

Abstract—This paper describes in detail the Complex Object

Generation (COG) algorithm, which is a semi-automated algo-

rithm for the generation of instances of classes (i.e., objects)

with a complex inner structure for Java and similar languages

designed for black-box testing (i.e., without available source

code). The algorithm was developed and tested as a stand-alone

algorithm and can be used as such (e.g., during unit testing).

However, we plan to use it to generate the parameter values of

generated method invocations, which is a vital part of our in-

terface-based regression testing of software components.

I. INTRODUCTION

OFTWARE development utilizing components has been

around about two decades. Its main idea is to construct

software from isolated parts (called software components),

which can interact solely using well-defined interfaces. One

of the purposes is to enhance the reusability of the software

parts meaning to use a software component in different appli-

cations. On the other hand, a single application often consists

of components possibly from different authors [1]. Besides

the benefits of software parts reuse, there are also some set-

backs, especially regarding testing. Since the components in

a single application can originate from different authors, test-

ing of their correct cooperation within this application is vital

[2], because such testing cannot be performed by the authors

of the individual components.

S

The necessity for testing is even more stressed by the

common situation that the individual components exist in

several versions. These versions can have only subtle

changes, but can also differ significantly [3]. The individual

versions of the component can have different internal calcu-

lations, interact differently with other components, or can

have different public interfaces. Theoretically, the changes

in the internal behavior of the component should not propa-

gate past its interface. So, there should be no influence on

the working of the entire component-based application.

 This work was supported by University specific research project SGS-

2019-018 Processing of heterogeneous data and its specialized applications.

However, the reality is different from this theory. During the

development of the new version of the component, new er-

rors can be introduced, side effects of method invocations

can change, computations may become more complex (e.g.,

because of an improved fidelity of the results) leading to a

longer computation time and a time-out expiration. Further

examples could continue. For the reasons described above, a

thorough regression testing should be performed whenever a

new version of a component is installed to a component-

based application. From this point of view, it is not impor-

tant whether there are changes to the public interface of the

new version of the component or not [2], [4].

In order to support this regression testing, we developed a

testing approach for components without available source

code (i.e., black-box testing). This is, for example, the case

of third-party components, which are not open source. It

should be noted that some form of source code can be ob-

tained using the reverse engineering even when it is not at

our disposal directly. However, this requires additional ef-

fort and the results may not be ideal. Even the languages

such as Java, whose byte code can be transformed to source

code readily, can use obfuscation techniques [5] to hamper

the reverse engineering. There are also legal aspects – the

reverse engineering might violate the software license.

Our approach is designed for black-box testing for the sit-

uation when an old version of a component is replaced by its

new version. The aim is to determine, whether both versions

exhibit the same external behavior within the component-

based application of our interest [2], [3], [4]. A prototype

implementation of this approach was described in [2] in de-

tail. It is implemented in Java and designed for the OSGi [6]

component model, but its core ideas can be used also for

other similar component models and languages [3]. It is im-

plemented in our Interface Analysis Tool (InAnT). The ap-

proach is based on the analysis of public interfaces of the in-

dividual software components in the component-based ap-

plication. The analysis discovers all services provided by

Semi-automated Algorithm for Complex Test Data Generation for

Interface-based Regression Testing of Software Components

Tomas Potuzak
Department of Computer Science and Engineering/

NTIS – New Technologies for the Information Society,

European Center of Excellence, Faculty of Applied

Sciences, University of West Bohemia

Univerzitni 8, 306 14 Plzen, Czech Republic

Email: tpotuzak@kiv.zcu.cz

Richard Lipka
NTIS – New Technologies for the Information

Society, European Center of Excellence/Department

of Computer Science and Engineering, Faculty of

Applied Sciences, University of West Bohemia

Univerzitni 8, 306 14 Plzen, Czech Republic

Email: lipka@kiv.zcu.cz

Proceedings of the 16
th Conference on Computer

Science and Intelligence Systems pp. 501±510

DOI: 10.15439/2021F58

ISSN 2300-5963 ACSIS, Vol. 25

IEEE Catalog Number: CFP2185N-ART ©2021, PTI 501

all the components together with the methods of these servi-

ces. For each method, a set of method invocations (i.e., uni-

que combinations of parameter values) is generated. These

invocations are then performed and their consequences are

observed in an iterative phase. This way, the behavior of the

entire application is recorded. The process is performed in

the application with the old and then with a new version of

the component. The comparison of the two recordings can

then show any changes in the behavior of the entire compo-

nent-based application (presumably caused by the installati-

on of the new version of the component) [2], [3], [4].

For the generation of the parameter values for the method

invocations, various automated approaches can be used, for

example the combinatorial testing [7] or the particle swarm

optimization [8]. The approach used in our prototype imple-

mentation is rather primitive [3]. For parameters of primitive

data types, several common and border values are used. For

general objects, only null value is used [2]. Even then, our

approach was able to uncover changes in our two test cases

[2]. Nevertheless, usage of more realistic values would signi-

ficantly improve the performance of our approach [3].

It should be noted that our interface-based approach for

regression testing of software components is a black-box

testing approach, which means that we do not expect the

access to the source codes of the software components under

tests [2]. At the same time, the most problematic part is the

generation of complex objects. Since there are very few

existing approaches for this task, we decided to develop a

semi-automated approach for it. The approach described in

this paper, the Complex Object Generation (COG), explores

the structure of a selected class and enables to create its new

instance (object) and fill its structure using existing construc-

tors and manual changing of the attributes via a generated

graphical user interface (GUI). The generated objects can be

then used as parameter values for the method invocations.

The COG was implemented in InAnT. First, it was tested as

a stand-alone algorithm and can be used as such (e.g., during

unit testing). However, it will be incorporated into our

interface-based regression testing of software components.

The main idea of the COG algorithm and its initial testing

were briefly described in [3]. The detailed description of the

COG algorithm and all its aspects including its further

testing description is the main contribution of this paper.

II. INANT DESCRIPTION

As mentioned above, the interface-based regression test-

ing of software components is designed for component-based

applications and, as such, its prototype implementation is a

software component itself. It was described in [2] and one of

its important parts – the Deep Object Comparison (DOC) –

was described in [4]. The Complex Object Generation

(COG) is another important part. Nevertheless, the basic no-

tions of the component-based software development and the

basic features of the InAnT are briefly discussed in following

subsections in order to make this paper self-contained.

A. Component-based Software Development

A software component is a black-box software entity with

a well-defined public interface consisting of provided servi-

ces. The component can but does not have to require services

of other components for its functioning. The components are

expected to interact using their public interfaces only. These

general features are common among various types of softwa-

re components. However, the specific details of the aspects,

behavior, and interactions of the software components

depend on the used component model. A specific imple-

mentation of a component model is called a component

framework. There can be (and often are) multiple component

frameworks of a single component model [1], [4].

The prototype implementation of InAnT was implemented

for the Java and the OSGi component model [2], [4]. Curren-

tly, the OSGi is quite widespread in both academic and

industrial fields. There are several OSGi frameworks (i.e.,

implementations of the OSGi model), such as Felix or

Equinox [2]. The OSGi components are called bundles. Each

bundle is a single standard .jar file with additional meta-

information related to the functioning of the OSGi (e.g.,

name and version of the bundle, required and exported

packages, etc.) [2], [6]. Every bundle can provide several

services in the form of Java interfaces. These services with

the exported packages and their content form the public

interface of the bundle [2]. The OSGi is a dynamic compo-

nent model – the components can be installed and uninstalled

on the fly (i.e., without the necessity to restart the OSGi

framework) [9]. To enable this, the OSGi framework runtime

provides means [6] for the control of the lifecycle of the

bundle and also for the exploration of its environment [2].

The testing of the component-based application is similar

to the testing of monolithic applications with additional issu-

es caused by the composition of the components from differ-

rent authors [2]. The testing methods can be divided based

on the availability of the source code for the testers [10].

Source code can be used for the preparation of the tests

leading to white-box testing. If it is not available or not used

for the test preparation, the testing is called the black-box

testing [11]. We consider this type, since the source code can

be often not available for third-party components [2].

Regardless the type of testing, its main principle is to

subject the tested software component to a set of inputs, to

observe the outputs, and to compare them to the expected

outputs [12]. A test is described in a so-called scenario. The

content of the scenario forms the inputs and (optionally) the

expected outputs. For the black-box testing of software

components, each input can correspond to an invocation of a

method of a service of the tested component [2].

B. Generation of Testing Scenarios

Our interface-based regression testing is used to find any

changes of the behavior of a component-based application

after a new version of a software component is installed in-

stead of its old version. The application is tested with the old

502 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

version of the component and then with its new version. For

both test runs, the invocations of the methods of the services

of all components are generated, performed, and their conse-

quences are recorded. The invocations and their consequen-

ces are stored to a recording – a scenario [2].

The InAnT prototype implementation has the form of a

single OSGi bundle installed in the same framework as the

component-based application under test. The invocation

generation starts with the identification of all methods of all

services of all components of the component-based applica-

tion. This is achieved using the OSGi methods for the explo-

ration of the bundles’ environment and the Java reflection

[2]. The found components, their services, and their methods

are added into a data structure with the form of a tree [4].

The structure is then explored and, for every method, an

initial set of invocations is generated. Each invocation is

represented by the values of the method parameters. In our

prototype implementation, the generation of these values is

very simple – several common and border values are used

for the parameters of primitive data types and only the null

value is used for the objects [2]. Each invocation is a unique

combination of parameter values of a method. The generated

invocations are added to the data structure, which forms the

basis of the scenario [4]. The purpose of the COG algorithm

described in this paper is to provide additional object values.

Once the initial invocations are inserted into the data

structure, the iterative phase begins. The data structure is ex-

plored and the invocations are consecutively performed (i.e.,

the corresponding method is invoked with the parameter

values from the invocation). For each performed invocation,

its consequences are observed. There can be multiple conse-

quences of a single method invocation. There are four obser-

ved types – a thrown exception, a return value, a subsequent

invocation of another service method, and a value change in

output parameters of the method [2], [4]. All the consequen-

ces, which are not yet present in the data structure, are added

to the invocation, which caused them.

The subsequent invocations are also added as invocations

for the corresponding method (if they are not yet present).

Their parameter values come from the internal logic of the

components, making them more useful than the generated

parameter values. The subsequent invocation generated in

the (n – 1)th iteration is performed in the nth iteration, where

it can bring new consequences, which might remain hidden if

only the generated initial invocations were used [2], [4].

Nevertheless, the recording of subsequent invocations has

a setback. Since the components are black boxes, the causa-

lity of the performed invocation and its subsequent invocati-

ons is not certain. For example, if there are active threads in

some components, they can perform invocations of methods

of other components independently on our testing, yet these

invocations will be recorded. This can cause false alarms du-

ring the testing scenarios comparison (see Section II.C) [2].

The iterative phase ends when there are no new conseque-

nces added in the last completed iteration [2], [4] or the pre-

Fig. 1 An example two scenarios (data structures) comparison result

set maximal number of iterations was performed. The filled

data structure is stored as a scenario with the old version of

the component to an XML file [2], [4]. The tree-like nature

of the data structure can be observed in Fig. 1.

C. Comparison of Testing Scenarios

After the installation of a new version of a component into

the application under test, the process described in Secti-

on II.B is performed again and a new scenario with the new

version of the component is obtained. The scenario with the

old version of the component is then loaded from the XML

file and the data structures of both scenarios are compared

on every level (i.e., the components level, the services level,

the methods level, etc.) [2], [4].

On every level, the presence of an item in both structures

is checked. If the item is present in both structures, the sub-

tree of the item is expanded in both structures and the

comparison continues in lower levels. If the item is missing

in one of the data structures, this difference is reported and

the lower levels are not explored further, since there is

nothing to compare. The items are considered equal if and

only if their subitems are equal on every sublevel [2], [4]. An

example comparison result is depicted in Fig. 1.

The comparison result is also the result of the entire inter-

face-based regression testing of software components. The

differences found in the data structures indicate a change of

the behavior of the component-based application under test

after the installation of a new version of a component. The

most important differences are on the invocations level and

on the consequences level, since these differences cannot be

easily detected by other means. The changes on the higher

levels mean changes in the public interface of the compo-

nents, which are detectable for example by an advanced sta-

tic analysis (described for example in [13]) [2], [4].

III. RELATED WORK

As it was mentioned in Section I, the most problematic

part of the generation of the parameter values for the method

invocations is the generation of complex objects. As far as

we know, the research literature on this subject is limited,

especially if it comes to the black-box testing. However,

there are several works (partially) related to this subject.

TOMAS POTUZAK, RICHARD LIPKA: SEMI-AUTOMATED ALGORITHM FOR COMPLEX TEST DATA GENERATION 503

A. Generation of Complex Data

There exist some tools for the complex testing input data

generation. Nevertheless, they are in most cases designed for

the web-based applications [14], [15], [16] and deal with

data formats such as XML or JSON instead of instances.

Additionally, they are not designed for black-box testing [3].

The PODAM tool [17] partially resembles the COG as it

deals with standard Java objects. It enables to investigate

their attributes and to fill them with random values based on

their classes. The user can set the parameters of the random

data generation or provide its own data where the random

generation is insufficient or not desirable. However, this can

be done only in the form of the user’s own factory classes

[17]. No GUI for direct input is provided. The tool also does

not support the usage of objects created in past as attributes

of the currently created objects. The source code is not

required, but as the intended usage of the tool is the unit

testing [17], which can be classified as white-box testing [3].

The JOP tool, developed during our past research [18],

[19], enables to generate pools of complex Java objects. Its

functionality is similar to the PODAM tool, but the objects

created in past can be used as attributes of currently created

objects [19]. The details of the object generation are

described in annotations written into the source code [18],

[19]. The object generation itself is possible without these

annotations, but with a limited functionality. So, the know-

ledge of the source code is again presumed [3].

B. Exploration of Object Internal Structure

The knowledge of the objects’ internal structure is necess-

ary for their generation. This information is also vital in oth-

er fields such as memory optimization or object equality [3].

There exist papers focused on the memory optimization in

programming languages with automatic memory manage-

ment (e.g., Java). Their common idea is that some instances

in the memory of a running program are equivalent and all

equivalent instances can be replaced by a single instance

without affecting the execution of the program [3], [4]. Exa-

mples can be found in [20], [21], [22], or [23]. In [20], it is

pointed out that a thorough comparison of two objects (in

order to determine their equality) requires checking of the

graphs of the internal structures of the compared objects for

isomorphism. Since this is a relatively time-consuming task

and a large number of comparisons is expected for the

memory optimization, many tools employ a sort of hash

values or “fingerprints” of the objects to reduce the amount

of necessary computations. Examples are in [20] and [22].

There are also several papers focused on object equality.

In [24], the equals() method generator for complex

objects is discussed. Deep equality is described recursively.

The objects are deep equal if and only if, for all the

corresponding fields of two compared objects, the deep

equality holds [24]. We also employ the Deep Object

Comparison (DOC) [4] for the comparison of objects in the

InAnT tool. In the DOC, two objects are considered equal if

and only if they have the same class, the graphs of their

internal structures are isomorphic, and all values of the cor-

responding attributes of primitive data types in the corres-

ponding vertices of the graphs have the same type and are

equal [3], [4]. The DOC was used for the inspection of the

internal structures of the instances and for their comparison

during the testing described in this paper (see Section V).

C. Utilization of GUI for Setting Attribute Values

The employing a generated GUI for the data objects

attributes values is discussed in several papers as well.

In [25], focused on a black-box testing of software comp-

onents in .NET, the generation of the GUI for each compo-

nent is discussed. This GUI enables an easier setting of input

values and overall testing of the components. Reflection is

used for the finding of the classes, methods and input/output

parameters of the components [25].

With the FXForm2 tool, it is possible to automatically ge-

nerate JavaFX forms from Java beans and to link the created

GUI form fields with the Java bean properties [26].

IV. DESCRIPTION OF COMPLEX OBJECTS GENERATION

The complex object generation (COG) is a semi-automa-

ted algorithm for generation of a new instance of a selected

class, which source code is not known. For this purpose, an

existing constructor is invoked with the parameters defined

by the user with a generated GUI form. Then, the attributes

of the created instance can be changed by the user with ano-

ther generated GUI form. The algorithm is recursive, so the

user can set both primitive and reference (object) values [3].

In comparison to more automatic tools described in Secti-

on III.A, the significant involvement of the user in the COG

algorithm may seem like a setback. However, during the

black-box testing, for which the COG algorithm is intended,

the expertise of the user can be vital for the creation of ins-

tances with (at least partially) realistic attribute values. The

user can utilize information, such as specification, vague

textual description, or documentation, which may be at his or

her disposal, but is not extractable automatically. He or she

can also better interpret hints such as names of the attributes.

Although the user can (unwittingly) introduce errors into

generated objects, we consider the involvement of the user in

the very generation of the objects an advantage.

The COG algorithm is designed for the generation of

complex object parameter values for method invocations in

our interface-based regression testing of software compo-

nents. Nevertheless, it was first implemented and tested as a

stand-alone algorithm usable wherever complex objects as

input data are needed (e.g., during unit testing) [3].

A. Description of Data Structure

For the generation of a new instance of the input class, the

COG algorithm requires a data structure ensuring the

functioning of the algorithm and also enabling the storing of

the instance generation process to disk. From the stored info-

504 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

Fig. 2 The data structure for the storing of the generated instance

rmation, it is possible to reconstruct the generated instance in

memory (see Section IV.G). The data structure consists of

instances of two classes – one for the storing of the gene-

rated instance (called ObjectNode) and the second for the

storing of the instance attribute values (called ObjectAt-

tribute) [3]. Their attributes are depicted in Fig. 2.

The ObjectNode stores the information about the class

of the generated instance, the list of the parameters of the

constructor, which were used for the creation of the genera-

ted instance, the list of the attributes of the generated instan-

ce (non-static only), and the generated instance itself. The

last attribute is the index in the all nodes list. In this list, all

the generated ObjectNode instances are stored. The index

also plays a role during the storing and loading to/from the

disk (see Section IV.G for details). So, an ObjectNode

instance contains all the information necessary for the

creation of the generated instance [3].

The elements of the list of constructor parameters and of

the list of attributes are the instances of the Object-

Attribute class. Each instance contains the information

about the data type (i.e., the class) of the field (i.e., an

instance attribute or a constructor parameter), the type of the

field value (set internally or set manually), and the name and

the index of the field. The name is used as a unique identifi-

cation of the instance attributes and the index is used as a

unique identification of the array cells (see Section IV.C)

and the constructor parameters. Each ObjectAttribute

instance also contains the value of the field, which can be a

primitive value or a reference to an object. The last attribute

is the reference to an instance of the ObjectNode class.

This reference is set to null if the attribute is of primitive

data type or its value was not specified by the user (i.e., it

was set internally by the constructor). Otherwise, this last

attribute points to the instance of the ObjectNode class

describing the creation of the corresponding objects [3].

B. Description of Algorithm

The current version of the COG algorithm is implemented

in Java and uses Java reflection [27] for the exploration of

the classes’ contents [3]. The reflection extracts the informa-

tion from the bytecode, no source code is necessary. Hence,

it is perfectly suited for our situation when the source code is

not available. A consequence is that the COG algorithm is

described with the limitations of the Java reflection in mind.

For similar languages with available reflection (such as .NET

platform), small changes in the implementation of the algori-

thm would be probably necessary, but its general idea should

be utilizable in these languages as well [3].

Fig. 3 Pseudocode for the main COG algorithm

Assume now that we want to generate parameter values

for a method invocation and one of the parameter types is a

class. The COG algorithm enables to create an instance of

this class and to store it in the form of an instance of the

ObjectNode to the all nodes list. The elements of this list

(more specifically, the contained generated instances) can be

used as constructor parameter values or attribute values of

other generated instances. Before the generation of the first

instance, the all nodes list is empty. The input of the COG

algorithm is the class, for which the instance shall be genera-

ted, and the information about the generic type(s) if the class

is parameterized (see Section IV.D) [3]. The main algorithm

is depicted in Fig. 3. There are two main steps.

In the first step, the ObjectNode instance is created and

all constructors available for the class being generated are

found using the reflection. The constructors vary in the count

and/or types of their parameters [3]. The names of the

parameters are not stored in the bytecode, so they cannot be

determined using the reflection. The list of the constructors

(each constructor represented by its parameter types) is

displayed to the user and he or she selects one of them.

The user then sets the values of the parameters of the

selected constructor in a GUI form. For the parameters of

primitive data types, he or she inputs the values directly or

can use the default value (zero). For the object parameters,

the user can select an instance of the ObjectNode from the

all nodes list if there are any applicable instances. The

applicable instances of the ObjectNode class must contain

TOMAS POTUZAK, RICHARD LIPKA: SEMI-AUTOMATED ALGORITHM FOR COMPLEX TEST DATA GENERATION 505

a generated instance compatible with the data type of the

constructor parameter. Only the applicable instances are

displayed to the user. If there are no applicable instances in

the all nodes list (besides the default null value) or there

are some, but the user does not wish to use any of them, he

or she can create a new instance for the constructor parame-

ter recursively using the COG algorithm.

Once all the constructor parameters are inputted, they are

stored in the list of the constructor parameters in the Obje-

ctNode instance, each parameter as an ObjectAttribu-

te instance. Since the names of the parameters are not

known (see above), the parameters are identified by their

order (stored as an index). The constructor is then invoked

using the reflection and the new instance is created. This

instance is then stored to the ObjectNode instance.

In the second step, all the non-static attributes of the insta-

nce being generated are found using the reflection. The

information about them including their names and values are

stored as the instances of the ObjectAttribute class to

the list of attributes of the ObjectNode instance. The list

of the attributes is displayed to the user as a GUI form. The

user can change the values of the attributes similarly to the

values of the constructor parameters (see above). So, the

attributes of primitive data types can be set directly and the

object parameters can be selected from the all nodes list or

created recursively using the COG algorithm. The main

difference is that the values (both primitive and object) can

already have meaningful values set by the invoked constru-

ctor. So, the user can change only some values or no values

at all [3]. In the latter case, the instance being generated is

created solely using its constructor. The processing of

constructor parameters and generated instance attributes is

depicted in Fig. 4.

Fig. 4 Pseudocode of the parameters and attributes processing

Fig. 5 The Java codes of the IShape interface and the Circle class

When the user changes the value of an object attribute, the

reference to the corresponding ObjectNode instance (con-

taining the new value) is set. However, when the user does

not change the value of an object attribute, the reference to

the ObjectNode remains set to null. The reason is that

the value of this object attribute was created outside of the

control of the COG algorithm. For example, it is not known,

which constructor was used for the object creation and which

parameter values were used. Any changes to the attribute

values are stored to the list of the attributes in the Object-

Node instance and also directly to the generated instance.

At this point, the ObjectNode instance is added to the

all nodes list. The finished instance referred from this Ob-

jectNode instance can be used as a parameter value for

the method invocation.

A simple example of the creating an instance of the

Circle class (see Fig. 5) using the COG algorithm is depi-

cted in Fig. 6. The black color is used for the generated

instances and the gray color for the COG data structures.

We assume that the all nodes list is empty and the user

chooses the first (and only) constructor. The ObjectNode

instance for the Circle instance is created and the user

must specify the constructor parameters. The radius para-

meter is of primitive data type and is set directly to 42.

However, the position parameter is an object. Since the

all nodes list is empty at this point, the user can select null

value or can create a new Point instance using the COG al-

gorithm. He or she chooses the null value. A new Circle

instance is created and stored together with the constructor

parameters to the ObjectNode instance (see Fig. 6a).

The user then inspects the attribute values of the Circle

instance and sets a new value to the position attribute. He

or she creates a new Point instance using the COG algori-

506 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

Fig. 6 The changes to the data structures

thm. The user chooses the constructor of the Point class

with two int parameters. The ObjectNode instance for

the Point instance is created and the user sets constructor

parameters to 3 and 4. A new Point instance is created and

stored with its constructor parameters to the ObjectNode

instance. The user does not perform any changes of the attri-

bute values and they are only stored to the ObjectNode

instance. The ObjectNode instance for the Point instan-

ce is added to the all nodes list with index set to 0. The COG

algorithm for the Point class ends and the created instance

is set as the new value of the position attribute of the

Circle instance. The user does no further changes. The

attributes are stored to the ObjectNode instance for the

Circle instance, which is then added to the all nodes list

with index set to 1 (see Fig. 6b). It can be observed that the

ObjectNode instance is created only for the attributes set

by the user. The remaining attributes are considered values

only, regardless of their data type (primitive or object).

The description of the COG algorithm and the example a-

bove shows only the most straightforward course of the COG

algorithm. However, there are several aspects, which should

be mentioned and which are discussed in following subsec-

tions. Some can be seen in the pseudocode in Fig. 3 and 4.

C. Array Handling

One of the important aspects is that the main input of the

COG algorithm does not have to be only a class. It could be

also an interface, which is discussed in Section IV.E, or an

array. In Java, the arrays are basically instances of special

classes containing predefined attributes (such as length of the

array) and the indexed elements.

The COG algorithm handles the arrays (regardless

whether of primitive or object data type) as classes with two

main differences. The arrays do not have constructors, which

can be used for the creation of a new instance of the array.

However, it is possible to create an array of a specified

component type with a specified length using the reflection.

Hence, the user only specifies the length of the array instead

of choosing the constructor. The elements of the array are

not stored as named attributes, but instead as indexed cells.

However, these cells are stored as the ObjectAttribute

instances (one per array cell), only the indices are stored as

the identification instead of the nonexistent attribute names.

Besides these two differences, the COG algorithm proceeds

in the same manner for the arrays as for the classes.

Since the multidimensional arrays are “arrays of arrays” in

Java, they are handled in the same manner as the one-

dimensional arrays, but with arrays in the cells.

D. Generics Handling

The class, which is the main input of the COG algorithm,

can be generic, meaning that it has one or more parameter ty-

pes. These parameter types cannot be determined universally

using the Java reflection, but can be extracted in several ca-

ses. More specifically, it is possible to determine the parame-

ter types for the parameters of the constructors and methods,

for the return values of the methods, and for the attributes of

a class. Since these cases cover all needs of the COG algori-

thm, we employ the parameter types checking to allow the

user to select only compatible instances of generic classes.

The parameter types of input class are passed as a separate

parameter of the COG method, since this information is not

stored in the class. For this reason, it would not be possible

to use the generic parameters for any general class with

unknown parameter types. However, since the COG algori-

thm is designed for the generation of instances for method

parameters, the parameter types of the class can be determi-

ned from the method parameter using the reflection.

E. Interface-Implementing Class Searching

Another quite a common possibility is that the method

parameter, for which the COG algorithm shall generate the

instance, is an interface, not a class. In that case, it is not

possible to create the instance of this interface and it is not

known, which class implementing this interface shall be used

for the instance creation instead. The reason is that the input

of the COG algorithm is the class, not its instance. The

problem can arise also for the parameters of the constructor

or during the changing of the value of an attribute.

TOMAS POTUZAK, RICHARD LIPKA: SEMI-AUTOMATED ALGORITHM FOR COMPLEX TEST DATA GENERATION 507

Fig. 7 Pseudocode of the finding the classes implementing an interface

For this situation, it is first checked, whether the input

class is an interface. If so, the available classes implementing

this interface are found and the user can select one of these

classes. The selected class is then used instead of the

interface in the remaining course of the COG algorithm (see

Fig. 3). If there are no classes implementing the interface, the

algorithm ends with a failure.

In the current implementation (see Fig. 7), all directories

and .jar files in manually specified paths are searched for

the .class files and the availability of each corresponding

class is checked by the class loader. So, it is possible that

some classes implementing the interface are missed. A

straightforward solution is to find all classes implementing

the interface available in the application context. The

problem is that the function for the discovering of all

implementing classes of an interface is not directly available

in Java reflection. However, since the COG algorithm is

primarily intended for the OSGi, it may be possible to use its

services and find all implementing classes in all bundles of

the OSGi framework. If we want to achieve similar task in

plain Java, it is possible using the exploration of the class-

path or using third-party solutions, such as [28].

A last resort solution is to create a mockup implemen-

tation of the interface using for example the Proxy class

from the Java reflection [29]. This can be done manually for

each interface, which can be very time consuming. Another

possibility is to create a generic implementation utilizable for

all interfaces. In both cases, it cannot be expected that the

mockup implementation of the interface will have similar

behavior to a real implementation. To find and implement

the optimal solution is a part of our future work.

F. Exception Handling

In each phase of the COG algorithm, the user can use a

null value instead of the creation or the selection of an

instance. This value may be valid in many cases, but can also

cause problems, usually in the form of a thrown exception.

The problems occurring while utilizing the generated instan-

ce for the testing is outside the scope of this paper, but the

problems can occur also during its generation – when the

null value is used as a constructor parameter and the const-

ructor does not permit this value. The problem does not

occur while setting an instance attribute to the null value,

since no methods of the generated instance are invoked.

The problem can occur not only because of the null

value. Other values, such as a primitive type value outside an

acceptable range or an object with unexpected attribute

values can cause similar problems, typically in form of a

thrown exception. For this reason, when an exception is

thrown during the COG algorithm, the user is notified and

can repeat the action, which caused the exception (typically

invocation of a constructor) with different parameters. The

user can also choose to interrupt the COG algorithm.

G. Storing and Loading to/from Disk

Since the creating of a very complex object can be quite

time consuming for the user, it is possible to save the created

ObjectNode instances from the all nodes list to disk. The

ObjectNode instances are stored to an XML file, which is

legible by humans. The generated instances contained in

these nodes are not stored. Similarly, the values of their

attributes not changed by the user are not stored. The storing

of this information would require full scale serialization of

general objects.

More importantly, storing this information is not necessa-

ry, because the generated instances can be reconstructed in

the memory during the loading of the XML file using the

remaining attribute values of the ObjectNode instances.

These values are the parameter values of the utilized constru-

ctor and the attribute values changed by the user. All these

values are either stored as other ObjectNode instances or

are of primitive data type meaning they can be easily stored

in a textual form. The references to the ObjectNode

instances are replaced by the indices in the XML file. These

indices correspond to the order of the instances in the all

nodes list (and are also stored in each instance).

When the ObjectNode instances are loaded from the

file, they are created in the order they were in the all nodes

list prior to their storing. For each ObjectNode instance,

the contained generated instance is created using the

constructor corresponding to the stored parameter types and

their stored values. At this point, the attribute values not

changed by the user should be equal to their values prior to

the saving to the XML file. Then, the attribute values

changed by the user are set directly to the values stored in

the XML file for the primitive data types and set to the

correct references for the objects.

V. TESTS AND RESULTS

The functioning of the COG algorithm was tested using

two sets of tests. In first set of tests, the very functioning of

the algorithm was demonstrated using several different clas-

ses and arrays. In second set of tests, the storing and the

loading of the generated instances were investigated. All the

tests were performed on a notebook with dual-core Intel i5-

6200U at 2.30 GHz with 8 GB of RAM, and a 250 GB SSD

and 500 GB HDD. The installed software was Windows 7

SP1 64bit, Java 1.8 (64 bit), and Equinox OSGi framework.

508 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

A. Object Generation Testing

The correct functionality of the COG algorithm was tested

in two scenarios. In the first scenario, the Circle class (see

Fig. 5) and the Rectangle class, which also implements

the IShape interface (see Fig. 5), together with the standard

Point and ArrayList classes from the Java Core API

were used. All the objects were created together in a single

run, so all were placed to the all nodes list.

The user used the COG algorithm to create the instances

in several steps (<X> denotes a reference and index):

1. Create <0> = Point(10, 20)

2. Create <1> = Point(<0>)

a. Set x = 42

3. Create <2> = Circle(30, <0>)

4. Create <4> = Shape() (interface)

a. Select Rectangle as implementing class

b. Create <3> = Rectangle(3, 4, null)

i. Set sideA = 10

ii. Set position = <1>

5. Create <5> = ArrayList()

a. Create <4> = Object[2]

i. Set 0 = <0>

ii. Set 1 = <3>

b. Set elementData = <4>

c. Set size = 2 (c. Set size = 3)

The structure of the instances, which was intended to be

generated, is shown in Fig. 8. The numbers of the instances

are the indices in the all nodes list of the ObjectNode

instances, in which the generated instances are contained. To

determine, whether the created structure is correct, the entire

ArrayList was printed using its toString() method.

Its result is depicted in Fig. 9. The resulting structure was

also inspected using the DOC algorithm [4]. The actual and

the expected structures were manually compared. The stru-

ctures were identical.

In order to show the possible issues caused by the direct

involvement of the user, the instances were created again

using the steps above, but with the last step (5.c) displayed

using italics in parentheses. That means that the size of the

ArrayList was set incorrectly (not corresponding to the

actual size of its inner array). This inconsistency leads to an

exception (a ConcurrentModificationException)

Fig. 8 The expected structure of the generated instances

Fig. 9 Result of the toString() method of the created ArrayList

Fig. 10 The expected structure of the 2D array

Fig, 11 Result of the Arrays.deepToString() method

when the toString() method is invoked. This shows that

the user an easily set the attributes of the instances inconsi-

stently. Since the COG algorithm does not understand the

internal functioning of the created objects, it is not possible

to perform an automated consistency control. So, the user

must proceed with caution.

In second scenario, the user attempted to create 2D array

with three rows and the length of each row increasing with

its index (see Fig. 10). The following steps were taken:

1. Create <3> = int[3][]

a. Create <0> = int[1]

i. Set 0 = 1

b. Set 0 = <0>

c. Create <1> = int[2]

i. Set 0 = 2

ii. Set 1 = 3

d. Set 1 = <1>

e. Create <2> = int[3]

i. Set 0 = 4

ii. Set 1 = 5

iii. Set 2 = 6

f. Set 2 = <2>

The expected structure of the 2D array is depicted in

Fig. 10. To verify the correctness of the created array, it was

printed using Arrays.deepToString() method. The

result is depicted in Fig. 11. Again, the resulting structure

was also inspected using the DOC algorithm [4] and manual-

ly compared to the expected structure. The structures were

again identical.

B. Storing and Loading Testing

To tests the correct functionality of storing and loading

to/from the XML file, the ObjectNode instances stored in

the all nodes list in first scenario (see Section V.A) were

saved to an XML file and then loaded from it. The original

all nodes list was copied elsewhere prior the XML loading to

preserve the original generated instances. These original

generated instances were compared to the saved and loaded

TABLE I THE RESULT OF THE COMPARISON OF THE ORIGINAL GENERATED

INSTANCES AND THE SAVED AND LOADED GENERATED INSTANCES

Instance index Instance class DOC result

0 Point equal

1 Point equal

2 Circle equal

3 Rectangle equal

4 Object[] equal

5 ArrayList equal

TOMAS POTUZAK, RICHARD LIPKA: SEMI-AUTOMATED ALGORITHM FOR COMPLEX TEST DATA GENERATION 509

generated instances using the DOC algorithm (each original

generated instance compared to its corresponding saved and

loaded counterpart). The results of the comparisons are sum-

marized in Table I. It can be observed that all the pairs of the

corresponding generated instances are equal suggesting that

the storing and loading works well.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described the COG algorithm for the

generation of complex objects utilizable as parameter values

for the generated method invocations. The algorithm is

semi-automated and the user actions are required. However,

since the approach is intended for the black box testing, the

expertise of the user can help to create instances with (at

least partially) realistic attribute values. The generated in-

stances can be stored to the disk for the future utilization.

In our future work, we plan to improve the handling the

cases when the input class for the algorithm is in fact an in-

terface. We also plan to enhance the user comfort by storing

the information about failures. For example, when a value

inputted by the user leads to an exception, this information

is stored and used for a warning when the user attempts to

make the same mistake again. We will also incorporate the

COG algorithm to our interface-based regression testing of

software components.

REFERENCES

[1] C. Szyperski, D. Gruntz, and S. Murer, Component Software –

Beyond Object-Oriented Programming, ACM Press, New York, 2000.

[2] T. Potuzak, R. Lipka, and P. Brada, “Interface-based Semi-automated

Testing of Software Components,” in Proceedings of the 2017

Federated Conference on Computer Science and Information Systems,

Prague, September 2017, pp. 1335-1344, http://dx.doi.org/10.15439/-

2017F139

[3] T. Potuzak and R. Lipka, “Algorithm for Generation of Complex Test

Data for Interface-based Regression Testing of Software Compo-

nents,” SAC '21: Proceedings of the 36th Annual ACM Symposium

on Applied Computing, Virtual Event, Republic of Korea, March

2021, pp. 1305-1308, http://dx.doi.org/10.1145/3412841.3442118

[4] T. Potuzak and R. Lipka: “Deep Object Comparison for Interface-

based Regression Testing of Software Components,” in Proceedings

of the 2018 Federated Conference on Computer Science and

Information Systems, Poznan, September 2018, pp. 1053-1062,

http://dx.doi.org/10.15439/2018F51

[5] J. T. Chan and W. Yang, “Advanced obfuscation techniques for Java

bytecode,” Journal of Systems and Software, vol. 71, No. 1-2, 2004,

pp. 1-10, http://dx.doi.org/10.1016/S0164-1212(02)00066-3

[6] The OSGi Alliance, OSGi Service Platform Core Specification,

release 4, version 4.2, 2009.

[7] M. Bures and B. S. Ahmed, “On the effectiveness of combinatorial

interaction testing: A case study,” in 2017 IEEE International

Conference on Software Quality, Reliability and Security Companion

(QRS-C), July 2017, pp. 69–76, http://dx.doi.org/10.1109/QRSC.-

2017.20

[8] B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli,

“Handling constraints in combinatorial interaction testing in the

presence of multi objective particle swarm and multithreading,”

Information and Software Technology, vol. 86, pp. 20–36, 2017,

http://dx.doi.org/10.1016/j.infsof.2017.02.004

[9] D. Rubio, Pro Spring Dynamic Modules for OSGiTM Service Platform,

Apress, USA, 2009.

[10] G. J. Myers, T. Badgett, and C. Sandler, The Art o Software Testing,

Third Edition, John Wiley and Sons, Inc., Hoboken, 2012.

[11] P. G. Sapna and H. Mohanty, “Automated Scenario Generation based

on UML Activity Diagrams,” International Conference on Information

Technology, 2008, December 2008, pp. 209–214,

http://dx.doi.org/10.1109/ICIT.2008.52

[12] S. J. Cunning and J. W. Rozenbiit, “Test Scenario Generation from a

Structured Requirements Specification,” IEEE Conference and

Workshop on Engineering of Computer-Based Systems, 1999,

Proceedings, March 1999, pp. 166–172, http://dx.doi.org/10.1109/-

ECBS.1999.755876

[13] K. Jezek, L. Holy, A. Slezacek, and P. Brada, “Software Components

Compatibility Verification Based on Static Byte-Code Analysis,” 39th

Euromicro Conference Series on Software Engineering and Advanced

Applications, Santander, September 2013, pp. 145-152,

http://dx.doi.org/10.1109/SEAA.2013.58

[14] Mockaroo. Accessed: 2018-35-05. [Online]. Available:

https://www.mockaroo.com

[15] Dtm test xml generator. Accessed: 2018-05-05. [Online]. Available:

http://www.sqledit.com/xmlgenerator

[16] Redgate. Accessed: 2018-03-05. [Online]. Available: http://www.red-

gate.com/products/sql-development/sql-data-generator

[17] Podam - pojo data mocker. Accessed: 2018-03-05. [Online].

Available: https://github.com/mtedone/podam

[18] R. Lipka, “Automated Generator for Complex and Realistic Test

Data,” in 2017 IEEE International Conference on Software Quality,

Reliability and Security Companion (QRS-C), July 2017, pp. 628-629,

http://dx.doi.org/10.1109/QRS-C.2017.122

[19] R. Lipka and T. Potuzak, “Automated generator for complex and

realistic test data - a case study,” in Communication Papers of the

2018 Federated Conference on Computer Science and Information

Systems, Poznan, September 2018, pp. 1053-1062, http://dx.doi.org/-

10.15439/2018F214

[20] D. Marinov and R. O’Callahan, “Object Equality Profiling,” in

Proceedings of the 18th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications,

Anaheim, October 2003, pp. 313-325, http://dx.doi.org/10.1145/-

949305.949333

[21] A. Infante and A. Bergel, “Object Equivalence: Revisiting Object

Equality Profiling (An Experience Report),” in Proceedings of the

13th ACM SIGPLAN International Symposium on Dynamic

Languages, Vancouver, October 2017, pp. 27-38, http://dx.doi.org/-

10.1145/3170472.3133844

[22] G. M. Rama and R. Komondoor, “A Dynamic Analysis to Support

Object-Sharing Code Refactorings,” in Proceedings of the 29th

ACM/IEEE international conference on Automated software

engineering, Vasteras, September 2014, pp. 713-723,

http://dx.doi.org/10.1145/2642937.2642992

[23] M. J. Steindorfer and J. J. Vinju, “Performance Modeling of Maximal

Sharing,” in Proceedings of the 7th ACM/SPEC on International

Conference on Performance Engineering, Delft, March 2016,

http://dx.doi.org/10.1145/2851553.2851566

[24] N. Grech, J. Rathke, and B. Fischer, “JEqualityGen: Generating

Equality and Hashing Methods,” in Proceedings of the ninth

international conference on Generative programming and component

engineering, Eindhoven, October 2010, pp. 177-186,

http://dx.doi.org/10.1145/1942788.1868320

[25] F. Naseer, S. U. Rehman, and K. Hussain, “Using Meta-data

Technique for Component Based Black Box Testing,” in 2010 6th

International Conference on Emerging Technologies, Islamabad,

2010, pp. 276–281, http://dx.doi.org/10.1109/ICET.2010.5638474

[26] Dynamic JavaFX form generation. Accessed 2019-05-02. [Online].

Available: https://github.com/dooApp/FXForm2

[27] I. R. Forman, N. Forman, Java Reflection in Action, Manning

Publications, 2004.

[28] Java runtime metadata analysis. Accessed 2019-05-03. [Online].

Available: https://github.com/ronmamo/reflections

[29] Class Proxy. Accessed 2019-05-03. [Online]. Available:

https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html

510 PROCEEDINGS OF THE FEDCSIS. ONLINE, 2021

