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Abstract—Community detection is a fundamental challenge
in network science and graph theory that aims to reveal
nodes’ structures. While most methods consider Modularity as a
community quality measure, Max-Min Modularity improves the
accuracy of the measure by penalizing the Modularity quantity
when unrelated nodes are in the same community. In this paper,
we propose a community detection approach based on linear
programming using Max-Min Modularity. The experimental
results show that our algorithm has a better performance than
the previously known algorithms on some well-known instances.

I. INTRODUCTION

I
N MANY (complex) networks, there are sets of nodes with
some common characteristics. More specifically, there are

sets of highly interactive vertices that are likely to yield and
share common relationships and properties among themselves.
These sets are called communities. Detecting communities has
become one of the fundamental subjects in the field of network
science and graph theory and has numerous applications in a
wide range of areas, including the analysis of Social Network
[1], [2], Biological Networks [3], Cosmological Networks [4],
and WEB [5]. It also plays a crucial role in the domain
of Signal Processing [6], Image Segmentation [7], Pattern
Recognition [8], and Data Clustering [9].

A network is basically given as a graph G = (V,E) with
the set of vertices V and edges E. A community in the
network can then be contemplated as a subset of vertices
C ⊆ V with a high density of edges between nodes inside
the subset and a low density of edges connecting this subset
to the others. Accordingly, one can define the community
detection problem as partitioning V into a set of disjoint
communities C = {C1, C2, . . . , Ck}. In the literature, several
quality measures can be used to qualify the goodness of a
partitioning. One of the most widely used and well-known
quality measures is Modularity, introduced by Newman [10]:
Let A = (ai,j) be the adjacency matrix of G, where ai,j is
one when there is an edge between node i and node j, and
zero otherwise; di = Σn

l=1ai,l be the degree of node i; m be
the number of edges and n be the number of vertices in G.
Modularity Q of a given partitioning C is defined as:

Q(C) =
1

2m

∑

i,j∈V

[ai,j −
didj

2m
]σ(i, j) (1)

where σ(i, j) is one if i and j are in the same community and
zero otherwise.

Intuitively, for a community C, Modularity is the number of
edges within C minus the expected number of such edges. So,
the high-quality communities can be determined as the ones
with the high value of Modularity. We refer to the problem of
finding a partition of the network that maximizes Modularity
as the Modularity Maximization problem. The Modularity
Maximization problem is NP-hard [11]. Nevertheless, many
algorithms, both heuristics (e.g., [12], [13], [14], [15], [16])
and exact methods (e.g., [11], [17], [18]) have been proposed
to solve this problem (approximately).

It is known that the Modularity measure suffers from some
limitations (see [19], [20] for more details). In particular, as
pointed out in [21] and [22], one of the major limitations
of Modularity is that it only takes the existing edges of
the network into consideration. In other words, Modularity
qualifies the goodness of the discovered communities by
only measuring how good the partitioning fits the existing
edges. This is indeed a drawback because Modularity does
not consider the disconnected nodes (absent edges) that lie
in the same community. Max-Min Modularity [21] is one of
the successful extensions of Modularity which improves the
accuracy of the measure by penalizing the Modularity quantity
when disconnected nodes are in the same community. More
precisely, it is assumed in [21] that (in addition to the graph
G) a zero-one relation matrix U = (ui,j) is given that defines
whether every pair of disconnected nodes of the network is
related or not; where ui,j is one when disconnected nodes i

and j are related, and zero otherwise. They, in fact, take into
account the importance of the indirect connections between
disconnected nodes by only penalizing the Modularity measure
when unrelated nodes are in the same community: Consider
a complemented graph G′ = (V,E′), where E′ contains an
edge between every pair of disconnected nodes of G that is
unrelated; i.e., there is an edge between i and j in G′ if there
is not such an edge in G and also ui,j is zero. Let A′ = (a′i,j)

be the adjacency matrix of G′ and d
′

i be the degree of node i

in G′ accordingly. Let m′ be the number of the edges in G′.
Max-Min Modularity QMM of a given partition C of V is
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defined as follows:

QMM (C) =
∑

i,j∈V

[
1

2m
(ai,j −

didj

2m
)−

1

2m′
(a

′

i,j −
d
′

id
′

j

2m′
)]σ(i, j) (2)

We refer to the problem of finding a partition of the network
that maximizes Max-Min Modularity as the Max-Min Mod-

ularity Maximization problem. Chen et al. [21] proposed a
hierarchical clustering algorithm (similar to that of Newman
[10] for the classical Modularity Maximization Problem) that
approximately optimizes Max-Min Modularity in a greedy
manner.

A drawback of the approach described in [21] is that it
strongly depends on the accuracy of the given relation matrix.
So the quantity of the measure might be heavily affected by
the node relationships defined by the user in the first place.
Therefore, unobserved or misobserved relations between nodes
of the network can lead to poor partitioning results. It is worth
mentioning that authors of [21] also suggested a systematic
(but not necessarily accurate) way for defining the relation
matrix U : Two disconnected nodes are related if they connect
to the same intermediary node; this is, for every node pairs i

and j, ui,j is one only if {i, j} 6∈ E and there is some node
k that {i, k} ∈ E and {k, j} ∈ E, and zero otherwise.

Main contribution: We develop the first LP-based approach
for solving the Max-Min Modularity Maximization problem.
First, we provide a more accurate way of defining the relation
matrix by exploiting an optimal linear relaxation solution to
the standard integer linear programming of the Modularity
Maximization problem. After that, we depict the standard
integer programming formulation of the Max-Min Modularity
Maximization problem. Then, for solving the problem, we em-
ploy a row and column generation approach to efficiently solve
the linear programming relaxation the problem. This provides
an optimal fractional solution to the Max-Min Modularity
Maximization problem. Next, we design a new rounding algo-
rithm to obtain integer solutions and, therefore, to determine
the community structures. We finally present a computational
study of our algorithm on known instances. The computational
experiments show that our results highly resemble the optimal
solutions and that our algorithm outperforms the previous
well-known algorithms, including the algorithm proposed in
[21].

The paper is organized as follows: the rest of this section
focuses on providing a brief literature review. In Section II, we
first introduce the novel relation matrix, and then we model
the Max-Min Modularity Maximization problem based on that.
Next, in Section III, we depict the row/column generation
technique and also the local search-based rounding algorithm.
Section IV is then dedicated to the experimental results.

A. Related Works

In the literature, several approaches are proposed to detect
communities in the networks: extremal optimization [23],
spectral optimization [24], greedy heuristics [25], [26], simu-
lated annealing [27], dynamical clustering [28], deep learning

techniques [29], message passing [30], quantum mechanics
[31], and more.

Despite a considerable amount of work on the community
detection problem, relatively little work solves the problem
using linear programming or integer programming techniques.
In 2008, Agarwal and Kempe [32] expressed the Modularity
Maximization problem as a standard Integer Programming
(IP) model and proposed an LP rounding algorithm for the
problem. Although the LP relaxation of their model can be
solved in polynomial time, as the number of constraints in their
model is O(n3), the rounding algorithm becomes impractical
when the number of nodes is large. Consequently, in 2010, a
column generation technique is developed in [17] to solve the
model more efficiently . Nevertheless, the proposed algorithm
could not solve problems with more than a few hundred nodes
in a reasonable time. In 2011, Dinh and Thai [33] proposed
a sparse LP formulation for the problem with much fewer
constraints than that of [32]. Finally, in 2013, Miyamoto [34]
proposed a row and column generation approach to solve the
sparse LP formulation, resulting in an efficient algorithm for
obtaining the optimal value of the sparse LP relaxation (and
so an upper bound for the optimal value for the Modularity
Maximization problem).

II. MODEL DESCRIPTION

Let the binary variable xij indicate if nodes i and j belong
to the same community or not; the value of xij is zero if nodes
i and j belong to the same community, and one otherwise.
Let Iall = {(i, j) ∈ V 2 | i < j}; and qij = ai,j − didj

2m ,
for each (i, j) ∈ Iall. As described in [33], the Modularity
Maximization problem can be formulated in terms of the
following integer linear program.

max
1

m

∑

(i,j)∈Iall

qij(1− xij) (IP-M)

xij + xjk − xik ≥ 0 ∀i < j < k (3)

xij − xjk + xik ≥ 0 ∀i < j < k (4)

− xij + xjk + xik ≥ 0 ∀i < j < k (5)

xij ∈ {0, 1} ∀(i, j) ∈ Iall (6)

Constraints (3)-(5) guarantee that if i and j are in the same
community and j and k are in the same community, then so
are i and k. We refer to the relaxation of (IP-M), obtained
by replacing the constraints xij ∈ {0, 1} by xij ∈ [0, 1], as
(LP-M).

A. Computing the Relation Matrix via LP

In this section, we provide a systematic and accurate way for
defining the relation matrix by exploiting an optimal solution
to (LP-M). Let x∗ be the optimal solution to (LP-M). This
can be obtained efficiently (in polynomial time) using, for
example, the row and column generation algorithm of [34]. We
note that the optimal fractional solution x∗ induces a metric,
called the LP distance, on the graph G: think of x∗ij as a
"distance" between nodes i and j. Observe that Constraints
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(3)-(5) guarantee the triangle inequality for any i, j, k ∈ V

in the induced metric. Clearly, the larger the LP distance of
two nodes is, the less related the nodes are. This observation
and also the fact that the Modularity Maximization problem
can be nicely proposed for weighted graphs [35] motivates
us to define the relation matrix and so the complemented
(weighted) graph G′ using the LP distance (rather than the
graph distance). Recall that Chen et al. [21] defined the relation
matrix using the distance between nodes in the graph G: Two
disconnected nodes are related if they connect to the same
intermediary node (if the distance between them in G is two).

We define the relation matrix matrix A′ = (a′i,j) (and hence
G′; (a′i,j) represents the weight of the edge between nodes i

and j in G′) as follows:

a′i,j =







x∗ij if ai,j = 0 and j > i

x∗ji if ai,j = 0 and i > j

0 otherwise
(7)

Before any further discussion, it is worth pointing out that
only by replacing our proposed relation matrix with the one
used in [21] and then applying their hierarchical algorithm we
can attain more accurate results. Fig. 1 proves this claim in the
following way. It considers 12 well-known networks whose
optimal communities (ground truth) are already known and
valid. It then provides a comparison between each network’s
ground truth and the communities discovered by the Max-
Min Modularity method with respect to i) the conventional
relation matrix U , proposed in [21], (red diagram), and ii) our
proposed relation matrix (gray diagram). Section IV describes
the networks used and the performance metric Normalized

Mutual Information (NMI). However, for now, note that for
a given network with known community assignments and
a given community detection algorithm, the more the NMI
value, which can vary between 0 and 1, the more similarity
there is between the discovered communities and the ground
truth. The results clearly illustrate that applying the proposed
relation matrix leads to more accurate communities, which are
more similar to the ground truth.

2 4 6 8 10 12

0.6

0.8

1

Network ID

N
M

I

Fig. 1: Comparison between NMI values, for twelve well-
known real-world networks, achieved by (i) red curve: Max-
Min modularity, proposed in [21] and (ii) gray curve: using
our proposed relation matrix but the hierarchical algorithm
proposed in [21].

Considerably attractive is that one can still significantly
improve the results by solving the standard formulation of
the Max-Min Modularity Maximization problem, which will
be explained in the following sub-section.

B. Modeling the Max-Min Modularity Maximization problem

First of all, note that it is not difficult to check that the re-
dundant constraints introduced in [36] for the clique partition-
ing problem are also redundant for the standard formulation
of the Modularity Maximization problem and the problem of
Max-Min Modularity Maximization. Accordingly, for a given
matrix A′ = (a′i,j), resp. the weighted graph G′, defined
above, the Max-Min Modularity Maximization problem can

be formulated as the following IP. Let cij =
qij
m

−
q
′

ij

m′ , where

q′ij = a′i,j −
d′
id

′
j

2m′ , d
′

i =
∑n

l=1 a
′
i,l, and m′ =

∑

(i,j)∈Iall
a′i,j ;

for each (i, j) ∈ Iall.

max
∑

(i,j)∈Iall

cij(1− xij) (IP-MM)

xij + xjk − xik ≥ 0 ∀i < j < k, cij ≥ 0 ∨ cjk ≥ 0 (8)

xij − xjk + xik ≥ 0 ∀i < j < k, cij ≥ 0 ∨ cik ≥ 0 (9)

− xij + xjk + xik ≥ 0 ∀i < j < k, cjk ≥ 0 ∨ cik ≥ 0 (10)

xij ∈ {0, 1} ∀(i, j) ∈ Iall (11)

We refer to the relaxation of (IP-MM), obtained by replacing
the constraints xij ∈ {0, 1} by xij ∈ [0, 1], as (LP-MM).

III. SOLUTION APPROACH

To solve (IP-MM), we first employ a technique to find the
optimal solution to (LP-MM) efficiently. Then we propose a
local search-based rounding procedure to obtaining the integer
solution.

A. Solving (LP-MM)

While (LP-MM) can be solved in polynomial time, it
would be deficient for networks exceeding a few hundred
vertices since the number of constraints is 3

(

n
3

)

= O(n3),
and therefore, rapidly grows with respect to the number of
nodes. To tackle this difficulty, we introduce a row/column
generation technique heavily inspired by the one proposed
in [34] for the Modularity Maximization problem. Let I =
{(i, j) ∈ Iall | cij > 0} and I ′ = {(i, j) ∈ Iall | cij ≤ 0} be
two sets of vertex pairs indices in Iall. For a given I ⊆ I

′

,
the following formulation presents a sub-problem of (LP-MM)
consisting of all pairs in I and some pairs in I

′

.

max
∑

(i,j)∈I

cij(1 − xij) +
∑

(i,j)∈I

cij(1 − xij) (LPs-MM(I))

xij + xjk − xik ≥ 0 ∀(i, j), (j, k), (i, k) ∈ I ∪ I, cij ≥ 0 ∨ cjk ≥ 0 (12)

xij − xjk + xik ≥ 0 ∀(i, j), (j, k), (i, k) ∈ I ∪ I, cij ≥ 0 ∨ cik ≥ 0 (13)

− xij + xjk + xik ≥ 0 ∀(i, j), (j, k), (i, k) ∈ I ∪ I, cjk ≥ 0 ∨ cik ≥ 0 (14)

xij ∈ [0, 1] ∀ i < j, (i, j), (j, k), (i, k) ∈ I ∪ I (15)

It can be easily turned out that (LPs-MM(∅)) is the smallest
formulation and (LPs-MM(I ′)) is equivalent to (LP-MM)
itself. Please note that, since for all (i, j) ∈ I ⊆ I ′ we have
cij ≤ 0, (LPs-MM(I)) clearly provides an upper bound of the
optimal value of (LP-MM), and moreover, adding variables
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can never worsen the upper bound. Furthermore, the following
theorem brings forward a condition under which the upper
bound is equal to the optimal value of (LP-MM).

Theorem 3.1: If an optimal solution x̄∗ = (x̄∗ij)(i,j)∈I∪I to
(LPs-MM(I)) satisfies the condition (∗), then (x∗ij)(i,j)∈Iall

is
an optimal solution to (LP-MM), where

x∗ij =

{

x̄∗ij ; (i, j) ∈ I ∪ I
1 ; otherwise

(16)

and

(∗)






x̄∗
ij

+ ¯x∗
jk

≥ 1; (i, j), (j, k) ∈ I ∪ I, cij ≥ 0 ∨ cjk ≥ 0, (i, k) ∈ I
′
− I

x̄∗
ij

+ ¯x∗
ik

≥ 1; (i, j), (i, k) ∈ I ∪ I, cij ≥ 0 ∨ cik ≥ 0, (j, k) ∈ I
′
− I

¯x∗
jk

+ ¯x∗
ik

≥ 1; (j, k), (i, k) ∈ I ∪ I, cjk ≥ 0 ∨ cik ≥ 0, (i, j) ∈ I
′
− I

Proof. Suppose that x̄∗ = (x̄∗ij)(i,j)∈I∪I is an optimal solution
to (LPs-MM(I)) that satisfies the condition (∗). Let x∗ =
(x∗ij)(i,j)∈Iall

, such that for every (i, j) ∈ Iall, (x∗ij) is defined
by Equation (16). We indicate that x∗ is an optimal solution to
(LP-MM). First of all, x∗ is feasible for (LP-MM). To prove
that, we suffice to confirm that the first set of constraints of
(LP-MM) (eq. (8)) is satisfied. The same argument can be
expressed for the remaining two sets of constraints. It thereby
needs to be determined that for all i < j < k such that cij ≥ 0
or cjk ≥ 0, we have x∗ij + x∗jk − x∗ik ≥ 0. Note that eight
conditions may happen to the pairs (i, j), (j, k), and (i, k).
If (i, j), (j, k), (i, k) ∈ I ∪ I, the constraints are satisfied
because they are also in (LPs-MM(I)). If (i, j), (j, k) ∈ I ∪I
and (i, k) ∈ I ′ − I, the constraints are again satisfied due
to the condition (∗). Furthermore, in the remaining cases, at
least one of x∗ij or x∗jk equals 1, so the constraints are again
satisfied. Hence, x∗ is feasible for (LP-MM). As a result, it
is enough to show that the objective value of x∗ in (LP-MM)
is equal to that of x̄∗ in (LPs-MM(I)). Point out that one can
rewrite the objective function of (LP-MM) as follows:

∑

(i,j)∈I

cij(1 − xij) +
∑

(i,j)∈I

cij(1 − xij)

︸ ︷︷ ︸

F

+ ∑

(i,j)∈Iall−I−I

cij(1 − xij)

︸ ︷︷ ︸

Z

.

F is exactly the objective value of (LPs-MM(I)), and Z equals
0 according to Equation (16). Therefore, the objective value
of x∗ in (LP-MM) is equal to that of x̄∗ in (LPs-MM(I)). �

Based on the above discussion, we state the following
scheme for obtaining the optimal solution to (LP-MM).

• Start solving (LPs-MM(I)) with I = ∅ and adding
those xij ∈ I ′ − I that violate inequalities in (∗) in
each iteration, until an optimal solution to (LPs-MM(I))
satisfies (∗).

• Employing a row generation for solving (LPs-MM(I)) in
each repeat.

B. Rounding algorithm

Recall from what we discussed in Section II-A that a
solution x∗ to (LP-MM) expresses the LP distance such that
the lower the x∗ij , the more tendency the nodes i and j have
to be in a same community. Our local search-based procedure
rounds the distance between vertices (or, as we will see, move
the vertices among communities) based on simultaneously

using the LP distance and the value of (IP-MM) 1. Assume
that x∗ = (x∗ij)(i,j)∈V 2 is an optimal fractional solution to
(LP-MM). We denote each C ⊂ V a community if we have
x∗ij = 0 for every i, j ∈ C. Further, by assigning node i we
mean to round down x∗ij to 0 for every j ∈ C and round it up
to 1; otherwise, where C is the community whose center node

(explained in the next paragraph) has the minimum distance
from i (w.r.t the LP distance).

The main idea of the local search-based rounding procedure
is to obtain the best communities leading to the maximum pos-
sible value of (IP-MM) by wisely assigning nodes. Intuitively,
the algorithm starts from an initial solution, which is the set of
communities achieved by the optimal solution x∗ to (LP-MM),
and then iteratively moves to the neighbor solutions. In brief,
it starts with randomly associating a center node for each
community and then assigning each node j, which is not
a member of any community. Next, it computes the value
of (IP-MM)2. Afterward, it iteratively greedily improves the
center vertices based on one of the three functions Add,
Delete, and Swap at a time. Then it updates communities by
reassigning every node. To be more precise, in each repeat,
Add and Delete functions respectively check whether adding
or deleting a center node (and therefore, the corresponding
community) can make any progress in the value of (IP-MM)
and if that so, the best action leading to this improvement will
be recorded. On the other hand, the function Swap tries to
discover the best switch between a non-center and a center
node that leads to the maximum improvement in (IP-MM)
value. At last, the best function leading to the best gain
in the value of (IP-MM) will be selected, and in this way,
communities will be updated. The above procedure will be
repeated until the best possible community structures regarding
the obtained value of (IP-MM) are found. We note that in the
case that solving (LP-MM) does not lead to obtaining any
communities at the very beginning (i.e., x∗ij 6= 0 for every
i, j ∈ V such that i 6= j), the algorithm randomly chooses
a number k ∈ {1, 2, . . . , n} of nodes as center vertices and
assigns each of the remaining vertices. Algorithm 1 elaborates
the pseudo-code of this technique.

IV. COMPUTATIONAL RESULTS

In this section, we present a performance evaluation for our
proposed method by using 12 commonly-used and well-known
real-world networks that are listed in Table I. Ground truth
(i.e., the optimal community structures) is available and known
for each of these networks, and therefore, one can facilely
measure the quality of a community detection algorithm by
estimating the similarities between the communities obtained
by the algorithm and the ground truth. For doing this, we use
the well-known performance metric NMI.

A. Normalized Mutual Information (NMI)

NMI [50] is indeed a well-known clustering comparison
metric. Nevertheless, it can perfectly evaluate the similarity

1By a value of (IP-MM), we mean the value of the objective function of
(IP-MM) with respect to an integer solution.

2Note that, after assigning all vertices, we have integer solution.
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Algorithm 1: Local search-based rounding procedure.
Input: x∗ = (x∗

ij)(i,j)∈V 2 // an optimal solution to (LP-MM).

Output: set of communities C of the network G.
1 let T = {T1, T2, . . . , Tk} be the set of k initial communities obtained by

x∗;
2 if |T | 6= ∅ then

3 let S = {µ1, µ2, . . . , µk} such that µi is a randomly selected
member of Ti, for all i ∈ {1, 2, . . . , k};

4 else

5 let S = {µ1, µ2, . . . , µk} be a set of k randomly chosen vertices, for
a random k ∈ {2, . . . , n};

6 (C, Q)←CalculateGain(S);
7 Qtemp ← 0;
8 while Q > (1 + ǫ)Qtemp do

9 // small constant ǫ guarantees that running time remains polynomial. See

[37], [38].
10 Qtemp ← Q;
11 (C, Q, S)← BestMove(S);

12 Return (C);
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 // Functions declaration:

15 CalculateGain (S)
16 let Ci = {µi}, for every µi ∈ S and 1 ≤ i ≤ |S|;
17 for every i ∈ V − S do

18 assign i; (i.e., Cj ← Cj ∪ {i} where
j = argmin{x∗

iµj
: 1 ≤ j ≤ |S|})

19 C ← {C1, C2, . . . , Ck};
20 Q← the value of (IP-MM) w.r.t the set of communities C;
21 Return (C, Q);

22 BestMove (S)

23 (Sadd, Cadd, Qadd)← Add(S);
24 (Sdelete, Cdelete, Qdelete)← Delete(S);
25 (Sswap, Cswap, Qswap)← Swap(S);
26 retrieve the highest (IP-MM) value Q, the best set of communities C,

and the best set of center nodes S;
27 Return (C, Q, S);

28 Add (S)
29 for every i ∈ V − S do

30 Sadd ← S ∪ {i};
31 (Cadd, Qadd)← CalculateGain(Sadd);
32 remember current Sadd, Cadd, and Qadd;

33 Return (Sadd, Cadd, Qadd) corresponding to the highest obtained
Qadd;

34 Delete (S)
35 for every i ∈ S do

36 Sdelete ← S − {i};
37 (Cdelete, Qdelete)← CalculateGain(Sdelete);
38 remember current Sdelete, Cdelete, and Qdelete;

39 Return (Sdelete, Cdelete, Qdelete) corresponding to the highest
obtained Qdelete;

40 Swap (S)
41 for every i ∈ S do

42 for every j ∈ V − S do

43 Sswap ← (S − {i}) ∪ {j};
44 (Cswap, Qswap)← CalculateGain(Sswap);
45 remember current Sswap, Cswap, and Qswap;

46 Return (Sswap, Cswap, Qswap) corresponding to the highest
Qswap;

between the optimal communities and those discovered by
an algorithm. Suppose that for a given network G, C(A) =
{C1, . . . , Ck} and C′ = {C ′1, . . . , C

′
k′} be respectively a set

of communities obtained by an algorithm A and the ground
truth. The NMI value corresponding to the algorithm A can
be written as

NMI =

−2

|C|
∑

x=1

|C′|
∑

y=1

|Cx ∩ C′
y|

n
log(

n|Cx ∩ C′
y|)

|Cx||C′
y|

|C|
∑

x=1

Cx

n
log(

Cx

n
) +

|C′|
∑

y=1

C′
y

n
log(

C′
y

n
)

(17)

TABLE I: Networks under-study

ID Network n m

1 Zachary’s karate club [39] 34 78
2 Mexican Politicians [40] 35 117
3 Dolphin network [41] 62 159
4 Les Miserables [41] 77 254
5 p53 protein [42] 104 226
6 Books about U.S. politics [43] 105 441
7 American college football [44] 115 613
8 Citation graph drawing [45] 311 640
9 USAir97 [46] 332 2126
10 C. Elegans [47] 453 2025
11 Erdos collaboration [48] 472 1314
12 Electronic circuit [49] 512 819

In the case where the detected communities are identical to
the ground truth, the NMI takes its maximum value one, while
in the case where the two sets totally disagree, the NMI score
is zero. Generally, the more the NMI, the better community
structures have been found.

B. Experiments

In what follows, we provide a complete evaluation that
shows how our relation matrix or/and rounding technique can
individually resp. together improve the old-fashion relation
matrix or/and other rounding procedures and the conventional
Max-Min Modularity algorithm.

All tests are conducted on a computer system with a
processor Intel(R) Core(TM) i5-7300U CPU @ 2.60GHz,
2712 Mhz, 2 Core(s), 4 Logical Processor(s), 8 GB of Rams,
and Win10 OS. Algorithms are implemented with C++, and
CPLEX optimizer 12.9 is used for solving linear programming.

Fig. 2 provides a comprehensive comparison by evaluating
communities that are discovered based on the following cases:

• Our proposed method (the blue diagram): Using the
relation matrix, proposed in Section II-A, to model
the Max-Min Modularity Maximization problem, solv-
ing (LP-MM) via the row/column generation method
introduced in Section III-A, and detecting communities
(obtaining integer solutions) by the devised rounding
technique (Section III-B).

• Replacing the relation matrix suggested in [21] with
our relation matrix but using the hierarchical algorithm
proposed in [21] (the gray diagram).

• Applying the relation matrix introduced in [21] to model
the Max-Min Modularity Maximization problem and us-
ing our proposed rounding procedure to obtain commu-
nities (the yellow diagram).

• Using our relation matrix and row/column generation
technique to solve (LP-MM), but employing the rounding
algorithm proposed by Agarwal and Kempe [32] 3 instead
of our rounding procedure; (The black diagram).

3The authors of [32] introduced a rounding procedure to obtain the
integer solution to the Modularity Maximization problem. Their method is
actually derived from a rounding procedure that is originally proposed for
the correlation clustering problem. However, it led to raising unwarranted
singleton and a number of low-quality communities that made them apply a
series of Kernighan-Lin shifts [51] to improve community structures. Here
we used their technique to rounds (LP-MM) solution.
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• Applying our rounding method to the optimal solution
to the linear programming relaxation of the Modularity
Maximization problem obtained in [34] (green diagram).

• Max-Min Modularity, proposed in [21] (red diagram).
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Fig. 2: Comparison between NMI values achieved by (i) blue
curve: our method, (ii) gray curve: using our proposed relation
matrix but the old-fashion algorithm, (iii) yellow curve: using
the old-fashion relation matrix, but applying our proposed
rounding procedure, (iv) green curve: applying our rounding
method to the optimal solution to the linear programming
relaxation of the Modularity Maximization problem, (v) black
curve: applying our relation matrix but using another rounding
algorithm to find communities. and (vi) red curve: conven-
tional Max-Min modularity.

One can obviously conclude that the best results are
achieved when the proposed method, including the new re-
lations matrix and also the devised rounding algorithm, is
used. In particular, comparing the blue and green diagrams
shows the advantage of solving (linear relaxation) of the Max-
Min Modularity Maximization problem rather than solving the
(linear relaxation) of the Modularity Maximization problem.
On the other hand, the worst result occurs when we just use
the Max-Min Modularity proposed in [21]. So, an immediate
consequence might be that while the idea behind the Max-Min
Modularity is so clever and interesting, the relation matrix and
also the hierarchical algorithm introduced in [21] do not lead
to a very high-quality result.

As we already mentioned in Section II-A, comparing the
gray and red diagrams can show us the superiority of using
our proposed relation matrix instead of the one introduce in
[21]. On the other hand, by considering the blue and black
diagrams, one can recognize the preponderance of the pro-
posed rounding algorithm over the famous rounding procedure
suggested in [32]. A final remark might be that although the
proposed relation matrix and the developed rounding technique
alone improves the results, the high efficiency of the method
considerably relies on their simultaneous application. It means

that, for example, applying our proposed rounding algorithm
but using the traditional relation matrix cannot always lead the
promising results; See the yellow diagram.

V. CONCLUSION

In this work, we first introduced a systematic way to gen-
erate a more accurate relation matrix for the Max-Min Mod-
ularity Maximization problem based on the optimal solution
to the linear relaxation programming of the Modularity Max-
imization problem. After that, according to this new relation
matrix, we modeled the standard integer formulation for the
Max-Min Modularity Maximization problem and employed a
row/column generation technique to solve its linear relaxation
version. We also devised a local search-based rounding method
that facilitates us to round fractional solutions to integer ones
and detect communities of a network in a very accurate way.
The proposed computational experiments showed that our
results highly resemble the optimal solutions and that our
algorithm outperforms the previous well-known algorithms.
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