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Abstract—An exhaustive selection of all possible combinations
of n = 400 from N = 698 observations of the COVID-19
dataset was used as a benchmark. Building a random set of
subsamples and choosing the one that minimized an averaged
sum of squares of each variable’s category frequency returned
similar results as a "forward" subselection reducing the dataset
one-by-one observation by the same metric’s permanent lowering.
That works similarly as k-means clustering (with a random
clusters’ number) over the original dataset’s observations and
choosing a subsample from each cluster proportionally to its
size. However, the approaches differ significantly in asymptotic
time complexity.

I. INTRODUCTION

S
UBSAMPLING is a method that reduces a size of a
dataset by selecting a subset from the original dataset.

However, in many areas, including biomedicine and many
others, we often face a kind of opposite problem, i. e. we
obtain a sample of only insufficient size and would need
to enlarge its size. That can be done, e. g., by one of the
resampling methods such as bootstrapping or others, or we
need to use various inference methods to estimate properties
of the entire population that our dataset comes from.

While such a data size reduction could not sound meaning-
ful for the first impression, there are various situations where
subsampling makes sense or is even necessary.

Usually, we can distinguish between two kinds of sub-
sampling. Firstly, when we do the subsampling, we cannot
even in theory collect all possible observations of an entire
population. Or, secondly, we can gain all possible observations
or, furthermore, we have already got them, but for some
reason, we have to reduce the number of observations that
will be utilized.

A typical example of the first subsampling kind is one of the
large fields of statistics, called sampling, where subsampling as
a method of choice deals with an idea of an entire population
and its parameters but is limited to an option of gaining
data of only a (small) subset coming from the population.
Then, regardless of whether the population is more or less
virtual, getting the sample that belongs to the population is
still a problem fulfilling the subsampling definition.

The motivations for the subsampling could also be different
and usually arise from any impossibility to utilize the entire
original dataset, as may be true for the latter family of the sub-
sampling problems. Thus, the rank of those motivations varies
from the lack of (computational) power to analyze the entire
original dataset to the lack of economic sources, making it im-
possible to collect all values for each observation of the origi-
nal sample, e. g. populating a new (important) variable is con-
sidered to enrich the original dataset but can be done only for
a limited number of observations (of the sub-selected dataset).
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As a motivation for our study, using online surveys, we col-
lected an original dataset of patients suffering from COVID-19
and undergoing anti-COVID-19 vaccination. To study a time
development of COVID-19 antibodies after the vaccination,
it is necessary to check the blood levels of the patients’
antibodies from time to time. However, no matter how helpful
would be the checking of antibodies for each patient, our
financial sources were limited (and the antibody kits for
laboratory serology tests are relatively expensive), so we had
to select a subset of patients from the original dataset, no
greater than a maximal number of laboratory tests funded
by our financial sources. Furthermore, since the subsample
can be done in many ways, we wanted to keep all categories
of all categorical variables well balanced, i. e., to keep their
frequencies in the final subsample equal or at least near-equal.

All the motivations share the demand on the quality by
which the subsampling is done. As is naturally feasible, we
usually want to avoid the "garbage in, garbage out", also
known as the GIGO paradigm, which means that we cannot
expect great outputs whenever the inputs are of low quality.
The same logic applies to subsampling if followed by whatever
kind of another analysis uses the subsample as an input. Thus,
the authors suggest replacing the "garbage in, garbage out"
paradigm more positively with "great in, great out".

However, regardless of the primary motivation why do
subsampling, there is always a demand to keep the data
homogeneity in the sub-selected sample, corresponding to the
original data. More technically spoken, assuming the dataset
contains only categorical variables, the homogeneity means
that all categories of all categorical variables are near-equally
represented in the final subsample.

In case there is a response variable included in the dataset,
a popular and well-established method called propensity scor-
ing (or propensity matching) is usually performed to identify
the "best" subset of a given size that harmonizes effect sizes
of individual explanatory variables [1].

Nevertheless, when a response variable is missing in the
data because e. g. is planned to measure its values rather only
for observations in the subsample than for the entire original
sample, the logistic regression model behind the propensity
scoring could not be built at all (since the response variable
is not available). In such a case, the methodology that could
be used for subsampling differ from naive approaches such as
random sampling, even-odd sampling [2], to more intuitive,
rather manual than automated sampling based on matching the
observations so that they are balanced in pairs (or larger groups
than pairs) [3]. In other words, when a response variable,
commonly participating as a key part of the subsampling
quality checking, is not available in the dataset, it could be
"substituted" by a metric that might control for the quality of
the subsampling process.

To check how balanced the subsample is, some metrics
could be used [4]. They usually assume that numerical vari-
ables – if any – were prior transformed to categorical ones
following more or less complex categorization rule. There
are several commonly used metrics describing the rate of the

categorical variables’ levels balance in a final sample [5] such
as entropy, mutability, Gini impurity, Simpson index, Shannon-
Wiener index, and other diversity metrics. A sum of squares
of categories’ frequencies also becomes very popular; it is
somewhat similar to Shannon entropy but is scaled, so it
cannot be greater than 1.0 at maximum.

Based on the metric choice, the lower (or, the higher) is the
metric’s value; the better balanced is the subsample. Thus, for
example, considering Shannon entropy or sum of squares of
categories’ frequencies, a lower value means better balancing
the subsample; i. e. the frequencies of the categories in the
subsample are equal or at least near-equal.

In fact, the subsampling itself is a discrete optimization
task since the selection of a final subsample from the original
sample may be made using a finite number of ways, but some
of them are better than others, taking into account there is
a given metric, checking the subsampling quality (categorical
variables’ levels well balancing) that is about to be minimized.

In this study, we selected a subpopulation (n = 400)
from a COVID-19 dataset (or original size N = 698) with
a missing response variable, which was up to be collected
later. Whereas the response variable was not available, there
were 18 more (explanatory) variables of interest. First, numer-
ical variables were categorized. The quality of subpopulation
selecting was measured using a sum of squares of each
variable’s category frequency and averaged over all variables.
Minimizing the metric reflects the demand for keeping all
the variables’ categories numerically balanced, i. e. of similar
sizes. Several subset-selecting strategies were applied. Besides
a single random subsampling, an exhaustive method selecting
all possible combinations of n = 400 observations from initial
N = 698 observations was performed, choosing the subsample
that grand totally minimized the metric. Similarly, a "forward"
subselection, reducing the original dataset by one observation
per each step, permanently lowering the metric, was done.
A repeated random subsampling enabled to model a prior
distribution of the metric and helped estimate its empirical
minimum, determining one given subsample. Finally, k-means
clustering (with a random number of clusters) of the original
dataset’s observations and choosing for a subsample from each
cluster, proportionally to its size, and also based on a joint
occurrence of each pair in one cluster, also lowered the metric
compared to the random subsampling.

The aim of this study is to demonstrate that all the ap-
proaches except for a single random subsample offer a valid
alternative to exhaustive sampling grant-totally minimizing the
chosen metric.

II. PROPOSED RESEARCH METHODOLOGY

There are overall research methodology and the formal
description of the dataset, the metric chosen for controlling
the quality of the subsampling, and the proposed methods of
the subsampling discussed in the following subsections.

A. Formal description of a dataset used for subsampling

The original dataset consists of N rows containing one
observation per row and k categorical variable in columns.
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The subsampling task means selecting a subset of n rows and
k columns, where n < N . Thus, the sampling is applied on
rows, not on columns.

For each i ∈ {1, 2, 3, . . . , k}, the variable i contains exactly
ni categories and the frequencies of the category j is ni,j . We
can easily show that for the original dataset, and the subsample
is

ni
∑

j=1

ni,j = N and
ni
∑

j=1

ni,j = n,

respectively, so the sum of frequencies of a given variable i’s
categories is equal to N in the original dataset and is equal to
n in the subsample, respectively, and based on the context.

B. A metric for controlling the quality of the subsampling

The Shannon entropy is defined as

Hi = −
ni
∑

j=1

pi,j log pi,j

where pi,j is a probability of a category j for each j ∈
{1, 2, 3, . . . , ni} in a sample of ni categories of a variable
i. We can easily prove by Jensen’s inequality the upper bound
of the entropy Hi defined by such formula is dependent on
the probabilities pi,j . Also, the formula may struggle with
zero probabilities, i. e. when ∃j ∈ {1, 2, 3, . . . , ni} such that
pi,j = 0 since the term log pi,j is not defined for pi,j = 0.

To overcome these difficulties, we rather used a sum of
squares of each variable’s category frequency. Using the finite
samples, probabilities are only estimated by their frequencies,
therefore we will replace the probability pi,j by its unbiased
estimate πi,j =

ni,j

n = p̂i,j , where ni,j is a number of
occurrence of category j of variable i in the sample of size
n. The sum of squares of the variable i’s category frequencies
then follows as

Si =

ni
∑

j=1

π2
i,j =

ni
∑

j=1

(ni,j

n

)2

=

ni
∑

j=1

p̂2i,j . (1)

Finally, when there is more than one variable, i. e. i ∈
{1, 2, 3, . . . , k} then in order to take into account for each
variable’s sum of squares given by formula (1), we can
calculate the average value S̄ of the sums of squares for
individual variables, so

S̄ =
1

k

k
∑

i=1

ni
∑

j=1

(ni,j

n

)2

. (2)

Let us derive the lower and upper bound of the sum of
squares for the variable i.

(i) Firstly, let us consider one of the two possible ex-
treme scenarios – the sample is populated by only
one category. More technically, let us assume that
∃j∗ ∈ {1, 2, 3, . . . , ni} so that ni,j∗ = ni. Then,
∀j ∈ {1, 2, 3, . . . , ni} \ j∗ is ni,j = 0 and, eventually,
ni,j∗

n = 1 and ni,j

n = 0.

The sum of squares Si then follows the term

Si =

ni
∑

j=1

(ni,j

n

)2

=

=
(ni,j∗

n

)2

+
∑

j∈{1,2,...,ni}\j∗

(ni,j

n

)2

=

= 12 + (ni − 1) · 02 =

= 1.

Thus, we derived the maximum value of the sum of
squares Si for the variable i is equal to 1.

(ii) Now suppose the other extreme scenario – all categories
are equally populated in the sample and no one of the
categories occurred more than once. So, in other words,

ni,1

n
=

ni,2

n
= · · · = ni,ni

n
=

1

n

and also ni = n.
The sum of squares Si then follows as

Si =

ni
∑

j=1

(ni,j

n

)2

=

ni
∑

j=1

(

1

n

)2

=

=
n
∑

j=1

(

1

n

)2

=

= n ·
(

1

n

)2

=

=
1

n
.

So, we derived the minimum value of the sum of squares
Si for the variable i is equal to 1

n , where n is the size
of a sample containing only categories of the variable i.

Concluding this up, we derived that for each variable i and
its sample size n is the sum of squares Si of the variable’s
category frequencies lower then or equal to 1 and greater than
or equal to 1

n , more formally 1
n ≤ Si ≤ 1.

Going back to the idea of a well-balanced subsample, all
category frequencies of all variables in the subsample should
be of (near) equal sizes. That is a situation very close to
scenario (ii) with balanced frequencies 1

n above – on the
other hand, the frequencies in scenario (i) are imbalanced.
Assuming this, the sum of squares Si of the variable’s category
frequencies in the well-balanced subsample should be as low
as possible and should approach the 1

n . Finally, if all the
variable would minimize their sums of squares, then also the
average value S̄ of all the sums of squares should be minimal.

Keeping the subsample well balanced, i. e. ensuring the
categories of all the variables in the subsample are of (near)
equal frequencies, means lowering the average value S̄ of the
sums of squares as much as possible. In theory, the minimal
possible value of the average value S̄ of the sums of squares
is

S̄ =
1

k

k
∑

i=1

ni
∑

j=1

(ni,j

n

)2

≥ 1

k

k
∑

i=1

1

n
=

1

k
· k
n
=

1

n
.
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In practise, assuming the categories are well balanced for
each variable, i. e. for each i ∈ {1, 2, 3, . . . , k} is ni,1 ≈
ni,2 ≈ · · · ≈ ni,ni

, then
∑ni

j=1 ni,j = n ≈ ni · ni,j and so
ni,j

n ≈ n/ni

n ≈ 1
ni

, we can expect rather

S̄ =
1

k

k
∑

i=1

ni
∑

j=1

(ni,j

n

)2

&
1

k

k
∑

i=1

ni
∑

j=1

(

1

ni

)2

≈

≈ 1

k

k
∑

i=1

ni

(

1

ni

)2

≈ 1

k

k
∑

i=1

ni

n2
i

≈ 1

k

k
∑

i=1

1

ni
.

Eventually, what worth to be mentioned, is a comparison of
each variable’s sum of squares Si given by formula (1) and
Gini impurity. Using still the same mathematical notation, then
Gini impurity is defined as

Gi = 1−
ni
∑

j=1

π2
i,j = 1−

ni
∑

j=1

(ni,j

n

)2

= 1−
ni
∑

j=1

p̂2i,j ,

which is obviously equal to Si = 1−Gi. That being written,
using the Gini impurity Gi in this study instead of the sum
of squares Si would return exactly the same results (as far as
the sign of Gini impurity is opposite than the one of the sum
of squares and shifted by 1.0).

C. Single random subsampling without replacement

The term of random subsampling without replacement
means that each observation of the original dataset has only
one chance to be selected in the subsample.

If we subsample the original dataset of size N to a dataset
of size n only once, there are in theory

(

N
n

)

options how to
do the random subsampling. Assuming one of the subsamples1

minimizing the averaged sums of squares S̄, the probability
of randomly hitting such a subsample is about 1

(Nn)
≃ 0 for

large N > n.
An expected value of the averaged sums of squares S̄,

calculated using the obtained subsample, is in between the
expected value of the worst-case scenario, 1, and the best-case
scenario, 1

n , so 1
n ≤ E(S̄) ≤ 1.

The asymptotic time complexity is easy to derive, Θ(1),
assuming the random subset generating costs 1 unit of com-
plexity time.

D. Repeated random subsampling without replacement

Similarly to the previous approach, here we repeat the
random subsampling m > 1 times.

The repetition of the random subsampling enables us to
estimate an expected value Ê(S̄) of the averaged sums of
squares S̄ and standard deviation

√

v̂ar(S̄), using the values of
m obtained subsamples. Assuming the Ljapunov’s version of
the central limit theorem, the derived variable S̄−Ê(S̄)√

v̂ar(S̄)
follows

standard normal distribution, formally S̄−Ê(S̄)√
v̂ar(S̄)

∼ N (0, 12).

That helps us to estimate the minimum value of the averaged

1Theoretically, there could be more than one subsample with the same but
minimal value of the metric of the averaged sums of squares S̄.

sums of squares S̄ following way. Supposing there S̄−Ê(S̄)√
v̂ar(S̄)

∼
N (0, 12) holds, we know that

P

(

S̄ − Ê(S̄)
√

v̂ar(S̄)
≤ u0.01

)

= 0.01,

where u0.01 is a 0.01-th quantile of the standard normal
distribution. Continuing in the derivations, we get

P

(

S̄ ≤ Ê(S̄)− |u0.01|
√

v̂ar(S̄)

)

= 0.01, (3)

so approximately, the minimum value of S̄ is very likely close
to the term of Ê(S̄) − |u0.01|

√

v̂ar(S̄). Utilizing this piece
of information, we can not only estimate the minimum value
of the averaged sums of squares S̄, but can also highlight
the subsample approaching this minimum value (surely it is
the subsample with minimal value – somewhat close to the
subtraction Ê(S̄)−|u0.01|

√

v̂ar(S̄) from the positive direction
– of the averaged sums of squares S̄ in the set of all m
generated subsamples).

The asymptotic time complexity of the (m times) repeated
random subsampling without replacement is Θ(m), again as-
suming the random subset generating costs 1 unit of complex-
ity time. The pseudocode of the repeated random subsampling
process is in Algorithm 1.

E. Exhaustive subsampling

The method of exhaustive subsampling is based on greedy
generating all possible subsamples of size n from the original
dataset of size N > n.

In theory, there are
(

N
n

)

= n!
k!(n−k)! ways how a subsample

of size n could be sampled from the dataset of size N . It
implies there is also

(

N
n

)

values of the averaged sums of
squares S̄ (one value per each subsample), but the values are
not necessarily different.

Regardless of that, this approach enables to convenient pick
the subsample with a minimum possible value of the averaged
sums of squares S̄ (no other subsample could practically have
the value of the averaged sums of squares S̄ lower).

However, there is an obvious trade-off between the possibil-
ity to reach the practical minimum of the value of the averaged
sums of squares S̄ and asymptotic time complexity, which is
enormous, Θ

(

(

N
n

)

)

= Θ
(

n!
k!(n−k)!

)

, assuming the random
subset generating costs 1 unit of complexity time.

F. Subsampling by forwarding step-by-step size reduction of

the original dataset

The logic of the step-by-step size reduction of the original
dataset by permanent lowering a value of the averaged sums of
squares S̄ is based on random selection of such an observation
that its removing from the original dataset tends to decrease
(or at least not increase) a value of the averaged sums of
squares S̄. Thus, we also call this approach as one-by-one

observation’s sample reduction of also as row-by-row obser-
vation’s sample reduction. Let’s define a size of the dataset
after τ steps, i. e. after removing of τ observations, as n(τ),
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Algorithm 1: Repeated random subsampling without
replacement and estimating of the minimum value
of the averaged sums of squares S̄, together with
highlighting of the subsample minimizing the averaged
sums of squares S̄

Data: an original dataset of size N containing k
variables

Result: a set of m random subsamples of size
n < N , an estimate of the minimum value of
the averaged sums of squares S̄ and
highlighting of the subsample minimizing the
averaged sums of squares S̄

1 N // size of the original dataset ;
2 n // size of the subsample;
3 m // number of repetitions of;
4 // subsampling;
5 S // a tuple of subsamples of size

n;
6 A // a tuple of averaged sums of

squares S̄;

7 for ℓ = 1 : m do

8 generate a random subsample ∫ of size n without
replacement from the original dataset of size N
and calculate its averaged sums of squares S̄ ;

9 S = {S, ∫};
10 A = {A, S̄};
11 end

12 find the minimum of A and a corresponding
subsample with S̄ = min{A} ;

13 calculate an estimate Ê(S̄) and v̂ar(S̄) ;
14 calculate the estimated minimum of S̄ as

Ê(S̄)− |u0.01|
√

v̂ar(S̄) ;
15 compare min{A} and Ê(S̄)− |u0.01|

√

v̂ar(S̄) ;

and the averaged sums of squares S̄ after τ steps as S̄(τ).
Evidently, n(0) = N , n(1) = N − 1, n(2) = N − 2, . . . ,
n(N − n) = N − (N − n) = n. Analogously, we demand on
S̄(τ + 1) ≤ S̄(τ) for each τ ∈ {0, 1, 2, . . . , N − n− 1}.

It is easy to demonstrate that S̄(N − n) ≤ S̄(0), i. e. the
averaged sums of squares S̄ after N − n steps (when dataset
size is n) is lower than or equal to the value of the averaged
sums of squares S̄ in the beginning. Assuming the initial
original dataset is not well balanced, then S̄(N − n) < S̄(0)
or even S̄(N − n) ≪ S̄(0). Based on the fact the selection
of one observation per each step is random (until it leads
to decreasing of the averaged sums of squares S̄ value),
a deterministic value of S̄(N −n) is not possible to calculate.

Let us suppose the random selection of the observation
tending to reduce the averaged sums of squares S̄(τ) in the
(τ + 1)-th step (so that S̄(τ + 1) ≤ S̄(τ)), when the dataset
contains exactly N − τ observations, would take averagely
about (N−τ)/2 samplings. Then the average asymptotic time
complexity [6] of the row-by-row reduction of the original

dataset by permanent lowering a value of the averaged sums
of squares S̄ is Θ(•), so that

Θ(•) = Θ

(

N−n−1
∑

τ=0

(N − τ)/2

)

=

= Θ

(

1

2

N−n−1
∑

τ=0

(N − τ)

)

=

= Θ

(

1

2

(

N−n−1
∑

τ=0

N −
N−n−1
∑

τ=0

τ

))

=

= Θ

(

1

2

(

(N − n)N − (N − n− 1)(N − n)

2

))

=

= Θ

(

1

2

(

(N − n)(N + n+ 1)

2

))

=

= Θ((N − n)(N + n+ 1)) ≈
≈ Θ(N2).

The pseudocode of the subsampling by row-by-row reduc-
tion of the original dataset is in Algorithm 2.

Algorithm 2: Subsampling by row-by-row reduction
of the original dataset, decreasing the value of the
averaged sums of squares S̄ per each step

Data: an original dataset of size N containing k
variables

Result: a subsample minimizing the averaged sums of
squares S̄

1 N // size of the original dataset;
2 n // size of the subsample;
3 nt // current size of the dataset;
4 S̄ // current averaged sums of

squares;

5 nt = N ;
6 while nt > n do

7 while S̄ after removing the random observation

≥ S̄ do

8 pick another random observation from the
current dataset of size nt (# of observations)

9 end

10 remove the picked observation from the dataset;
11 nt = nt − 1;
12 update S̄;
13 end

14 use the subsample of size n;

G. Subsampling using clustering

An idea behind the subsampling using unsupervised learn-
ing of clustering kind is to utilize the fact that observations
within each cluster are similar enough, while observations
between each cluster are different enough. Thus, when we
require subsamples with well-balanced category frequencies
for each variable, we should consider observations from dif-
ferent clusters when creating the final subsample. Thus, a big
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question is how to pick the observations from different clusters
to ensure the final subsample of a given size is well balanced.

The paper’s authors suggest several ideas on how to use
clusters for subsampling and, particularly, how to draw the
observations from existing clusters when the final subsample
is constructed.

Firstly, regardless of the fact the observations are picked
randomly or following some pattern from d clusters of sizes
|c1|, |c2|, . . . , |cd|, a number of observations picked from the
cluster δ ∈ {1, 2, . . . , d} should be proportional to its size,
|cδ|.

Let us assume that a number of category frequencies of
a variable i that are greater than zero is ηi in a given cluster
δ. A total count of categories of a variable i is, following
the previous notation, ni, and a mean frequency for average
category is about |cδ|

ni
. As we can see, the mean frequency is

proportional to the cluster size |cδ|. In other words, the larger
is the cluster (the larger is |cδ|), more categories would get
non-zero frequency. Assuming the count of the variable i’s
categories with non-zero frequency is ηi in a given cluster δ,
the ηi is proportional to |cδ|, ηi ∝ |cδ|, and those frequencies
are roughly similar, i. e. ni,j ≈ n

ηi
≈ |cδ|

ηi
, we can derive

Si =

ni
∑

j=1

(ni,j

n

)2

∝
ηi
∑

j=1

( |cδ|/ηi
|cδ|

)2

∝

Si ∝
ηi
∑

j=1

1

η2i
∝

ηi
∑

j=1

1

|cδ|2
∝

∝
|cδ|
∑

j=1

1

|cδ|2
∝ |cδ| ·

1

|cδ|2
∝

∝ 1

|cδ|
, (4)

that supports our suggestion to draw observations from the
clusters proportionally to their sizes2, i. e. the larger the cluster
is, the more observations should be picked from the cluster
towards the final subsample to minimize the sum of squares Si.

Secondly, we also propose an experimental approach that
requires another ongoing research. Considering the (not neces-
sarily k-means) clustering is repeated m times, with a random
number of clusters in each of m iterations, we can construct
a symmetric square matrix T of dimensions N ×N , that for
the p-th row and the q-th column describes a number of times
that the p-th observation of the original dataset was together
in the same cluster with the q-th observation of the original

2The proportional equation (4) might be confusingly understood as to pick
a maximum of observations (towards the final subsample) from the larger
cluster since this would lead to the minimization of the sum of squares Si for
the given variable. However, such a subsample would be constructed using
almost only one of the clusters – the largest one – and thus, tends to include
very similar observations, which could break the demand of well-balanced
category frequencies over all variables.

dataset. The matrix T follows a form of

T =











t1,1 t1,2 · · · t1,N
t2,1 t2,2 · · · t2,N

...
...

. . .
...

tN,1 tN,2 · · · tN,N











, (5)

where tp,q stands for a number of times both the p-th observa-
tion and q-th observation of the original dataset were together
in the same cluster.

Once we want to construct a subsample of size n from
the original dataset of size N , we demand on keeping all
variables’ each category frequency balanced with other fre-
quencies, so the final subsample should include all categories
of all variables with (near) similar frequencies, if possible.
Drawing such observations that were many times together
in the same clusters within the multiple clustering procedure
would result in the final subsample containing too many
similar observations, which would reduce the native variability
of the variables.

Consequently, the final subsample should be constructed
using observations that are mutually non-similar. The way of
constructing such a subsample could be to pick two original
observations with a minimum value of tp,q and then add to the
subsample one by one new observation (until the subsample
size is sufficient) such that each new one (the q-th) has the
minimum value of

∑

∀p∈{observations in subsample}

tp,q,

so that

q = argminq∈{1,2,...,N}

∑

∀p∈{observations in subsample}

tp,q, (6)

that minimizes a chance of getting a subsample with too
much similar observations. While this approach may look as
completely deterministic, it contains a part that is based on
randomness, namely the clustering part.

Adopting the time complexity of the m times repeated
k-means clustering for small number of clusters is Θ(m·N ·k)
[7] and for the T matrix construction (5), the ongoing part
using the formula (6) takes averagely Θ(n2) complexity time
units.

Whereas the clustering algorithm itself could vary (it is not
necessary to apply only k-means algorithm), it is worth to be
mentioned that – since the variables in the original dataset
are categorical (or transformed into categorical ones) – the
Gower distance was chosen for the clustering as it can handle
categorical variables well within the clustering [8].

The pseudocode of the subsampling by clustering the orig-
inal dataset is in Algorithm 3.

III. RESULTS

We used COVID-19 survey data of our provenience for
the application of the proposed methods. The original dataset
contains N = 698 rows corresponding to observations and
k = 18 columns related to variables. Since the dataset is of
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Algorithm 3: Subsampling by clustering the original
dataset using the matrix T of mutual occurrences in
the same clusters as in (5)
Data: an original dataset of size N containing k

variables and T matrix of mutual occurrences in
the same clusters as in (5)

Result: a subsample minimizing the averaged sums of
squares S̄

1 n // size of the subsample;
2 nt // current size of the dataset;
3 T // matrix of mutual occurrences

in;
4 // the same clusters;
5 S̄ // current averaged sums of

squares;
6 S // current subsample;

7 populate the subsample S by the first two
observations corresponding to row and column
indices of minimum of T ;

8 nt = 2;
9 while nt < n do

10 pick the q-th observation such that

q = argminq∈{1,2,...,N}\S

∑

∀p∈S

tp,q,

where tp,q is the value of p-th row and q-th
column of the matrix T ;

11 nt = nt + 1;
12 update S̄;
13 end

14 use the subsample S of size n;

a questionnaire form including questions with the close format,
the vast majority of the variables are categorical. A few of
the numerical variables were categorized following experts’
suggestions or natural logic, e. g. age was categorized into
intervals of lengths ten years, starting and ending at an age
divisible by a number 10, etc. Applying this approach, there
are only categorical variables in the original dataset before
the subsampling. The reason why the response variable, i. e.
the serology levels of COVID-19 antibodies, is missing in the
original dataset is that patients involved in the study were
planned to undergo relatively expensive serology tests; thus,
the original size (N = 698) had to be reduced significantly
(n = 400) to keep the costs of the serology testing manage-
able.

The task was to get a subsample of n = 400 rows from
the original dataset, containing the original number of k = 18
variables.

All the computations were performed using R programming
language and environment [9]. There are more numerical
applications of R language to various fields in [10]–[15].

We applied all the methods mentioned above to do the sub-

sampling and compare the results using the metric controlling
the quality of the subsampling in between the methods.

The metric of the subsampling quality, depicting particularly
how well the category frequencies of all the variables are
balanced, is the averaged sums of squared S̄ as defined in
(2).

Besides the single random subsampling without replace-
ment, we started with the repeated random subsampling with-
out replacement. Repeating the random subsampling multiple
times (m = 100) enables modeling the prior distribution of the
averaged sums of squared S̄, and was also used for estimation
of the minimum value of averaged sums of squares S̄ using
the formula (3).

Histogram of the prior distribution of the averaged sums
of squared S̄ is in figure 1. The minimum value of averaged
sums of squares S̄ was estimated following the (3) to be equal
ˆ̄S

.
= 0.247.
The next method, subsampling by forwarding one-be-one

reduction of the original dataset, was also performed m = 100
times. Histogram of the prior distribution of the averaged sums
of squared S̄ is in figure 2. The minimum value of averaged
sums of squares S̄ for the one-be-one size reduction that was
obtained is equal to ˆ̄S

.
= 0.242.

The subsampling by clustering the original dataset was
performed m = 100 times, too. The final subsample was
designed using the T matrix (5) and creating the subsample
from scratch using the logic of formula (6). Histogram of the
prior distribution of the averaged sums of squared S̄ is in
figure 3. The minimum value of averaged sums of squares S̄
for the one-be-one size reduction that was obtained is equal
to ˆ̄S

.
= 0.245.

As we can see, all the three applied methods return similar
accuracy considering the minimization of the averaged sums
of squares. The formal comparison of statistical differences
in between mean values of the averaged sums of squares S̄
for the repeated (m = 100) random subsampling without
replacement, repeated (m = 100) subsampling by forward-
ing one-be-one reduction of the original dataset, and the
repeated (m = 100) subsampling by clustering the original
dataset could be performed using one-way analysis of variance
(ANOVA). However, considering the figures 1, 2 and 3, the
practical differences are minimal. What practically differs is
the asymptotic time complexity of the mentioned techniques,
as discussed before.

IV. CONCLUSION

Subsampling may be an important task when the original
dataset is larger than required. If there is a response vari-
able available in the dataset, then the methodology used for
the subsampling is well established; the popular propensity
scoring is used to extract the subsample from the original
data that harmonize size effects of all predictors using logistic
regression model.

When the response variable from some reason or another is
missing, e. g. is planned to be collected later, the methodology
of the subsampling is not so straightforward. Many various
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Fig. 1. Histogram of the prior distribution of the averaged sums of squares
S̄ calculated for the repeated (m = 100) random subsampling without
replacement.
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Fig. 2. Histogram of the prior distribution of the averaged sums of squares
S̄ calculated for the repeated (m = 100) subsampling by forwarding one-be-
one reduction of the original dataset.
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Fig. 3. Histogram of the prior distribution of the averaged sums of squares S̄

calculated for the repeated (m = 100) subsampling by clustering the original
dataset.

methods of low significance are used, based on different
approaches – from totally random subsampling to manually
matched pairs of observations with balanced all variables’
category frequencies.

In this study, we proposed one metric – the averaged sums
of squares – enabling to control a quality of the subsampling,
including the fact the metric is in theory scaled to an interval
not dependent on entry data, as was proven. Furthermore,
we compared several methods; some of them are novel and
proposed by this paper.

While the repeated random subsampling without replace-
ment is relatively fast method, it can reach the minimum
of the averaged sums of squares only approximately. The
subsampling using one-by-one reduction of the original sample
is a bit slower than the random multiple subsampling, but
still feasibly applicable; it can approach the minimum of the
averaged sums of squares only approximately, too. The ex-
haustive subsampling as the only one method can numerically
calculate the exact value of the minimum of the averaged sums
of squares; however, its executing time is enormously high.
Finally, the subsampling by clustering is an innovative method
that is relatively fast if implemented using standard algorithms
and maturated computational environments, and furthermore,
it offers a way to keep control over the mutual occurrences of
each two observations from the same clusters, when the final
subsample is constructed. Even the subsampling by clustering
approached the minimum of the averaged sums of squares
relatively closely.

All the proposed methods, i. e. repeated random sub-
sampling without replacement, subsampling using one-by-one
reduction of the original dataset and subsampling by clustering
seem to be valid alternatives to exhaustive subsampling.
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