
 
Abstract—This paper describes in detail the Complex Object

Generation (COG) algorithm, which is a semi-automated algo-

rithm for the generation of instances of  classes  (i.e.,  objects)

with a complex inner structure for Java and similar languages

designed for  black-box  testing  (i.e.,  without  available  source

code). The algorithm was developed and tested as a stand-alone

algorithm and can be used as such (e.g., during unit testing).

However, we plan to use it to generate the parameter values of

generated method invocations, which is a vital part of our in-

terface-based regression testing of software components.

I. INTRODUCTION

OFTWARE development utilizing components has been

around about two decades. Its main idea is to construct

software  from isolated parts  (called software components),

which can interact solely using well-defined interfaces. One

of the purposes is to enhance the reusability of the software

parts meaning to use a software component in different appli-

cations. On the other hand, a single application often consists

of components possibly from different authors [1]. Besides

the benefits of software parts reuse, there are also some set-

backs, especially regarding testing. Since the components in

a single application can originate from different authors, test-

ing of their correct cooperation within this application is vital

[2], because such testing cannot be performed by the authors

of the individual components.

S

The  necessity  for  testing  is  even  more  stressed  by  the

common situation  that  the individual  components  exist  in

several  versions.  These  versions  can  have  only  subtle

changes, but can also differ significantly [3]. The individual

versions of the component can have different internal calcu-

lations,  interact  differently with other  components,  or  can

have different public interfaces.  Theoretically,  the changes

in the internal behavior of the component should not propa-

gate past its interface. So, there should be no influence on

the  working  of  the  entire  component-based  application.
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However, the reality is different from this theory. During the

development of the new version of the component, new er-

rors can be introduced, side effects of method invocations

can change, computations may become more complex (e.g.,

because of an improved fidelity of the results) leading to a

longer computation time and a time-out expiration. Further

examples could continue. For the reasons described above, a

thorough regression testing should be performed whenever a

new version  of  a component  is  installed to a component-

based application. From this point of view, it is not impor-

tant whether there are changes to the public interface of the

new version of the component or not [2], [4].

In order to support this regression testing, we developed a

testing  approach  for  components  without  available  source

code (i.e., black-box testing). This is, for example, the case

of  third-party  components,  which  are  not  open  source.  It

should be noted that some form of source code can be ob-

tained using the reverse engineering even when it is not at

our disposal directly.  However,  this requires additional ef-

fort  and the results may not be ideal.  Even the languages

such as Java, whose byte code can be transformed to source

code readily, can use obfuscation techniques [5] to hamper

the reverse engineering. There are also legal aspects – the

reverse engineering might violate the software license.

Our approach is designed for black-box testing for the sit-

uation when an old version of a component is replaced by its

new version. The aim is to determine, whether both versions

exhibit  the same external  behavior  within the component-

based application of our interest  [2],  [3],  [4].  A prototype

implementation of this approach was described in [2] in de-

tail. It is implemented in Java and designed for the OSGi [6]

component  model,  but its  core ideas can be used also for

other similar component models and languages [3]. It is im-

plemented in our Interface Analysis Tool (InAnT). The ap-

proach is based on the analysis of public interfaces of the in-

dividual software components in the component-based ap-

plication.  The  analysis  discovers  all  services  provided  by
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all the components together with the methods of these servi-

ces. For each method, a set of method invocations (i.e., uni-

que combinations of parameter values) is generated. These 

invocations are then performed and their consequences are 

observed in an iterative phase. This way, the behavior of the 

entire application is recorded. The process is performed in 

the application with the old and then with a new version of 

the component. The comparison of the two recordings can 

then show any changes in the behavior of the entire compo-

nent-based application (presumably caused by the installati-

on of the new version of the component) [2], [3], [4]. 

For the generation of the parameter values for the method 

invocations, various automated approaches can be used, for 

example the combinatorial testing [7] or the particle swarm 

optimization [8]. The approach used in our prototype imple-

mentation is rather primitive [3]. For parameters of primitive 

data types, several common and border values are used. For 

general objects, only null value is used [2]. Even then, our 

approach was able to uncover changes in our two test cases 

[2]. Nevertheless, usage of more realistic values would signi-

ficantly improve the performance of our approach [3]. 

It should be noted that our interface-based approach for 

regression testing of software components is a black-box 

testing approach, which means that we do not expect the 

access to the source codes of the software components under 

tests [2]. At the same time, the most problematic part is the 

generation of complex objects. Since there are very few 

existing approaches for this task, we decided to develop a 

semi-automated approach for it. The approach described in 

this paper, the Complex Object Generation (COG), explores 

the structure of a selected class and enables to create its new 

instance (object) and fill its structure using existing construc-

tors and manual changing of the attributes via a generated 

graphical user interface (GUI). The generated objects can be 

then used as parameter values for the method invocations. 

The COG was implemented in InAnT. First, it was tested as 

a stand-alone algorithm and can be used as such (e.g., during 

unit testing). However, it will be incorporated into our 

interface-based regression testing of software components. 

The main idea of the COG algorithm and its initial testing 

were briefly described in [3]. The detailed description of the 

COG algorithm and all its aspects including its further 

testing description is the main contribution of this paper. 

II. INANT DESCRIPTION 

As mentioned above, the interface-based regression test-

ing of software components is designed for component-based 

applications and, as such, its prototype implementation is a 

software component itself. It was described in [2] and one of 

its important parts – the Deep Object Comparison (DOC) – 

was described in [4]. The Complex Object Generation 

(COG) is another important part. Nevertheless, the basic no-

tions of the component-based software development and the 

basic features of the InAnT are briefly discussed in following 

subsections in order to make this paper self-contained. 

A. Component-based Software Development 

A software component is a black-box software entity with 

a well-defined public interface consisting of provided servi-

ces. The component can but does not have to require services 

of other components for its functioning. The components are 

expected to interact using their public interfaces only. These 

general features are common among various types of softwa-

re components. However, the specific details of the aspects, 

behavior, and interactions of the software components 

depend on the used component model. A specific imple-

mentation of a component model is called a component 

framework. There can be (and often are) multiple component 

frameworks of a single component model [1], [4]. 

The prototype implementation of InAnT was implemented 

for the Java and the OSGi component model [2], [4]. Curren-

tly, the OSGi is quite widespread in both academic and 

industrial fields. There are several OSGi frameworks (i.e., 

implementations of the OSGi model), such as Felix or 

Equinox [2]. The OSGi components are called bundles. Each 

bundle is a single standard .jar file with additional meta-

information related to the functioning of the OSGi (e.g., 

name and version of the bundle, required and exported 

packages, etc.) [2], [6]. Every bundle can provide several 

services in the form of Java interfaces. These services with 

the exported packages and their content form the public 

interface of the bundle [2]. The OSGi is a dynamic compo-

nent model – the components can be installed and uninstalled 

on the fly (i.e., without the necessity to restart the OSGi 

framework) [9]. To enable this, the OSGi framework runtime 

provides means [6] for the control of the lifecycle of the 

bundle and also for the exploration of its environment [2]. 

The testing of the component-based application is similar 

to the testing of monolithic applications with additional issu-

es caused by the composition of the components from differ-

rent authors [2]. The testing methods can be divided based 

on the availability of the source code for the testers [10]. 

Source code can be used for the preparation of the tests 

leading to white-box testing. If it is not available or not used 

for the test preparation, the testing is called the black-box 

testing [11]. We consider this type, since the source code can 

be often not available for third-party components [2]. 

Regardless the type of testing, its main principle is to 

subject the tested software component to a set of inputs, to 

observe the outputs, and to compare them to the expected 

outputs [12]. A test is described in a so-called scenario. The 

content of the scenario forms the inputs and (optionally) the 

expected outputs. For the black-box testing of software 

components, each input can correspond to an invocation of a 

method of a service of the tested component [2]. 

B. Generation of Testing Scenarios 

Our interface-based regression testing is used to find any 

changes of the behavior of a component-based application 

after a new version of a software component is installed in-

stead of its old version. The application is tested with the old 
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version of the component and then with its new version. For 

both test runs, the invocations of the methods of the services 

of all components are generated, performed, and their conse-

quences are recorded. The invocations and their consequen-

ces are stored to a recording – a scenario [2]. 

The InAnT prototype implementation has the form of a 

single OSGi bundle installed in the same framework as the 

component-based application under test. The invocation 

generation starts with the identification of all methods of all 

services of all components of the component-based applica-

tion. This is achieved using the OSGi methods for the explo-

ration of the bundles’ environment and the Java reflection 

[2]. The found components, their services, and their methods 

are added into a data structure with the form of a tree [4]. 

The structure is then explored and, for every method, an 

initial set of invocations is generated. Each invocation is 

represented by the values of the method parameters. In our 

prototype implementation, the generation of these values is 

very simple – several common and border values are used 

for the parameters of primitive data types and only the null 

value is used for the objects [2]. Each invocation is a unique 

combination of parameter values of a method. The generated 

invocations are added to the data structure, which forms the 

basis of the scenario [4]. The purpose of the COG algorithm 

described in this paper is to provide additional object values. 

Once the initial invocations are inserted into the data 

structure, the iterative phase begins. The data structure is ex-

plored and the invocations are consecutively performed (i.e., 

the corresponding method is invoked with the parameter 

values from the invocation). For each performed invocation, 

its consequences are observed. There can be multiple conse-

quences of a single method invocation. There are four obser-

ved types – a thrown exception, a return value, a subsequent 

invocation of another service method, and a value change in 

output parameters of the method [2], [4]. All the consequen-

ces, which are not yet present in the data structure, are added 

to the invocation, which caused them. 

The subsequent invocations are also added as invocations 

for the corresponding method (if they are not yet present). 

Their parameter values come from the internal logic of the 

components, making them more useful than the generated 

parameter values. The subsequent invocation generated in 

the (n – 1)th iteration is performed in the nth iteration, where 

it can bring new consequences, which might remain hidden if 

only the generated initial invocations were used [2], [4]. 

Nevertheless, the recording of subsequent invocations has 

a setback. Since the components are black boxes, the causa-

lity of the performed invocation and its subsequent invocati-

ons is not certain. For example, if there are active threads in 

some components, they can perform invocations of methods 

of other components independently on our testing, yet these 

invocations will be recorded. This can cause false alarms du-

ring the testing scenarios comparison (see Section II.C) [2].  

The iterative phase ends when there are no new conseque-

nces  added in the last completed iteration [2], [4]  or the pre- 

 

Fig. 1 An example two scenarios (data structures) comparison result 

set maximal number of iterations was performed. The filled 

data structure is stored as a scenario with the old version of 

the component to an XML file [2], [4]. The tree-like nature 

of the data structure can be observed in Fig. 1. 

C. Comparison of Testing Scenarios 

After the installation of a new version of a component into 

the application under test, the process described in Secti-

on II.B is performed again and a new scenario with the new 

version of the component is obtained. The scenario with the 

old version of the component is then loaded from the XML 

file and the data structures of both scenarios are compared 

on every level (i.e., the components level, the services level, 

the methods level, etc.) [2], [4]. 

On every level, the presence of an item in both structures 

is checked. If the item is present in both structures, the sub-

tree of the item is expanded in both structures and the 

comparison continues in lower levels. If the item is missing 

in one of the data structures, this difference is reported and 

the lower levels are not explored further, since there is 

nothing to compare. The items are considered equal if and 

only if their subitems are equal on every sublevel [2], [4]. An 

example comparison result is depicted in Fig. 1. 

The comparison result is also the result of the entire inter-

face-based regression testing of software components. The 

differences found in the data structures indicate a change of 

the behavior of the component-based application under test 

after the installation of a new version of a component. The 

most important differences are on the invocations level and 

on the consequences level, since these differences cannot be 

easily detected by other means. The changes on the higher 

levels mean changes in the public interface of the compo-

nents, which are detectable for example by an advanced sta-

tic analysis (described for example in [13]) [2], [4]. 

III. RELATED WORK 

As it was mentioned in Section I, the most problematic 

part of the generation of the parameter values for the method 

invocations is the generation of complex objects. As far as 

we know, the research literature on this subject is limited, 

especially if it comes to the black-box testing. However, 

there are several works (partially) related to this subject. 
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A. Generation of Complex Data 

There exist some tools for the complex testing input data 

generation. Nevertheless, they are in most cases designed for 

the web-based applications [14], [15], [16] and deal with 

data formats such as XML or JSON instead of instances. 

Additionally, they are not designed for black-box testing [3]. 

The PODAM tool [17] partially resembles the COG as it 

deals with standard Java objects. It enables to investigate 

their attributes and to fill them with random values based on 

their classes. The user can set the parameters of the random 

data generation or provide its own data where the random 

generation is insufficient or not desirable. However, this can 

be done only in the form of the user’s own factory classes 

[17]. No GUI for direct input is provided. The tool also does 

not support the usage of objects created in past as attributes 

of the currently created objects. The source code is not 

required, but as the intended usage of the tool is the unit 

testing [17], which can be classified as white-box testing [3].  

The JOP tool, developed during our past research [18], 

[19], enables to generate pools of complex Java objects. Its 

functionality is similar to the PODAM tool, but the objects 

created in past can be used as attributes of currently created 

objects [19]. The details of the object generation are 

described in annotations written into the source code [18], 

[19]. The object generation itself is possible without these 

annotations, but with a limited functionality. So, the know-

ledge of the source code is again presumed [3]. 

B. Exploration of Object Internal Structure 

The knowledge of the objects’ internal structure is necess-

ary for their generation. This information is also vital in oth-

er fields such as memory optimization or object equality [3]. 

There exist papers focused on the memory optimization in 

programming languages with automatic memory manage-

ment (e.g., Java). Their common idea is that some instances 

in the memory of a running program are equivalent and all 

equivalent instances can be replaced by a single instance 

without affecting the execution of the program [3], [4]. Exa-

mples can be found in [20], [21], [22], or [23]. In [20], it is 

pointed out that a thorough comparison of two objects (in 

order to determine their equality) requires checking of the 

graphs of the internal structures of the compared objects for 

isomorphism. Since this is a relatively time-consuming task 

and a large number of comparisons is expected for the 

memory optimization, many tools employ a sort of hash 

values or “fingerprints” of the objects to reduce the amount 

of necessary computations. Examples are in [20] and [22]. 

There are also several papers focused on object equality. 

In [24], the equals() method generator for complex 

objects is discussed. Deep equality is described recursively. 

The objects are deep equal if and only if, for all the 

corresponding fields of two compared objects, the deep 

equality holds [24]. We also employ the Deep Object 

Comparison (DOC) [4] for the comparison of objects in the 

InAnT tool. In the DOC, two objects are considered equal if 

and only if they have the same class, the graphs of their 

internal structures are isomorphic, and all values of the cor-

responding attributes of primitive data types in the corres-

ponding vertices of the graphs have the same type and are 

equal [3], [4]. The DOC was used for the inspection of the 

internal structures of the instances and for their comparison 

during the testing described in this paper (see Section V). 

C. Utilization of GUI for Setting Attribute Values 

The employing a generated GUI for the data objects 

attributes values is discussed in several papers as well. 

In [25], focused on a black-box testing of software comp-

onents in .NET, the generation of the GUI for each compo-

nent is discussed. This GUI enables an easier setting of input 

values and overall testing of the components. Reflection is 

used for the finding of the classes, methods and input/output 

parameters of the components [25]. 

With the FXForm2 tool, it is possible to automatically ge-

nerate JavaFX forms from Java beans and to link the created 

GUI form fields with the Java bean properties [26]. 

IV. DESCRIPTION OF COMPLEX OBJECTS GENERATION 

The complex object generation (COG) is a semi-automa-

ted algorithm for generation of a new instance of a selected 

class, which source code is not known. For this purpose, an 

existing constructor is invoked with the parameters defined 

by the user with a generated GUI form. Then, the attributes 

of the created instance can be changed by the user with ano-

ther generated GUI form. The algorithm is recursive, so the 

user can set both primitive and reference (object) values [3]. 

In comparison to more automatic tools described in Secti-

on III.A, the significant involvement of the user in the COG 

algorithm may seem like a setback. However, during the 

black-box testing, for which the COG algorithm is intended, 

the expertise of the user can be vital for the creation of ins-

tances with (at least partially) realistic attribute values. The 

user can utilize information, such as specification, vague 

textual description, or documentation, which may be at his or 

her disposal, but is not extractable automatically. He or she 

can also better interpret hints such as names of the attributes. 

Although the user can (unwittingly) introduce errors into 

generated objects, we consider the involvement of the user in 

the very generation of the objects an advantage. 

The COG algorithm is designed for the generation of 

complex object parameter values for method invocations in 

our interface-based regression testing of software compo-

nents. Nevertheless, it was first implemented and tested as a 

stand-alone algorithm usable wherever complex objects as 

input data are needed (e.g., during unit testing) [3]. 

A. Description of Data Structure 

For the generation of a new instance of the input class, the 

COG algorithm requires a data structure ensuring the 

functioning of the algorithm and also enabling the storing of 

the instance generation process to disk. From the stored info- 
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Fig. 2 The data structure for the storing of the generated instance 

rmation, it is possible to reconstruct the generated instance in 

memory (see Section IV.G). The data structure consists of 

instances of two classes – one for the storing of the gene-

rated instance (called ObjectNode) and the second for the 

storing of the instance attribute values (called ObjectAt-

tribute) [3]. Their attributes are depicted in Fig. 2.  

The ObjectNode stores the information about the class 

of the generated instance, the list of the parameters of the 

constructor, which were used for the creation of the genera-

ted instance, the list of the attributes of the generated instan-

ce (non-static only), and the generated instance itself. The 

last attribute is the index in the all nodes list. In this list, all 

the generated ObjectNode instances are stored. The index 

also plays a role during the storing and loading to/from the 

disk (see Section IV.G for details). So, an ObjectNode 

instance contains all the information necessary for the 

creation of the generated instance [3]. 

The elements of the list of constructor parameters and of 

the list of attributes are the instances of the Object-

Attribute class. Each instance contains the information 

about the data type (i.e., the class) of the field (i.e., an 

instance attribute or a constructor parameter), the type of the 

field value (set internally or set manually), and the name and 

the index of the field. The name is used as a unique identifi-

cation of the instance attributes and the index is used as a 

unique identification of the array cells (see Section IV.C) 

and the constructor parameters. Each ObjectAttribute 

instance also contains the value of the field, which can be a 

primitive value or a reference to an object. The last attribute 

is the reference to an instance of the ObjectNode class. 

This reference is set to null if the attribute is of primitive 

data type or its value was not specified by the user (i.e., it 

was set internally by the constructor). Otherwise, this last 

attribute points to the instance of the ObjectNode class 

describing the creation of the corresponding objects [3]. 

B. Description of Algorithm 

The current version of the COG algorithm is implemented 

in Java and uses Java reflection [27] for the exploration of 

the classes’ contents [3]. The reflection extracts the informa-

tion from the bytecode, no source code is necessary. Hence, 

it is perfectly suited for our situation when the source code is 

not available. A consequence is that the COG algorithm is 

described with the limitations of the Java reflection in mind. 

For similar languages with available reflection (such as .NET 

platform), small changes in the implementation of the algori-

thm would be probably necessary, but its general idea should 

be utilizable in these languages as well [3]. 

 

Fig. 3 Pseudocode for the main COG algorithm 

Assume now that we want to generate parameter values 

for a method invocation and one of the parameter types is a 

class. The COG algorithm enables to create an instance of 

this class and to store it in the form of an instance of the 

ObjectNode to the all nodes list. The elements of this list 

(more specifically, the contained generated instances) can be 

used as constructor parameter values or attribute values of 

other generated instances. Before the generation of the first 

instance, the all nodes list is empty. The input of the COG 

algorithm is the class, for which the instance shall be genera-

ted, and the information about the generic type(s) if the class 

is parameterized (see Section IV.D) [3]. The main algorithm 

is depicted in Fig. 3. There are two main steps. 

In the first step, the ObjectNode instance is created and 

all constructors available for the class being generated are 

found using the reflection. The constructors vary in the count 

and/or types of their parameters [3]. The names of the 

parameters are not stored in the bytecode, so they cannot be 

determined using the reflection. The list of the constructors 

(each constructor represented by its parameter types) is 

displayed to the user and he or she selects one of them.   

The user then sets the values of the parameters of the 

selected constructor in a GUI form. For the parameters of 

primitive data types, he or she inputs the values directly or 

can use the default value (zero). For the object parameters, 

the user can select an instance of the ObjectNode from the 

all nodes list if there are any applicable instances. The 

applicable instances of the ObjectNode class must contain 
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a generated instance compatible with the data type of the 

constructor parameter. Only the applicable instances are 

displayed to the user. If there are no applicable instances in 

the all nodes list (besides the default null value) or there 

are some, but the user does not wish to use any of them, he 

or she can create a new instance for the constructor parame-

ter recursively using the COG algorithm.  

Once all the constructor parameters are inputted, they are 

stored in the list of the constructor parameters in the Obje-

ctNode instance, each parameter as an ObjectAttribu-

te instance. Since the names of the parameters are not 

known (see above), the parameters are identified by their 

order (stored as an index). The constructor is then invoked 

using the reflection and the new instance is created. This 

instance is then stored to the ObjectNode instance. 

In the second step, all the non-static attributes of the insta-

nce being generated are found using the reflection. The 

information about them including their names and values are 

stored as the instances of the ObjectAttribute class to 

the list of attributes of the ObjectNode instance. The list 

of the attributes is displayed to the user as a GUI form. The 

user can change the values of the attributes similarly to the 

values of the constructor parameters (see above). So, the 

attributes of primitive data types can be set directly and the 

object parameters can be selected from the all nodes list or 

created recursively using the COG algorithm. The main 

difference is that the values (both primitive and object) can 

already have meaningful values set by the invoked constru-

ctor. So, the user can change only some values or no values 

at all [3]. In the latter case, the instance being generated is 

created solely using its constructor. The processing of 

constructor parameters and generated instance attributes is 

depicted in Fig. 4. 

 

 

Fig. 4 Pseudocode of the parameters and attributes processing 

 

Fig. 5 The Java codes of the IShape interface and the Circle class 

When the user changes the value of an object attribute, the 

reference to the corresponding ObjectNode instance (con-

taining the new value) is set. However, when the user does 

not change the value of an object attribute, the reference to 

the ObjectNode remains set to null. The reason is that 

the value of this object attribute was created outside of the 

control of the COG algorithm. For example, it is not known, 

which constructor was used for the object creation and which 

parameter values were used. Any changes to the attribute 

values are stored to the list of the attributes in the Object-

Node instance and also directly to the generated instance.  

At this point, the ObjectNode instance is added to the 

all nodes list. The finished instance referred from this Ob-

jectNode instance can be used as a parameter value for 

the method invocation.  

A simple example of the creating an instance of the 

Circle class (see Fig. 5) using the COG algorithm is depi- 

cted in Fig. 6. The black color is used for the generated 

instances and the gray color for the COG data structures. 

We assume that the all nodes list is empty and the user 

chooses the first (and only) constructor. The ObjectNode 

instance for the Circle instance is created and the user 

must specify the constructor parameters. The radius para-

meter is of primitive data type and is set directly to 42. 

However, the position parameter is an object. Since the 

all nodes list is empty at this point, the user can select null 

value or can create a new Point instance using the COG al-

gorithm. He or she chooses the null value. A new Circle 

instance is created and stored together with the constructor 

parameters to the ObjectNode instance (see Fig. 6a). 

The user then inspects the attribute values of the Circle 

instance and sets a new value to the position attribute. He 

or she creates a  new Point instance using  the COG algori- 
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Fig. 6 The changes to the data structures  

thm. The user chooses the constructor of the Point class 

with two int parameters. The ObjectNode instance for 

the Point instance is created and the user sets constructor 

parameters to 3 and 4. A new Point instance is created and 

stored with its constructor parameters to the ObjectNode 

instance. The user does not perform any changes of the attri-

bute values and they are only stored to the ObjectNode 

instance. The ObjectNode instance for the Point instan-

ce is added to the all nodes list with index set to 0. The COG 

algorithm for the Point class ends and the created instance 

is set as the new value of the position attribute of the 

Circle instance. The user does no further changes. The 

attributes are stored to the ObjectNode instance for the 

Circle instance, which is then added to the all nodes list 

with index set to 1 (see Fig. 6b). It can be observed that the 

ObjectNode instance is created only for the attributes set 

by the user. The remaining attributes are considered values 

only, regardless of their data type (primitive or object). 

The description of the COG algorithm and the example a-

bove shows only the most straightforward course of the COG 

algorithm. However, there are several aspects, which should 

be mentioned and which are discussed in following subsec-

tions. Some can be seen in the pseudocode in Fig. 3 and 4. 

C. Array Handling 

One of the important aspects is that the main input of the 

COG algorithm does not have to be only a class. It could be 

also an interface, which is discussed in Section IV.E, or an 

array. In Java, the arrays are basically instances of special 

classes containing predefined attributes (such as length of the 

array) and the indexed elements.  

The COG algorithm handles the arrays (regardless 

whether of primitive or object data type) as classes with two 

main differences. The arrays do not have constructors, which 

can be used for the creation of a new instance of the array. 

However, it is possible to create an array of a specified 

component type with a specified length using the reflection. 

Hence, the user only specifies the length of the array instead 

of choosing the constructor. The elements of the array are 

not stored as named attributes, but instead as indexed cells. 

However, these cells are stored as the ObjectAttribute 

instances (one per array cell), only the indices are stored as 

the identification instead of the nonexistent attribute names. 

Besides these two differences, the COG algorithm proceeds 

in the same manner for the arrays as for the classes. 

Since the multidimensional arrays are “arrays of arrays” in 

Java, they are handled in the same manner as the one-

dimensional arrays, but with arrays in the cells. 

D. Generics Handling 

The class, which is the main input of the COG algorithm, 

can be generic, meaning that it has one or more parameter ty-

pes. These parameter types cannot be determined universally 

using the Java reflection, but can be extracted in several ca-

ses. More specifically, it is possible to determine the parame-

ter types for the parameters of the constructors and methods, 

for the return values of the methods, and for the attributes of 

a class. Since these cases cover all needs of the COG algori-

thm, we employ the parameter types checking to allow the 

user to select only compatible instances of generic classes. 

The parameter types of input class are passed as a separate 

parameter of the COG method, since this information is not 

stored in the class. For this reason, it would not be possible 

to use the generic parameters for any general class with 

unknown parameter types. However, since the COG algori-

thm is designed for the generation of instances for method 

parameters, the parameter types of the class can be determi-

ned from the method parameter using the reflection. 

E. Interface-Implementing Class Searching  

Another quite a common possibility is that the method 

parameter, for which the COG algorithm shall generate the 

instance, is an interface, not a class. In that case, it is not 

possible to create the instance of this interface and it is not 

known, which class implementing this interface shall be used 

for the instance creation instead. The reason is that the input 

of the COG algorithm is the class, not its instance. The 

problem can arise also for the parameters of the constructor 

or during the changing of the value of an attribute. 
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Fig. 7 Pseudocode of the finding the classes implementing an interface 

For this situation, it is first checked, whether the input 

class is an interface. If so, the available classes implementing 

this interface are found and the user can select one of these 

classes. The selected class is then used instead of the 

interface in the remaining course of the COG algorithm (see 

Fig. 3). If there are no classes implementing the interface, the 

algorithm ends with a failure. 

In the current implementation (see Fig. 7), all directories 

and .jar files in manually specified paths are searched for 

the .class files and the availability of each corresponding 

class is checked by the class loader. So, it is possible that 

some classes implementing the interface are missed. A 

straightforward solution is to find all classes implementing 

the interface available in the application context. The 

problem is that the function for the discovering of all 

implementing classes of an interface is not directly available 

in Java reflection. However, since the COG algorithm is 

primarily intended for the OSGi, it may be possible to use its 

services and find all implementing classes in all bundles of 

the OSGi framework. If we want to achieve similar task in 

plain Java, it is possible using the exploration of the class-

path or using third-party solutions, such as [28]. 

A last resort solution is to create a mockup implemen-

tation of the interface using for example the Proxy class 

from the Java reflection [29].  This can be done manually for 

each interface, which can be very time consuming. Another 

possibility is to create a generic implementation utilizable for 

all interfaces. In both cases, it cannot be expected that the 

mockup implementation of the interface will have similar 

behavior to a real implementation. To find and implement 

the optimal solution is a part of our future work.  

F. Exception Handling 

In each phase of the COG algorithm, the user can use a 

null value instead of the creation or the selection of an 

instance. This value may be valid in many cases, but can also 

cause problems, usually in the form of a thrown exception. 

The problems occurring while utilizing the generated instan-

ce for the testing is outside the scope of this paper, but the 

problems can occur also during its generation – when the 

null value is used as a constructor parameter and the const-

ructor does not permit this value. The problem does not 

occur while setting an instance attribute to the null value, 

since no methods of the generated instance are invoked.  

The problem can occur not only because of the null 

value. Other values, such as a primitive type value outside an 

acceptable range or an object with unexpected attribute 

values can cause similar problems, typically in form of a 

thrown exception. For this reason, when an exception is 

thrown during the COG algorithm, the user is notified and 

can repeat the action, which caused the exception (typically 

invocation of a constructor) with different parameters. The 

user can also choose to interrupt the COG algorithm. 

G. Storing and Loading to/from Disk 

Since the creating of a very complex object can be quite 

time consuming for the user, it is possible to save the created 

ObjectNode instances from the all nodes list to disk. The 

ObjectNode instances are stored to an XML file, which is 

legible by humans. The generated instances contained in 

these nodes are not stored. Similarly, the values of their 

attributes not changed by the user are not stored. The storing 

of this information would require full scale serialization of 

general objects.  

More importantly, storing this information is not necessa-

ry, because the generated instances can be reconstructed in 

the memory during the loading of the XML file using the 

remaining attribute values of the ObjectNode instances. 

These values are the parameter values of the utilized constru-

ctor and the attribute values changed by the user. All these 

values are either stored as other ObjectNode instances or 

are of primitive data type meaning they can be easily stored 

in a textual form. The references to the ObjectNode 

instances are replaced by the indices in the XML file. These 

indices correspond to the order of the instances in the all 

nodes list (and are also stored in each instance).  

When the ObjectNode instances are loaded from the 

file, they are created in the order they were in the all nodes 

list prior to their storing. For each ObjectNode instance, 

the contained generated instance is created using the 

constructor corresponding to the stored parameter types and 

their stored values. At this point, the attribute values not 

changed by the user should be equal to their values prior to 

the saving to the XML file. Then, the attribute values 

changed by the user are set directly to the values stored in 

the XML file for the primitive data types and set to the 

correct references for the objects. 

V. TESTS AND RESULTS 

The functioning of the COG algorithm was tested using 

two sets of tests. In first set of tests, the very functioning of 

the algorithm was demonstrated using several different clas-

ses and arrays. In second set of tests, the storing and the 

loading of the generated instances were investigated. All the 

tests were performed on a notebook with dual-core Intel i5-

6200U at 2.30 GHz with 8 GB of RAM, and a 250 GB SSD 

and 500 GB HDD. The installed software was Windows 7 

SP1 64bit, Java 1.8 (64 bit), and Equinox OSGi framework. 
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A. Object Generation Testing 

The correct functionality of the COG algorithm was tested 

in two scenarios. In the first scenario, the Circle class (see 

Fig. 5) and the Rectangle class, which also implements 

the IShape interface (see Fig. 5), together with the standard 

Point and ArrayList classes from the Java Core API 

were used. All the objects were created together in a single 

run, so all were placed to the all nodes list. 

The user used the COG algorithm to create the instances 

in several steps (<X> denotes a reference and index): 

1. Create <0> = Point(10, 20)  

2. Create <1> = Point(<0>) 

a. Set x = 42 

3. Create <2> = Circle(30, <0>) 

4. Create <4> = Shape() (interface) 

a. Select Rectangle as implementing class 

b. Create <3> = Rectangle(3, 4, null) 

i. Set sideA = 10 

ii. Set position = <1> 

5. Create <5> = ArrayList() 

a. Create <4> = Object[2] 

i. Set 0 = <0> 

ii. Set 1 = <3> 

b. Set elementData = <4> 

c. Set size = 2   (c. Set size = 3 ) 

The structure of the instances, which was intended to be 

generated, is shown in Fig. 8. The numbers of the instances 

are the indices in the all nodes list of the ObjectNode 

instances, in which the generated instances are contained. To 

determine, whether the created structure is correct, the entire 

ArrayList was printed using its toString() method. 

Its result is depicted in Fig. 9. The resulting structure was 

also inspected using the DOC algorithm [4]. The actual and 

the expected structures were manually compared. The stru-

ctures were identical. 

In order to show the possible issues caused by the direct 

involvement of the user, the instances were created again 

using the steps above, but with the last step (5.c) displayed 

using italics in parentheses. That means that the size of the 

ArrayList was set incorrectly (not corresponding to the 

actual size of its inner array). This inconsistency leads to an 

exception (a ConcurrentModificationException)  

 

 

Fig. 8 The expected structure of the generated instances 

 

Fig. 9 Result of the toString() method of the created ArrayList 

 

Fig. 10 The expected structure of the 2D array 

 

Fig, 11 Result of the Arrays.deepToString() method 

when the toString() method is invoked. This shows that 

the user an easily set the attributes of the instances inconsi-

stently. Since the COG algorithm does not understand the 

internal functioning of the created objects, it is not possible 

to perform an automated consistency control. So, the user 

must proceed with caution. 

In second scenario, the user attempted to create 2D array 

with three rows and the length of each row increasing with 

its index (see Fig. 10). The following steps were taken: 

1. Create <3> = int[3][]  

a. Create <0> = int[1] 

i. Set 0 = 1 

b. Set 0 = <0> 

c. Create <1> = int[2] 

i. Set 0 = 2 

ii. Set 1 = 3 

d. Set 1 = <1> 

e. Create <2> = int[3] 

i. Set 0 = 4 

ii. Set 1 = 5 

iii. Set 2 = 6 

f. Set 2 = <2> 

The expected structure of the 2D array is depicted in 

Fig. 10. To verify the correctness of the created array, it was 

printed using Arrays.deepToString() method. The 

result is depicted in Fig. 11. Again, the resulting structure 

was also inspected using the DOC algorithm [4] and manual-

ly compared to the expected structure. The structures were 

again identical. 

B. Storing and Loading Testing 

To tests the correct functionality of storing and loading 

to/from the XML file, the ObjectNode instances stored in 

the all nodes list in first scenario (see Section V.A) were 

saved to an XML file and then loaded from it. The original 

all nodes list was copied elsewhere prior the XML loading to 

preserve the original generated instances. These original 

generated  instances were compared to  the  saved  and loaded  

TABLE I THE RESULT OF THE COMPARISON OF THE ORIGINAL GENERATED 

INSTANCES AND THE SAVED AND LOADED GENERATED INSTANCES 

Instance index Instance class DOC result 

0 Point equal 

1 Point equal 

2 Circle equal 

3 Rectangle equal 

4 Object[] equal 

5 ArrayList equal 
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generated instances using the DOC algorithm (each original

generated instance compared to its corresponding saved and

loaded counterpart). The results of the comparisons are sum-

marized in Table I. It can be observed that all the pairs of the

corresponding generated instances are equal suggesting that

the storing and loading works well.

VI. CONCLUSION AND FUTURE WORK

In this  paper,  we described  the COG algorithm for  the

generation of complex objects utilizable as parameter values

for  the  generated  method  invocations.  The  algorithm  is

semi-automated and the user actions are required. However,

since the approach is intended for the black box testing, the

expertise  of  the user  can help to create  instances  with (at

least  partially)  realistic  attribute values.  The generated in-

stances can be stored to the disk for the future utilization.

In our future work, we plan to improve the handling the

cases when the input class for the algorithm is in fact an in-

terface. We also plan to enhance the user comfort by storing

the information about failures. For example, when a value

inputted by the user leads to an exception, this information

is stored and used for a warning when the user attempts to

make the same mistake again. We will also incorporate the

COG algorithm to our interface-based regression testing of

software components.
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