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Abstract—The insurgence of COVID-19 requires fast mass vac-
cination, hampered by scarce availability and uncertain supply
of vaccine doses and a tight schedule for boosters. In this paper,
we analyze planning strategies for the vaccination campaign to
vaccinate as many people as possible while meeting the booster
schedule. We compare a conservative strategy and q-days-ahead
strategies against the clairvoyant strategy. The conservative strat-
egy achieves the best trade-off between utilization and compliance
with the booster schedule. Q-days-ahead strategies with q < 7

provide a larger utilization but run out of stock in over 30% of
days.

I. INTRODUCTION

D
UE to the global COVID-19 pandemic emergency, mass

vaccinations are taking place all over the world. Mass

vaccinations have been held in the past, starting with the

vaccination days and the mass campaign to eradicate smallpox

in the early 19th century [1]. However, two centuries after,

mass vaccination is still a challenge [2]. The challenge is

particularly severe for situations where the need for mass

vaccination arises while vaccines are being developed. In that

case, time constraints conflict: herd immunity calls for fast

action, but the need for wide vaccine availability slows down

the campaign deployment. As a consequence, a great variety

of logistic problems connected to this enormous task arise. In

this paper, we focus on planning a vaccination campaign, i.e,

determining a day-by-day prescription on the number of doses

that have to be administered in the presence of uncertainties

in the distribution provided by the vaccine suppliers. Here, we

are not looking at allocation options concerning the priority

order of specific population segments or areas in the territory.

Instead, we focus on the downstream problem connected to

the effective and efficient delivery of the vaccines to eligible

individuals. In designing such a decision support tool, several

issues must be considered, mainly due to different character-

istics of the administered vaccines.

This work is partially supported by MIUR PRIN Project AHeAD (Efficient
Algorithms for HArnessing Networked Data).

• Inventory Management issues: vaccine products are

temperature-sensitive and must be stored and handled

correctly to ensure efficacy and maximize shelf life.

Proper storage and handling practices are critical to

minimize vaccine loss and limit the risk of administering

the COVID-19 vaccine with reduced effectiveness. Expi-

ration dates have also to be taken into account. It is also to

be noted that timely management of inventories requires

the fast updating and integration of hospital information

systems [3] as well as their reliability [4].

• Booster shot: whether or not a second dose is required

and the prescribed time interval between the first and

the second doses is a component that greatly affects any

planning model for mass vaccination.

• Overall vaccination capacity: we must consider the max-

imum number of vaccinations (independently of whether

they are first or second doses) that the system can

administer every day. We are considering this information

as given and deterministic, to be set as a function of the

number of operators and vaccination sites capacity;

• Trade-off between different procurement and vaccination

strategies under a limited budget and time horizon con-

straints, which we do not consider here, but should enter

the more general analysis framework [5].

The paper is organized as follows.

Hereafter we briefly report on a few related works in

the literature and describe the context and notation for the

addressed problem.

In Section IV, we illustrate how the arrival process is mod-

elled and, consequently, how the input data of the experiments

are generated.

Optimization models and approaches to the problem are

presented in Section V, where two main points of view are

considered. We first address the problem as if it were a

deterministic (off-line) one, i.e., all data are assumed to be

known and given in advance. The output of such a phase

is a point of reference or benchmark to assess the quality

of different non-clairvoyant methods presented in the same
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section. We then consider models where supply is regarded as

a random process over time, are designed to tackle the real-

world stochastic problem effectively.

Section VI reports the results of an extensive computational

campaign aimed at testing and assessing the effectiveness of

the different proposed approaches.

Finally, in Section VII, some conclusions are drawn.

II. RELATED LITERATURE

Due to the current pandemic situation, mass vaccination

logistics problems came (overwhelmingly indeed!) to the

attention of researchers only very recently. As a consequence,

the literature concerning this specific area is still relatively

scarce. There are, however, several papers dealing with various

problems arising in the event of a sudden burst of infections

caused by a pathogen in a population.

A comprehensive introduction to the mathematical mod-

elling of infectious diseases can be found in the book by

Keeling and Rohani [6] as an essential tool in public health

planning and response. Several techniques are illustrated to

model basic epidemiological processes, such as the propa-

gation of infectious diseases. Such techniques range from

differential equations to computer simulations.

The effectiveness of mass vaccination against other policies

(such as trace vaccination) is discussed in [7] for the hypo-

thetical case of a smallpox bioterrorist attack in a large U.S.

city.

Among the few papers dealing with mass vaccination lo-

gistics in the most recent literature (not necessarily related to

the COVID-19 pandemic), the following ones present some

appreciable connections with the problem at hand.

In [8] the authors formulate a bi-objective model for

planning vaccination campaigns that aim at minimising both

control costs and the number of infected individuals.

In the context of mass vaccination, some papers in the

literature have addressed different types of problems. In a very

recent paper, the authors address the problem of allocating vac-

cines across geographical regions to utilise available vaccines

as effectively as possible [9].

Both the above papers base their analysis on the epidemio-

logical conditions of a population and/or a geographical area.

Unlike the above studies, our aim in this work is not to

identify who should get vaccinated first. Instead, we want

to establish how to optimally exploit the uncertain supplies

of doses to speed up the vaccination process and rapidly

immunise the largest possible fraction of the population.

In fact, the problem we address here resembles the so-called

lot-sizing in production planning, which has been extensively

studied since the seminal work of Wagner and Whitin in

the Fifties [10]. In [10], the authors propose a forward dy-

namic programming algorithm for a generalised version of

the uncapacitated economic lot-sizing model with dynamic

demand under a general concave cost function. The latter

model has been extended in [11] by considering the possibility

of backlogging. These prototypical models can be viewed

as special fixed charge network problems. Several variants

have been investigated and still are an important topic of

research, including single-item and multi-item, uncapacitated

and capacitated lot-sizing problems. However, differently from

lot-sizing problems, as we are discussing below, in our model,

we are not considering inventory costs as a main component of

the decision criteria. Though stock expenses are not negligible,

we prioritise the average vaccination time since a fast immu-

nisation of the largest possible audience is of much greater

importance in this situation.

III. CONTEXT AND PROBLEM DEFINITION

The purpose of our study is to design a support tool

providing the decision-maker with a suggestion about the

number of doses of vaccines to be administered every day

along a given planning horizon. The set of vaccine types is V ,

and the planning horizon consists of a number T of periods

(days):

W = {1, . . . , T}.

This information specifies the type of vaccine, a first or a

booster dose, and the daily inventory level for each vaccine.

These decisions are based on imperfect information concern-

ing the supply of doses during the planning time window: The

number bit of doses of vaccine i ∈ V delivered at day t ∈ W is

considered as a random variable and, in Section IV, the arrival

process is thoroughly described using suitable probability

density functions.

We wish to (i) determine benchmarks against which the

algorithms for the non-deterministic case can be confronted,

and (ii) to design a tool that can be safely used when the

information about the arrivals will be more reliable, as it can

be expected in the (hopefully near) future. For those reasons,

in Section V-A, we are also considering an off-line version of

the problem, in which the amount of daily provision bit for

each type of vaccine are given as deterministic data.

Another critical input parameter is the capacity limit of the

system, i.e., the maximum number of vaccine doses that may

be administered at time t. This limit could be independent of

the administered vaccine type. However, in our algorithms, we

are considering upper bounds kit on the number of each single

vaccine type i that can be administered in day t as given input,

for all i ∈ V, t ∈ W . Of course, the size of these variables

(so that
∑

i∈V
kit is a constant or slightly variable over time)

can be suitably tuned, depending on the available supply.

The algorithms we are proposing are basically models that

return a prescriptive vaccination plan over the next T days.

This is especially true of off-line algorithms. In particular, the

output of the algorithm is the number xi
t, resp. yit, of people

receiving the first, resp. the second, dose of vaccine i on day

t. As a consequence, an additional output of these procedures

is the stock level of each vaccine i at (the end of) day t ∈ W .

Clearly, the algorithms could also be used in a rolling-horizon’

fashion, i.e., re-optimizing every single or one-in-n day, taking

into account current inventory levels and new estimated future

dose arrivals.
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For the developments to follow, we refer to the total number

of supplied doses of vaccine i until day t by:

Bi(t) =
t

∑

θ=1

biθ

Observe that, if ∆i is the recommended time interval, ex-

pressed in number of periods, between the first and the

mandatory booster (or second) dose of vaccine i ∈ V , since
∑T−∆i

t=1 xi
t =

∑T
t=∆i+1 y

i
t ≤ 1

2B
i(T ) and

∑T−∆i

t=1 xi
t ≤

Bi(T−∆i), then there is a feasible solution with siT = 0 if and

only if Bi(T −∆i) ≥ 1
2B

i(T ). In fact, any feasible solution

has siT ≥ Bi(T )− 2Bi(T −∆i). (With no loss of generality,

we assume that the right-hand side of the latter inequality is

not positive. Otherwise, we may subtract this quantity from the

arrivals of the last T −∆i days and then apply the algorithm.

So doing we eventually have siT = Bi(T )− 2Bi(T −∆i).)

IV. THE ARRIVAL PROCESS

Vaccine administration is fed by the availability of vaccine

doses. A smooth and regular procurement and delivery process

of vaccine doses (and the vaccine supply chain in general)

is essential to the correct planning of the administration

phase [12], [13]. However, the delivery of doses has been

hampered by repeated delays, well reported in the general

press 1. As a consequence, the delivery of doses to nations,

and subsequently to vaccination centers, appears as largely

random. In this section, we provide a stochastic model for the

arrival of vaccine doses, considering a whole nation as the

recipient.

For this purpose, we rely on the datasets provided for

Italy under an OpenData agreement at https://github.com/italia/

covid19-opendata-vaccini. The datasets are updated daily and

include the number of doses received for each supplier

(which are AstraZeneca, Moderna, Pfizer-BioNTech, and John-

son&Johnson). For the time being, the observation interval

considered for this study is from December 27, 2020, to April

2, 2021. The sample record of arrivals for Pfizer-BioNTech is

shown in Fig. 1. We can notice two major features of the time

series:

• the arrivals exhibit a growing trend;

• arrivals do not take place each day, and on most days,

there are no arrivals.

The first feature is probably a consequence of the current

transient nature of the process. Pharmaceutical companies are

scaling up their production to meet the growing demand of

nations to vaccinate their citizens. As seen at this stage,

the resulting stochastic process of arrivals would be non-

stationary, calling, e.g., for the use of a non-homogeneous

Poisson model [14]. However, we are more interested in

the steady-state version of the process since we imagine an

ongoing massive vaccination after facing today’s initial phase.

1See, e.g., just the recent headlines “Covid vaccine: UK supply hit by
India delivery delay” at https://www.bbc.com/news/uk-56438629 and “Covid:
What is happening with the EU vaccine rollout?” at https://www.bbc.com/
news/explainers-52380823.
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Fig. 1. Daily arrivals of Pfizer-BioNTech doses over Dec 2020 - May 2021
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Fig. 2. Cumulative arrivals of Pfizer-BioNTech doses (Dec 2020 - May 2021)

We can, however, examine the growing transient to compare

a homogeneous against a non-homogeneous Poisson process

(as adopted, e.g. in [15]). In Fig. 2, we have reported the

cumulative number of dose arrivals. If that process followed a

homogeneous Poisson model, the expected number of arrivals

over any period would be proportional to that period (i.e.,

linear in time). On the same Fig. 2, we have also reported

the linear trend that would better fit the observed data. As we

can see, the linear trend is a poor approximation of the real

growth of arrivals. A quadratic function, also shown in the

picture, would be a better fit.

As to the second feature, delivery days are interspersed

with relatively long intervals of no-delivery. For that reason,

we are led towards a zero-inflated model, where zeros occur

more often. In zero-inflated models, the occurrence of zero

arrivals is superimposed with a model assuming a larger

domain (in our case, the domain N) [16], [17]. The latter
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model may be a Poisson, negative binomial, binomial, beta-

binomial or hypergeometric. Here we have opted for a zero-

inflated Poisson model, also known as ZIP. We recall that we

are considering the steady-state scenario with a homogeneous

ZIP model. Should we wish to examine the transient phe-

nomenon, we could consider a quadratic approximation for

the expected number of arrivals in a non-homogeneous zero-

inflated Poisson model, as shown earlier.

In the ZIP model, the probability distribution for the number

X of dose arrivals is

P[X = k] =

{

π + (1− π)e−λ if k = 0,
(1− π)e−λλk/k! if k = 1, 2, . . . .

(1)

where 0 ≤ π ≤ 1 and λ ≥ 0.

This model is then represented by two parameters, π and λ.

We can adopt several methods to estimate those parameters

[18]. In particular, if we indicate the sampling mean and

variance respectively as m and s2, the method of moments

provides us with the following estimates:

π̂ =
s2 −m

s2 +m2 −m

λ̂ =
s2 +m2

m
− 1.

(2)

V. VACCINATION PLANNING APPROACHES

In this section, we describe the algorithms that can be used

as a decision support tool for designing a vaccination plan

over the next T days. The plan consists of establishing the

number of (first and second) doses of vaccines that shall be

administered every day.

A. Off-line optimization model

Hereafter, we present a linear programming model providing

a solution to maximize the number of vaccinated people per

day while exploiting all the doses supplied during the planning

time window W = {1, . . . , T}.

The set of available vaccine types is V = V ′ ∪V ′′. Vaccine

type V ′ requires a single dose while vaccine type V ′′ requires

a double shot.

In our model, we consider the following decision variables:

• xi
t and yit, t ∈ W , i ∈ V indicate the number of first and

second doses of vaccine i administered during time t;
• sit is the amount of doses of vaccine i remaining in stock

at (the end) of period t.

We also assume that, in the initial period t = 1, a given

inventory si0 ≥ 0 of doses is available in stock and that a

given maximum inventory level s̄iF ≥ 0 is required at the end

of the planning horizon. We discuss possible feasible values

for s̄iF later on.

The LP model is

min f(y) (3)

s.t. xi
t + yit + sit − sit−1 = bit i ∈ V, t ∈ W (4)

xi
t + yit ≤ kit i ∈ V, t ∈ W (5)

xi
t = yit+∆i i ∈ V ′′, t ∈ W (6)

xi
t = 0 i ∈ V ′, t ∈ W (7)

siT ≤ s̄iF i ∈ V, t ∈ W (8)

xi
t, y

i
t, s

i
t ≥ 0 i ∈ V, t ∈ W (9)

In this model the objective function (3) is the average

vaccination time that may be expressed as

f(y) =

∑

t∈W
(t
∑

i∈V
yit)

∑

t∈W

∑

i∈V
yit

(10)

Note that, each time period t is “weighted” by the number

of people
∑

i y
i
t receiving the final dose at t. Equation (10)

can be linearized by approximating the denominator with
1
2

∑

i∈V
Bi(T ), i.e., the maximum number of second doses

that can be administered in the face of certain dose-supplies

bi: In presence of null final stocks siT = 0, the two expressions

have equal values.

Equations (4) are simple continuity constraints expressing

the obvious relationship among the variables and the supplied

number of doses. Constraints (5) bound the total number

of doses administered in each period. Constraints (6) ensure

that the second dose of the vaccination is given after the

recommended time interval, while constraints (7) refer to the

single-dose vaccines2 Constraints (8) impose that the final

inventory level is at most a given quantity s̄iF . Without such

constraints, the optimal solution would be not to administer

any vaccine (and obtain a null valued objective). The values s̄iF
are given as an input to the LP model and can be chosen small

enough to guarantee that we are using as much as possible of

the supplied doses. In any case, it is clear that

s̄iF ≥ max{0, Bi(T )− 2Bi(T −∆i)} (11)

should hold.

The above model computes an optimal solution of our

planning problem under the assumption that the exact amount

of supply bit of each vaccine i is given, for each period t, i.e.,

the LP solves a deterministic (off-line) version of the actual

stochastic problem. Such solutions can be used as a benchmark

to assess the quality of blind heuristic algorithms providing

prescriptive information on the number of doses that can be

administered each day without a perfect knowledge on the

doses supplied in the future. As it is expected that the supply

process will become steady and the data about arrival dates

trustworthy enough, the above linear programming models

could be used as a reliable decision support system.

2While we show that single-dose vaccines may be easily included in our
models, due to scarcity of data about this type of immunization, in the
remainder of the paper we only present algorithms and experiments concerning
two-doses vaccines.
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With regard to the off-line version of the problem, in which

the supply bit is deterministic and given for all i ∈ V, t ∈ W ,

one may ask if a simpler mechanism than the LP-based one

described above would determine an optimal (or close to

optimal) solution without recurring to a mathematical program.

A greedy strategy seems a viable tool due to the simple

continuity relations binding the different quantities together

(similar, for instance, to those of the classical lot-sizing prob-

lem). Therefore, limiting ourselves to the uncapacitated case,

we tested a natural heuristic that guarantees the maximum

consumption of all the supplied doses and tries to schedule

as early as possible the vaccinations while keeping inventory

levels nonnegative. Note that the problem is decomposable,

and the heuristic provides a separate administration plan for

each vaccine i ∈ V . Such a heuristic algorithm is sketched

hereafter.

We first define an initial feasible solution x̄ as:

x̄i
t =

{

1
2B

i(T ) t = T −∆i

0 t ∈ W \ {T −∆i}
(12)

This is a feasible solution in which all the first [second] doses

are administered in the last possible time slot, namely T −∆i

[T ]. Moreover, no stock is left at the end of the planning

horizon, i.e., siT = 0.

Starting from x̄i, our algorithm tries to move vaccinations

earlier in a greedy fashion while always keeping the following

relation true

xi
t + yit ≤ Bi(t). (13)

Algorithm 1 Greedy off-line heuristic

1: for all i ∈ V do

2: xi := x̄i;

3: for t = T −∆i down to 2 do

4: c := min{s(t+∆i − 1), xt, B(t− 1)};

5: Augment xi
t−1 and yi

t+∆i−1 by c;
6: Decrease xi

t, y
i
t+∆i , sit−1 and si

t+∆i−1 by c
7: end for

8: return xi

9: end for

It is not hard to see that, at each step, c is the maximum

amount of doses that can be moved earlier without violating

the constraint st ≥ 0.

In Section VI, we will report about the performance of the

above described Algorithm 1.

B. Blind Algorithms

Hereafter we illustrate different greedy approaches to the

decision on the number of doses to administer each day t,
when no clairvoyance can be assumed on the future arrivals

of doses. Note, however, that the plan output at t exploits the

knowledge of the supply bit on that day, for each vaccine i.
A simple idea consists in imposing that the amount of stock

at the end of each day has to be equal at least to the number

of second doses to be administered the next day (day-by-day

no-out-of-stock condition).

The balance equation at the end of day t for the i-th vaccine

is

sit = sit−1 − xi
t − yit + bit

= sit−1 − xi
t − xi

t−∆i + bit,
(14)

due to the delay introduced between the first and second dose.

If we do not want to run out of stock and guarantee the

administration of the second dose at day t+1, we must impose

the following no-out-of-stock condition, which assumes that

no doses arrive on day t + 1 is equivalent to the following

relation

sit ≥ yit+1 = xi
t+1−∆i . (15)

Equation (15) embodies the day-by-day administration strat-

egy. Since new arrivals may arrive on day t the number of

first doses that can be safely administered at time t while still

meeting the condition of Equation (15) is

xi
t ≤ sit − xi

t−∆i − xi
t+1−∆i + bit. (16)

Again, in Equation (16), three quantities are known at the

end of time t−1 (sit−1, xi
t−∆i , and xt+1−∆i ), while the fourth

one (bit) is random but will be known at the beginning of day

t.
If the sum in the right-hand term of Equation (16) is not

positive, then we will not be able to administer any first dose

on day t. This unfortunate situation takes place if the number

of arrivals on day t is

bit ≤ zit = xi
t−∆i + xt+1−∆i − sit−1 (17)

The risk of incurring the no-first-doses situation is then

P[bit ≤ γi
t ]. For the ZIP process, this risk R

(1)
no-1 is

R
(1)
no-1 =

{

0 if zit < 0,

π + (1− π)
∑γi

t

i=0
λi

i! e
−λ if γi

t ≥ 0
(18)

On the other hand, if no arrivals take place for a long period

of time, we cannot even guarantee that the day-by-day strategy

is applicable. In that case, we would not even be able to

administer all the second doses. This very unfortunate case

takes place if the following condition holds

sit−1 + bit < yit → bit < ηit = yit − sit−1 (19)

The risk of incurring the no-second-doses situation is then

P[bit ≤ ηit]. For the ZIP process, this risk R
(1)
no-2 is

Rno-1 =

{

0 if ηit < 0,

π + (1− π)
∑ηi

t

i=0
λi

i! e
−λ if ηit ≥ 0

(20)

Extending the above arguments, we may derive a prescrip-

tion on the amount of first doses to be safely administered so

that we are guaranteed that the stock we have at time t − 1
is enough to cover the overall demand over the next q days,

establishing a sliding window that is shifted each day. This

more conservative administration strategy may be called the

q-days-ahead strategy (it is readily seen that the day-by-day
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strategy represents a special case of the q-days-ahead one when

q = 1.)

In this case, the no-out-of-stock condition (15) clearly

becomes

sit ≥

q
∑

ℓ=1

yit+ℓ (21)

As a consequence, if we include capacity constraints on the

maximum number of doses that can be administered per day,

the number of first doses that can be safely administered at

time t would satisfy the following inequality:

xi
t ≤ max{0,min{kt − yit, s

i
t−1 −

q
∑

ℓ=1

yit+ℓ + bit}}. (22)

The above relation directly suggests a simple myopic algo-

rithm in which the risk of running out-of-stock is inversely

proportional to the value of q.

Since we can rely on new arrivals to meet the constraint on

the stock at the end of the day, we will not be able to safely

administer first doses if the following condition holds

sit−1 − xi
t−∆i + bit −

q
∑

ℓ=1

yit+ℓ ≤ 0 →

bit ≤ φi
t =

q
∑

ℓ=0

yit+ℓ + xi
t−∆i − sit−1.

(23)

In the case of the ZIP process, the risk of not being able to

administer any first dose is then

R
(q)
no-1 =

{

0 if φi
t < 0,

π + (1− π)
∑φi

t

i=0
λi

i! e
−λ if φi

t ≥ 0
(24)

Similarly, the risk of not even meeting the full demand for

second doses equals that of not satisfying the inequality (19).

Though the resulting risk expression equals that expressed for

the day-by-day strategy in Equation (20), we must consider

that the condition applied for the q-days-ahead strategy in

Equation (21) clearly includes the one for the day-by-day

strategy in Equation (15). The conclusion is that the risk of

not being able to administer either first or second doses in the

q-days-ahead strategy is surely lower than that suffered in the

day-by-day strategy.

Though a suitable choice of q avoids the risk of dose

shortages with a reasonable degree of confidence, it does not

rule out the possibility of such an undesirable situation. As a

consequence, in our experiments, we will consider (and assess

the performance) of a conservative algorithm that guarantees

that an adequate level of inventory is always available for

second doses — with no knowledge on the future supplies.

As one may expect, this conservative attitude of the algorithm

has, of course, its disadvantages in terms of residual inventory

and average vaccination times.

The basic idea is that whenever a number b of doses

becomes available at t, one can immediately administer b/2
first doses and reserve the remainder to administer the corre-

sponding second doses after the prescribed period. The output

plan is obtained by augmenting the current solution each time

a positive supply of new doses arrives. If the capacity (at t or

t+∆i) limits the number of doses that could be administered

now, the possible excess of available doses at t gets transferred

to the next period, and the procedure is iterated.

The conservative Algorithm 2 is illustrated hereafter. For

each vaccine i and day t, we store the amounts xi
t of the

first doses to be administered. The current amount of supply

available for the first doses is stored in ait. Moreover, the

parameter kit is an upper bound set on the number of doses of

vaccine i (capacity) that can be administered on the day t.

Algorithm 2 Conservative algorithm

1: for i ∈ V do

2: Initialize x, y and a as null vectors;

3: for t = 1, 2, . . . , T do

4: ait := ait + bit;
5: δ := max{xi

t+yit+
1
2a

i
t−kit, x

i
t+∆i +yi

t+∆i +
1
2a

i
t−

ki
t+∆i}; {Excess is computed}

6: if δ > 0 then

7: ait+1 := ait+1 +
1
2a

i
t + δ;

8: ait := ait − 2δ {Excess is transferred}

9: end if

10: if ait > 0 then

11: xi
t := xi

t +
1
2a

i
t;

12: yi
t+∆i := yi

t+∆i +
1
2a

i
t

13: end if

14: end for

15: end for

The idea is to compute the excess availability with respect

to the capacity values for days t and t + ∆i. The quantity δ
represent such an excess: If it is positive, we are not allowed

to administer all the available ait/2 doses plus the previously

planned amount of xi
t + yit vaccines. In this case, we are

reducing the availability at the current day t and reserve the

exceeding quota of vaccines as available for the next day t+1
(Steps 7 and 8.)

Note that, when δ > 0, the maximum number of additional

doses that can be administered at day t is the minimum

between kit − xi
t − yit and ki

t+∆i − xi
t+∆i − yi

t+∆i . One can

easily see that such a minimum is given by 1
2a

i
t−δ and hence

that the actual excess is 1
2a

i
t+δ. The latter quantity is therefore

added to the availability ait+1 of the next day while it is cut

from ait. (For instance, if δ = xi
t + yit +

1
2a

i
t − kit > 0, then ait

becomes ait − 2δ and xi
t is augmented to the maximum value

allowed by the capcity limit, i.e., xi
t := xi

t +
1
2a

i
t = kit − yit.

Similarly, if δ = xi
t+∆i + yi

t+∆i +
1
2a

i
t − ki

t+∆i > 0 then we

obtain that yi
t+∆i = ki

t+∆i − xi
t+∆i .)

VI. EXPERIMENTS AND RESULTS

In this section, we describe our computational experience to

compare the different approaches described above that design

daily vaccination plans over a time horizon of T days. We first

define a set of performance metrics and then report the results

of our simulation experiments.
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As a model for the arrival process, we have employed a

ZIP model where the parameters are respectively π = 0.85 and

λ = 107. Those parameters give us an average daily number of

doses equal to 1.5 · 106, which is consistent with the current

trend in Europe. In Fig. 4, we see that European countries

currently lie in the 0.5-1 million bracket, but are following

a growing trend3. We have run 1000 simulations to generate

as many realistic arrival scenarios, each corresponding to an

instance of the problem. The capacity is set as a multiple

(through the capacity factor) of the average number of arrivals.

In the first set of experiments, we compared the performance

of the linear program (3)-(9) against the greedy heuristic

Algorithm 1. The empirical probability density function of the

relative gap H−LP
H

% between the objective function values

LP and H obtained by the linear program and the heuristic,

respectively, is shown in Fig. 3. We have employed the Gaus-

sian kernel method [19], with a data-driven kernel bandwidth

set as in [20], equal to 0.3719 in our case. As can be seen,

the mode is around 2%. As discussed above, both algorithms
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Fig. 3. Distribution of objective function percentual gap for Algorithm 1.

provide an off-line benchmark to measure the performance

of the blind algorithms. The tests show that the heuristic

algorithm is quite effective in most cases: The average gap

is 2.57% with more than 90% of the instances with a relative

gap below 5%. Though the greedy heuristic finds a solution

much faster than the linear programming solver and we need

to compute an optimal off-line solution several times, it is still

definitely compatible with our experiments to use the optima

provided by the linear programming solver, as, on the average,

an optimum of a single instance is computed by Gurobi in

around 60 milliseconds. (Indeed, running all five heuristics on

a single instance requires around six milliseconds.) It is clear

that in a different context, e.g., larger instances (greater T
values), a larger number of scenarios, additional constraints,

etc., due to the effectiveness of the greedy heuristic witnessed

3See the latest data published on https://ourworldindata.org/grapher/
daily-covid-19-vaccination-doses

by the low gap values, the proposed algorithm might be a

good alternative approach to provide the necessary off-line

benchmarks.

Recall that the capacity values kit measure the maximum

number of doses of vaccine i that the system is able to

dispense in day t, for all i ∈ W . In our tests, for each arrival

scenario, we have considered 14 runs of the algorithms each

corresponding to a specific capacity value:

kit = (1 +
α

2
)ci α = 0, 1, 2, . . . , 13; i ∈ V; t ∈ W (25)

in which, for all i ∈ V , ci = 1
t

∑

t∈W
bit is a base-step

capacity4 (corresponding to the number of average per day

arrival for vaccine i) and (1 + α
2 ) is a capacity factor.

All the experiments here reported were run on a PC with

CPU Intel i5− 5300U 64bit 2.30GHz clock, and 8GB RAM.

The algorithms were coded in Python 3, v3.8.5. The imple-

mentation of the LP model solver makes use of the Python

Gurobipy library 9.1.2 [21].

In our experiments we measure the following metrics:

• Average vaccination time. When siT = 0 the average

vaccination time is exactly equal to the expression given

in Equation (10). In order to compare the results among

experiments in which there are different levels of unused

stocks at the end of the planning period, we use the

following expression:
∑

i∈V
(siT (T +∆i) + 2

∑

t∈W
tyit)

∑

i∈V

∑

t∈W
bit

. (26)

As in Equation (10), the denominator counts (twice) the

total number of administered vaccines. The numerator

is the sum of the vaccination days t = 1, . . . , T , each

weighted by (twice) the number of second doses admin-

istered that day. The additive term siT (T +∆i) accounts

for those doses that remain unused at the end of the day T
and are then stocked for the next days. Basically, we are

considering that half of those doses will be administered

on the same day T and, as booster vaccinations, after ∆i

days.

• Utilization. It measures how efficiently the supplied doses

have been utilized at the end of the planning period:

This figure is simply the ratio between the total number

of planned final doses
∑

i

∑

t y
i
t over half of the total

number of supplied doses B(T ) (which is the theoretical

maximum). Clearly, low levels of utilization mean that

at the end of the planning period, the proposed approach

has in stock a significant number of doses. It is important

to stress that these data include possible backlogs in the

planned number of delivered vaccines. That is, a positive

yit value may exist in correspondence to a negative value

of inventory level sit. In such a case, this is equivalent to

assume that sit vaccines would take place on a day later

4The idea is that a system with a base-step capacity c
i for all i ∈ V

would be able to consume all the arrived doses of vaccine i, at the end of
the planning period, only if it would deliver doses at its capacity level, each
single day.
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than t, the planned day. In this regard, we also report the

following two figures.

• Number of out-of-stock days. The number of days in

which there would be a shortage of doses, i.e., sit < 0.

In the graphics, we report these numbers as a percentage

over the number T of days of the planning period.

• Average backlog. It is the absolute value of the average

negative stocks 1
T

∑

i

∑

t |min{0, sit}| and it is also a

measure of the average number of doses that would be

administered after their prescribed date. This quantity

might be of help in sizing an adequate level of safety

stocks. For ease of readability, in the graphic of Fig. 7

this measure is reported as a percentage over the total

number of supplied doses:
∑

i

∑

t |min{0, sit}|

T
∑

i

∑

t b
i
t

%.

Fig. 4. Daily vaccination rates

We first take a look at the average vaccination time in Fig. 5.

Of course, we aim at the lowest vaccination time possible. We

see that the clairvoyant strategy achieves the best performance,

as expected: the average vaccination time is roughly four

months away from the start of the vaccination campaign. All

the look-ahead strategies perform worse, with times getting

longer as we lengthen our look-ahead horizon, playing safe

against long periods of no dose arrivals. While guaranteeing

that all second doses are administered on time, the conservative

approach achieves an average vaccination time, which is not

the worst in the group, ranking between the 7-days-ahead

and the 14-days-ahead strategy. All the curves flatten out as

the capacity factor grows. It appears then useless to have a

capacity factor larger than 2 in most cases.

While both the clairvoyant and the conservative strategy

guarantee that all second doses needs are met on the very same

day, that’s not the case for other strategies. We see that the

vaccination system may incur a dose debt, where vaccination

has to be postponed because no doses are available. The larger

the fraction of days with no stocks, the worse the situation. In

Fig. 6, we see that we may not meet the second doses needs

as often as 40%. Assuming longer periods of no arrivals (i.e.,

Lengthening the look-ahead period) acts a hedge against worse

periods and strongly reduces the fraction of out-of-stock days.
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However, the relevance of out-of-stock days depends on

how many doses we miss. For that reason, we also take a

look at the actual backlog, which is shown in Fig. 7. The

worst case takes place with the 1-day-ahead strategy, where

the doses needed amount to 3% at most of the overall number

of arrivals. Here, being limited by vaccination capacity helps

since doses exceeding the daily capacity must be kept for use

in the following days, thus acting as a reserve for days of no

arrivals. Also, longer look-ahead strategies are less impacted

since a longer planning period allows to override no-arrivals

periods.

Since the final aim is to exploit the delivered doses as most

as possible, we can analyze the utilization rate, which gives

us the percentage of first-plus-second doses that have actually

been administered (i.e., the percentage of vaccination cycles

that have been completed) over the whole number of doses. In

Fig. 8, we see that being limited by the vaccination capacity

may strongly lower the capability to vaccinate as many people
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as possible. The curve steeply grows as we increase the

capacity factor from 1 to 2. Though the clairvoyant strategy

is again the best in class, as expected, with the 1-day ahead-

strategy as a not-too-close runner up, the conservative strategy

achieves a higher utilization than all the look-ahead strategies

with a look-ahead period longer than seven days.

VII. CONCLUSION

In this work, we have presented a computational study to

compare alternative strategies for massive vaccination under

uncertain supply. The aim is to size the vaccination center

capacity adequately.

The clairvoyant strategy can be set as the benchmark,

leading to an optimal linear programming solution. Among

the strategies examined, the best trade-off is achieved by

the conservative strategy, where the administration of second

doses is guaranteed on time since second doses are kept in

stock as soon as the pertaining first doses are administered.

Its average vaccination time is just 11% longer than what the

clairvoyant strategy offers, with a utilization rate that is just

6% lower.

Among the look-ahead strategies, the 7-days-ahead strategy

has very close performance regarding vaccination times and

utilization, but lack of stocks is incurred in 30% of time (while

this never happens with the conservative strategy). The 1-day-

ahead strategy would allow reaching vaccination times just

slightly longer than the clairvoyant strategy with a utilization

ratio just 4% lower, but results in an unacceptable 40% fraction

of out-of-stock days.

As to the sizing of the vaccination center, the capacity

appears as a critical factor as long as it is too low. Capacity

factors between 2 and 3 (i.e., the capability to vaccinate daily

as many as 2-3 times the average number of arrivals on a

day) are enough to achieve performances very close to those

obtainable under infinite capacity.

As to the latter issue, we might improve the vaccination

strategy by including the possibility to allow the decision-

maker to change the capacities dynamically for each vaccine

and each day. In practice this is not always doable, or it

could be limited by a number of constraints, e.g., the severe

requirements that may be imposed on the stocking devices.

Any future work will also benefit from the growing avail-

ability of data about vaccine delivery, which will allow for

more accurate modelling of the process of dose arrivals. In

addition, strategies envisaging mixed vaccination, i.e., adopt-

ing a different vaccine for the second dose, could incorporate

knowledge about the joint distribution of arrivals for the two

vaccines.

In addition, strategies that have been considered so far do

not exploit any information on future supply, though uncertain,

future arrivals could be categorized into a set of scenarios. In

this regard, a robust optimization approach [22], [23], [24]

is suitable to be devised for our mass vaccination planning

problem. Several criteria have been adopted in the robust

optimization literature. For instance, a widely used robustness

criterion is the so-called maximin criterion, according to which

the best worst-case performance has to be sought. In our

case, such a robust optimization approach would maximize

the system performance while guaranteeing the feasibility of

the prescribed vaccine administration along the whole planning

horizon for any possible future scenario.

Another important topic to be considered in future extended

models for mass vaccination is the design of inducement poli-

cies to encourage the largest possible fraction of the population

to uptake the vaccine. From a methodological point of view,

Stackelberg game approaches (see, e.g., [25], [26]) appear as

a natural direction to deal with these issues. Of course, from

a different perspective, also communication strategies play a

crucial role, as discussed in [27] in which the effectiveness of

different health communication frames is assessed.

Finally, the reliability of the implemented decision support

tool must be evaluated: methods as the one illustrated in [28]

are an essential appliance to investigate the influence of any

system component failure on the system functioning.
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