the points of lattice rule by formula

xk =

{

k

N
z

}

, k = 1, . . . , N. (8)

And at the third and last step of the algorithm an approximate

value IN of the multidimensional integral is evaluated by the

formula:

IN =
1

N

N
∑

k=1

f

({

k

N
z

})

. (9)

The special choice of this optimal generating vector is

definitely more efficient than the Fibonacci generating vector,

which is only optimal for the two dimensional case [10]. For

our improved lattice rule is satisfied [4]:

D∗
N = O

(

logsN

N

)

. (10)

The steps of working of the algorithm are given on the

flowchart on Fig. 1.

Figure 1. The flowchart of the optimized lattice algorithms

III. NUMERICAL RESULTS

We considered different examples of 4,7,10,30 and 100 di-

mensional integrals, respectively, for which we have computed

their referent values.

Example 1. s = 4.
∫

[0,1]4

x1x
2
2e

x1x2 sin(x3) cos(x4) ≈ 0.108975. (11)

Example 2. s = 7.

∫

[0,1]7

e
1−

3∑

i=1

sin(π
2
.xi)

.arcsin











sin(1) +

7
∑

j=1

xj

200











≈ 0.7515.

(12)

Example 3. s = 10.
∫

[0,1]10

4x1x
2
3e

2x1x3

(1 + x2 + x4)2
ex5+···+x10 ≈ 14.808435. (13)

Example 4. s= 30.
∫

[0,1]30

4x1x
2
3e

2x1x3

(1 + x2 + x4)2
ex5+···+x20x21 . . . x30 ≈ 3.244. (14)

We also consider the 100-dimensional multidimensional

integral defined by the following way:

Example 5. s= 100.

I100 =

∫

[0,1]100

exp

(

100
∏

i=1

xi

)

, (15)

whose reference value is calculated by expanding the expo-

nential function in Taylor series and integrating the terms

(x1 · · ·x100)
n namely

∫

[0,1]100
exp

(

100
∏

i=1

xi

)

=

=
∞
∑

n=0

1

(n+ 1)100n!
=100 F100(1, · · · , 1; 2, · · · , 2; 1),

where pFq(a1, · · · , ap; b1, · · · , bq;x) is the generalized hyper-

geometric function

pFq(a1, · · · , ap; b1, · · · , bq;x) =
∞
∑

n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
,

and (c)n = c(c+1) · · · (c+n−1) is the Pochhammer symbol.
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We make a comparison between the optimized lattice se-

quence with an optimal generating vector (OPT), Fibonacci

lattice sets (FIBO), Latin hypercube sampling (LHS) [7] and

the scrambled Sobol sequence (SOBOLS) [8]. Each Table

below contains information about the stochastic approach

which is applied, the obtained relative errors (REs), the needed

CPU-time in seconds and the number of points. Note that when

the FIBO method is tested, the number of sampled points are

always generalized Fibonacci numbers of the corresponding

dimensionality. The computer working architecture is Core i7-

4710MQ at 2.50GHz and 8GB of RAM. We performs 10 al-

gorithmic runs using MATLAB on CPU Core i7-4710MQ for

the algorithms to validate our assumptions of experimentation.

Table I
ALGORITHM COMPARISON OF THE RES FOR THE 4-DIMENSIONAL

INTEGRAL FOR DIFFERENT NUMBER OF POINTS.

# of points OPT t,s FIBO t,s LHS t,s SOBOLS t,s

1490 6.11e-4 0.002 1.01e-3 0.004 8.16e-4 0.005 3.78e-3 0.47

10671 2.13e-5 0.01 8.59e-5 0.02 6.11e-4 0.01 6.10e-4 1.59

20569 6.56e-6 0.02 3.89e-5 0.03 5.01e-5 0.02 1.97e-5 4.54

39648 9.14e-7 0.06 3.01e-5 0.07 4.18e-5 7.09 9.67e-6 8.26

147312 4.78e-7 0.15 3.71e-6 0.24 2.19e-5 0.28 1.40e-6 27.91

Table II
ALGORITHM COMPARISON OF THE RES FOR THE 4-DIMENSIONAL

INTEGRAL FOR A PRELIMINARY GIVEN TIME.

t, s OPT FIBO LHS SOBOLS

1 5.66e-7 5.62e-6 1.54e-5 6.32e-4

5 3.12e-7 5.38e-7 9.18e-6 1.23e-5

10 5.14e-8 3.77e-7 6.51e-6 8.48e-6

20 3.18e-8 2.67e-8 2.31e-6 1.16e-6

Table III
ALGORITHM COMPARISON OF THE RES FOR THE 7-DIMENSIONAL

INTEGRAL FOR DIFFERENT NUMBER OF POINTS.

# of points OPT t,s FIBO t,s LHS t,s SOBOLS t,s

2000 6.39e-4 0.14 2.81e-3 0.23 5.45e-3 0.25 2.51e-3 1.42

7936 3.23e-4 0.64 1.38e-3 0.87 2.11e-3 0.91 1.16e-3 3.08

15808 1.23e-5 0.95 9.19e-4 1.73 8.31e-4 1.81 7.58e-4 5.89

62725 3.15e-6 2.54 2.78e-5 3.41 6.22e-4 3.5 3.11e-4 15.64

124946 1.12e-6 6.48 6.87e-5 6.90 4.34e-4 7.1 8.22e-5 31.41

Numerical results show significant advantage for the op-

timized lattice sets algorithm based on an optimal generating

vector in comparison with FIBO, LHS and SOBOLS scramble

sequence (1-2 orders). For the 4-th dimensional integral the

best approach is produced by the optimized method OPT - a

relative error 4.78e− 7 for N = 147312 - see Table I and for

20s the best approach is FIBO - 2.67e − 8 in Table II with

two orders better results than both SOBOLS and LHS. For

the 7-th dimensional integral the best approach is produced

by the optimized method OPT - a relative error 1.12e− 6 for

Table IV
ALGORITHM COMPARISON OF THE RES FOR THE 7-DIMENSIONAL

INTEGRAL FOR A PRELIMINARY GIVEN TIME.

t, s OPT FIBO LHS SOBOLS

0.1 7.38e-4 2.38e-3 6.65e-3 8.37e-3

1 1.17e-5 6.19e-4 3.05e-3 1.37e-3

5 2.32e-6 8.81e-5 4.89e-4 8.38e-4

10 9.11e-7 1.88e-5 2.16e-4 4.78e-4

20 7.43e-7 3.87e-6 8.56e-5 9.87e-5

Table V
ALGORITHM COMPARISON OF THE RES FOR THE 10-DIMENSIONAL

INTEGRAL FOR DIFFERENT NUMBER OF POINTS.

# of points OPT t,s FIBO t,s LHS t,s SOBOLS t,s

1597 3.14e-4 0.002 4.39e-3 0.003 7.31e-3 0.01 1.46e-3 0.05

17711 6.21e-5 0.02 1.81e-3 0.04 4.45e-3 0.07 1.83e-4 0.21

121393 4.34e-6 0.15 1.20e-3 0.16 7.23e-4 0.21 3.12e-5 1.47

832040 4.11e-7 0.75 1.19e-5 0.70 3.11e-4 0.83 8.25e-6 14.41

3524578 5.32e-8 6.35 2.63e-6 6.45 8.57e-5 6.7 7.71e-7 139.1

Table VI
ALGORITHM COMPARISON OF THE RES FOR THE 10-DIMENSIONAL

INTEGRAL FOR A PRELIMINARY GIVEN TIME.

t, s OPT FIBO LHS SOBOLS

0.1 4.95e-6 9.19e-6 4.13e-3 4.19e-4

1 8.10e-7 5.63e-6 2.55e-4 1.21e-4

5 3.56e-8 2.15e-6 1.23e-4 7.21e-5

10 4.31e-8 1.79e-6 7.17e-5 3.51e-5

20 9.13e-9 8.61e-7 3.42e-5 7.09e-6

Table VII
ALGORITHM COMPARISON OF THE RES FOR THE 30-DIMENSIONAL

INTEGRAL FOR DIFFERENT NUMBER OF POINTS.

# of points OPT t,s SOBOLS t,s LHS t,s FIBO t,s

1024 1.21e-2 0.02 5.78e-2 0.53 5.68e-2 0.03 8.81e-1 0.02

16384 4.11e-3 0.16 1.53e-2 5.69 8.60e-3 0.18 6.19e-1 0.14

131072 5.24e-4 1.34 1.35e-3 42.1 5.38e-3 1.2 2.78e-1 1.16

1048576 8.81e-5 9.02 6.78e-4 243.9 9.31e-4 8.9 9.86e-2 8.61

Table VIII
ALGORITHM COMPARISON OF THE RES FOR THE 30-DIMENSIONAL

INTEGRAL FOR A PRELIMINARY GIVEN TIME.

t, s OPT SOBOLS LHS FIBO

1 3.48e-3 2.38e-2 7.21e-3 2.38e-1

5 4.23e-4 5.46e-3 5.16e-3 1.81e-1

10 8.91e-5 1.25e-3 8.21e-4 9.48e-2

20 2.33e-5 6.11e-4 4.35e-4 7.87e-2

N = 124946 - see Table III and for 20s the best approach

is OPT - 7.43e − 7 in Table IV with one order better REs

than FIBO and two order better REs than both SOBOLS and

LHS. For the 10-th dimensional integral the best approach is

produced by the optimized method OPT for N = 3524578 the
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Table IX
ALGORITHM COMPARISON OF THE RES FOR THE 100-DIMENSIONAL

INTEGRAL FOR DIFFERENT NUMBER OF POINTS.

# of points OPT t,s FIBO t,s LHS t,s SOBOLS t,s

2
10 5.18e-3 0.05 4.13e-1 0.06 5.18e-2 0.08 6.31e-2 18

2
12 3.18e-3 0.17 1.15e-1 0.18 3.22e-2 0.2 1.23e-2 34

2
16 1.44e-4 9.1 6.12e-2 9.2 8.32e-3 9.7 2.31e-3 170

2
20 6.38e-5 57.6 3.18e-2 58.7 4.51e-3 60 2.34e-4 861

Table X
ALGORITHM COMPARISON OF THE RES FOR THE 100-DIMENSIONAL

INTEGRAL FOR A PRELIMINARY GIVEN TIME.

t, s OPT FIBO LHS SOBOLS

1 2.14e-3 7.18e-2 2.83e-2 9.31e-2
2 1.56e-3 6.02e-2 1.17e-2 8.66e-2
10 2.58e-4 4.12e-2 8.34e-3 6.94e-2
100 8.86e-6 1.13e-2 1.18e-3 3.88e-3

RE is 5.32e− 8 - see Table V and for 20s the best approach

is again OPT - 9.13e − 9 in Table VI with two order better

REs than FIBO and 3-4 order better REs than both SOBOLS

and LHS. For the 30-th dimensional integral the best approach

is produced by the optimized method OPT for N = 1048576
8.81e − 5 - see Table VII and for 20s the best approach is

again OPT - 2.33e − 5 in Table VIII with one order better

REs than both SOBOLS and LHS and 3 order better REs than

both FIBO, which shows that FIBO becomes inefficient for

high dimensions. Finally, for the 100-th dimensional integral

the best approach is produced by the optimized method OPT

for N = 220 the RE is 6.38e − 5 - see Table IX and for

20s the best approach is OPT - 8.86e − 6 in Table X with

4 order better REs than FIBO and 3 orders better REs than

SOBOLS and LHS. From all Tables we can conclude that the

optimized lattice sequence OPT, used for the first time for

the evaluation of this type of multidimensional integrals up to

100 dimensions, gives the best results compared to the other

stochastic approaches with increasing the dimensionality of

the multidimensional integral.

IV. CONCLUSION

In this paper an optimized lattice rule has been tested

on multidimensional integrals reflated to neural networks up

to 100 dimensions. A comprehensive experimental study of

optimized lattice rule, Fibonacci lattice sets, Sobol scrambled

sequence and Latin hypercube sampling has been done on

some case test functions. Our approach is one of the best

available algorithms for high dimensional integrals and the

only possible methods, because the deterministic algorithms

need an huge amount of time for the evaluation of the

multidimensional integral, as it was discussed in this paper.

At the same time the new method is suitable to deal with

100-dimensional problems for less than a minute on a laptop.

It is an important element since this may be crucial in order to

achieve a more reliable interpretation of the results in Bayesian
statistics which is foundational in neural networks, artificial

intelligence and machine learning.
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