Logo PTI Logo FedCSIS

Proceedings of the 17th Conference on Computer Science and Intelligence Systems

Annals of Computer Science and Information Systems, Volume 30

Block Subspace Iteration Method for Structural Analysis on Multicore Computers

DOI: http://dx.doi.org/10.15439/2022F42

Citation: Proceedings of the 17th Conference on Computer Science and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D. Ślęzak (eds). ACSIS, Vol. 30, pages 457465 ()

Full text

Abstract. The block subspace iteration method for problems of structural dynamics oriented on multi-core computers is presented to extract the natural vibration frequencies and modes. The investigation is focused on multithreaded parallelization of all principal stages of the method allowing to determine up to several thousand eigenpairs even for design models with a lot of very close or multiple eigenfrequencies.


  1. R. W. Clough, J. Penzien, Dynamics of Structures. Computers and Structures Inc., Berkeley, CA, USA, 2003, pp. 623 – 638.
  2. E.L. Wilson, Three Dimensional Static and Dynamic Analysis of Structures, Computers & Structures Inc., Berkeley, CA, USA, 2000, pp. pp. 13-1 – 13-16, 17-1 – 17-8. URL: http://www.edwilson.org/BOOK-Wilson/13-MODES.pdf. (Accessed 20 January 2022).
  3. S. Fialko, V. Karpilovskyi, “Block subspace projection preconditioned conjugate gradient method in modal structural analysis”, Computers and Mathematics with Applications, vol. 79, June 2020, pp. 3410–3428. https://doi.org/10.1016/j.camwa.2020.02.003.
  4. Y. Saad, Numerical methods for large eigenvalue problems, in: Classics in Applied Mathematics, Revised ed., SIAM, Philadelphia, 2011, http://dx.doi.org/10.1137/1.9781611970739.
  5. R. G. Grimes, J. G. Levis, H. D. Simon, “A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems”, SIAM J. Matrix Anal. Appl., Vol. 15, No. 1, January 1994, pp. 228-272. http://dx.doi.org/DOI:10.1137/S0895479888151111.
  6. S. Yu. Fialko, E. Z. Kriksunov, V. S. Karpilovskyy, “A block Lanczos method with spectral transformations for natural vibrations and seismic analysis of large structures in SCAD software”, in: Proceedings of the CMM-2003 – Computer Methods in Mechanics June 3–6, Gliwice, Poland, 2003, pp. 129–130. URL: https://scadsoft.com/download/049P.pdf (Accessed 20 January 2022).
  7. E. L. Wilson, T. Itoh, “An eigensolution strategy for large systems”, Comput. Struct., vol. 16, Issues 1 – 4, 1983, pp. 259–265. https://doi.org/10.1016/0045-7949(83)90166-9.
  8. Intel MKL. URL: https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top.html (Last access: 17.10.2021).
  9. S. Fialko. “Parallel finite element solver for multi-core computers with shared memory”, Computers and Mathematics with Applications, vol. 94, 2021, pp. 1 – 14. https://doi.org/10.1016/j.camwa.2021.04.013.
  10. S. Fialko. “Parallel algorithm for forward and back substitution in linear algebraic equations of finite element method”, Journal of telecommunications and information technology, vol. 4, 2019, pp. 20 – 29. https://doi.org/10.26636/jtit.2019.134919.
  11. V. S. Karpilovskyi, E. Z. Kryksunov, А. А. Maliarenko, S. Y. Fialko, A. V. Perelmuter, M. A. Perelmuter. SCAD Office.V.21. System SCAD++. Moscow: Publishing House SCAD SOFT, 2018. URL: https://scadsoft.com/download/SCAD1033.pdf.